
Chapter 4

A short note on (modelling with)
CCS

4.1 Congruence property of strong bisimilarity w.r.t. choice

We want to prove that for any CCS processes p1, p2, q we have that

p1 ' p2 implies p1 + q ' p2 + q

Let us assume that p1 ' p2, i.e., that there exists a strong bisimulation R such that
p1 R p2.1

We want to find a relation R

0 such that:

1. R

0 is a strong bisimulation (i.e., R

0 ✓ �(R0);

2. p1 + q R

0
p2 + q

Let us define R

0 as follows and then prove that it is a strong bisimulation:

R

0 = { (p1 + q, p2 + q) } [R [Id

where Id = { (p, p) | p is a CCS process } is the identity relation.

The pairs in R

0 come from either { (p1 + q, p2 + q) }, R or Id. Let us consider the various
cases.

1We recall that a relation R is a strong bisimulation if R ✓ �(R).

43

44 CHAPTER 4. CCS

• Take any (s1, s2) 2 R and µ, s01 such that s1
µ�! s

0
1. We want to prove that there

exists s

0
2 with s2

µ�! s

0
2 and s

0
1 R

0
s

0
2. But since (s1, s2) 2 R we know that there exists

such a s

0
2 with (s

0
1, s
0
2) 2 R ✓ R

0.

• Analogously to the previous case, take any (s1, s2) 2 R and µ, s02 such that s2
µ�! s

0
2.

We want to prove that there exists s

0
1 with s1

µ�! s

0
1 and s

0
1 R

0
s

0
2. But since

(s1, s2) 2 R we know that there exists such a s

0
1 with (s

0
1, s
0
2) 2 R ✓ R

0.

• take any (s, s) 2 Id and µ, s0 such that s

µ�! s

0. We want to prove that there
exists s

00 with s

µ�! s

00 and s

0
R

0
s

00. We take s

00 = s

0 and we are done, because
(s

0, s0) 2 Id ✓ R

0.

• take (p1 + q, p2 + q) and µ, p01 such that p1 + q

µ�! p

0
1. We want to prove that there

exists p

0 with p2 + q

µ�! p

0 and p

0
1 R

0
p

0. Since p1 + q

µ�! p

0
1, by the operational

semantics of CCS it must be the case that either p1
µ�! p

0
1 or q

µ�! p

0
1.

– If p1
µ�! p

0
1, since p1 R p2, there exists p

0
2 with p2

µ�! p

0
2 and p

0
1 R p

0
2. Then

p2 + q

µ�! p

0
2 and (p

0
1, p

0
2) 2 R ✓ R

0, so we take p

0 = p

0
2 and we are done.

– If q

µ�! p

0
1, then p2 + q

µ�! p

0
1 with (p

0
1, p

0
1) 2 Id ✓ R

0, so we take p

0 = p

0
1 and

we are done.

• take (p1 + q, p2 + q) and µ, p02 such that p2 + q

µ�! p

0
2. We want to prove that there

exists p

0 with p1 + q

µ�! p

0 and p

0
R

0
p

0
2. The proof is analogous to the previous

case: complete it as an exercise.

4.2 From imperative languages to CCS

We sketch some ideas on how to model the constructs of a simple imperative language in
CCS.

4.2.1 Modelling (shared) variable

Suppose x is a variable whose possible values range over a finite domain {v1, ..., vn

}. Such
variables can have n di↵erent states X1, X2, ..., Xn

, depending on the current value it stores.
In any such state, we can perform a write operation, changing the value stored in the
variable, or we can read the current value. We can model this situation by considering

4.2. FROM IMPERATIVE LANGUAGES TO CCS 45

(recursively defined processes):

X1
def
= xw1.X1 + xw2.X2 + ... + xw

n

.X
n

+ xr1.X1

X2
def
= xw1.X1 + xw2.X2 + ... + xw

n

.X
n

+ xr2.X2
...

X

n

def
= xw1.X1 + xw2.X2 + ... + xw

n

.X
n

+ xrn.Xn

where:

• in any state X

i

, a message received over the channel xw

j

is used to change the state
to X

j

;

• in the state X

i

, a message on channel xr

j

is accepted if and only if j = i.

For example, we have

X1 | xr1.xw2.nil ⌧�! X1 | xw2.nil ⌧�! X2 | nil

4.2.2 Termination

To represent sequential composition of commands, we can use a dedicated channel done

over which a message is sent when the current command is terminated. The message will
be received by the continuation. In the following we let Done denote the process

Done

def
= done.nil

4.2.3 Variable allocation

A statement like
var x

can be modelled by the allocation of an uninitialized variable, together with the termina-
tion message:

xw1.X1 + xw2.X2 + ... + xw

n

.X
n

| Done

4.2.4 Assignment

An assignment like
x := i

46 CHAPTER 4. CCS

can be modelled by sending a message over the channel xw

i

to the process that manages
the variable x, after which the termination message can be sent:

xw

i

.Done

4.2.5 Skip

A skip statement ca be translated directly as ⌧.Done or simply Done.

4.2.6 Sequential composition

Let P1 be the CCS process modelling the command c1 and P2 the CCS process modelling
c2, then we could try to model the sequential composition

c1; c2

simply as
P1 | done.P2

but this solution is unfortunate, because when considering several processes composed
sequentially, like c1; c2; c3, then the termination signal produced by P1 could activate P3

instead of P2. To amend the situation, we can introduce a restricted channel d, which
is used to rename the termination channel used by P1 (while P2 will still use channel
done):

(P1[d/done] | d.P2)\d

4.2.7 Conditional statement

Let P1 be the CCS process modelling the command c1 and P2 the CCS process modelling
c2, then we can model the conditional statement

if x = i then c1 else c2

as the CCS process that executes P1 if the value i can be read from x and P2 if a value
di↵erent than i can be read from x

xr1.P2 + ... + xr

i�1.P2 + xr

i

.P1 + xr

i+1.P2 + ... + xr

n

.P2

4.2. FROM IMPERATIVE LANGUAGES TO CCS 47

4.2.8 Iteration

Let P be the CCS process modelling the command c, then we can model the while
statement

while x = i do c

by using the recursive process

rec W. xr1.Done+ ...+ xr

i�1.Done+ xr

i

.(P[d/done] | d.W)\d+ xr

i+1.Done+ ...+ xr

n

.Done

that, in the case the value i can be read from x, activates the continuation

(P[d/done] | d.rec W. (...))\d
and in all the other cases it activates the termination process Done.

4.2.9 Concurrent execution

Finally, we can of course allow for concurrent execution of commands. Let P1 be the
CCS process modelling the command c1 and P2 the CCS process modelling c2, then we
could try to model the parallel composition

c1 | c2

as the process that terminates when both P1 and P2 have terminated:

(P1[d1/done] | (P2[d2/done]) | d1.d2.Done)\d1\d2

Note that we can use the simpler process

d1.d2.Done

to wait for the termination of P1[d1/done] and P2[d2/done] instead of the more complex
process

d1.d2.Done + d2.d1.Done

because the termination message cannot be released anyway until both P1 and P2 have
terminated.

4.2.10 Optimization

Of course, all the ⌧ moves resulting from the synchronisation over termination messages
can be avoided if we give a di↵erent, slightly more involved, translation that plugs in a
process its continuation in place of the Done process. You can investigate, as an exercise,
how this translation can be formalised.

	Lecture 1
	The course
	Exam
	Objective
	References
	About you
	Syntax and semantics
	Syntax
	Semantics

	A survey of semantics methods
	Numerals vs numbers
	Concrete and abstract syntax
	An informal semantics
	A small-step operational semantics
	A big-step operational semantics (or natural semantics)
	A denotational semantics
	Semantic equivalence

	Induction and recursion
	Semantic domains
	Transition systems
	Applications of semantics

	Unification
	Signatures and terms
	Substitutions
	Unification problem

	Lambda notation
	-calculus: main ideas
	-calculus: booleans and Church numerals
	Alpha-conversion, free variables and capture-avoiding substitution
	Beta-rule
	Exercises

	CCS
	Congruence property of strong bisimilarity w.r.t. choice
	From imperative languages to CCS
	Modelling (shared) variable
	Termination
	Variable allocation
	Assignment
	Skip
	Sequential composition
	Conditional statement
	Iteration
	Concurrent execution

