Chapter 4

A short note on (modelling with) CCS

4.1 Congruence property of strong bisimilarity w.r.t. choice

We want to prove that for any CCS processes p_1, p_2, q we have that

 $p_1 \simeq p_2$ implies $p_1 + q \simeq p_2 + q$

Let us assume that $p_1 \simeq p_2$, i.e., that there exists a strong bisimulation R such that $p_1 R p_2$.¹

We want to find a relation R' such that:

- 1. *R'* is a strong bisimulation (i.e., $R' \subseteq \Phi(R')$;
- 2. $p_1 + q R' p_2 + q$

Let us define R' as follows and then prove that it is a strong bisimulation:

$$R' = \{ (p_1 + q, p_2 + q) \} \cup R \cup Id$$

where $Id = \{ (p, p) \mid p \text{ is a CCS process } \}$ is the identity relation.

The pairs in R' come from either { $(p_1 + q, p_2 + q)$ }, R or Id. Let us consider the various cases.

¹We recall that a relation *R* is a strong bisimulation if $R \subseteq \Phi(R)$.

- Take any $(s_1, s_2) \in R$ and μ, s'_1 such that $s_1 \xrightarrow{\mu} s'_1$. We want to prove that there exists s'_2 with $s_2 \xrightarrow{\mu} s'_2$ and $s'_1 R' s'_2$. But since $(s_1, s_2) \in R$ we know that there exists such a s'_2 with $(s'_1, s'_2) \in R \subseteq R'$.
- Analogously to the previous case, take any (s₁, s₂) ∈ R and μ, s'₂ such that s₂ → s'₂. We want to prove that there exists s'₁ with s₁ → s'₁ and s'₁ R' s'₂. But since (s₁, s₂) ∈ R we know that there exists such a s'₁ with (s'₁, s'₂) ∈ R ⊆ R'.
- take any (s, s) ∈ Id and μ, s' such that s → s'. We want to prove that there exists s'' with s → s'' and s' R' s''. We take s'' = s' and we are done, because (s', s') ∈ Id ⊆ R'.
- take $(p_1 + q, p_2 + q)$ and μ, p'_1 such that $p_1 + q \xrightarrow{\mu} p'_1$. We want to prove that there exists p' with $p_2 + q \xrightarrow{\mu} p'$ and $p'_1 R' p'$. Since $p_1 + q \xrightarrow{\mu} p'_1$, by the operational semantics of CCS it must be the case that either $p_1 \xrightarrow{\mu} p'_1$ or $q \xrightarrow{\mu} p'_1$.
 - If $p_1 \xrightarrow{\mu} p'_1$, since $p_1 R p_2$, there exists p'_2 with $p_2 \xrightarrow{\mu} p'_2$ and $p'_1 R p'_2$. Then $p_2 + q \xrightarrow{\mu} p'_2$ and $(p'_1, p'_2) \in R \subseteq R'$, so we take $p' = p'_2$ and we are done.
 - If $q \xrightarrow{\mu} p'_1$, then $p_2 + q \xrightarrow{\mu} p'_1$ with $(p'_1, p'_1) \in Id \subseteq R'$, so we take $p' = p'_1$ and we are done.
- take $(p_1 + q, p_2 + q)$ and μ , p'_2 such that $p_2 + q \xrightarrow{\mu} p'_2$. We want to prove that there exists p' with $p_1 + q \xrightarrow{\mu} p'$ and $p' R' p'_2$. The proof is analogous to the previous case: complete it as an exercise.

4.2 From imperative languages to CCS

We sketch some ideas on how to model the constructs of a simple imperative language in CCS.

4.2.1 Modelling (shared) variable

Suppose *x* is a variable whose possible values range over a finite domain $\{v_1, ..., v_n\}$. Such variables can have *n* different states $X_1, X_2, ..., X_n$, depending on the current value it stores. In any such state, we can perform a write operation, changing the value stored in the variable, or we can read the current value. We can model this situation by considering

(recursively defined processes):

$$X_{1} \stackrel{\text{def}}{=} xw_{1}.X_{1} + xw_{2}.X_{2} + \dots + xw_{n}.X_{n} + xr1.X1$$

$$X_{2} \stackrel{\text{def}}{=} xw_{1}.X_{1} + xw_{2}.X_{2} + \dots + xw_{n}.X_{n} + xr2.X2$$

$$\dots$$

$$X_{n} \stackrel{\text{def}}{=} xw_{1}.X_{1} + xw_{2}.X_{2} + \dots + xw_{n}.X_{n} + xrn.Xn$$

where:

- in any state *X_i*, a message received over the channel *xw_j* is used to change the state to *X_j*;
- in the state X_i , a message on channel xr_j is accepted if and only if j = i.

For example, we have

$$X_1 \mid \overline{xr_1}.\overline{xw_2}.\mathbf{nil} \xrightarrow{\tau} X_1 \mid \overline{xw_2}.\mathbf{nil} \xrightarrow{\tau} X_2 \mid \mathbf{nil}$$

4.2.2 Termination

To represent sequential composition of commands, we can use a dedicated channel *done* over which a message is sent when the current command is terminated. The message will be received by the continuation. In the following we let *Done* denote the process

Done
$$\stackrel{\text{def}}{=} \overline{done}$$
.nil

4.2.3 Variable allocation

A statement like

var *x*

can be modelled by the allocation of an uninitialized variable, together with the termination message:

$$xw_1.X_1 + xw_2.X_2 + ... + xw_n.X_n \mid Done$$

4.2.4 Assignment

An assignment like

x := i

can be modelled by sending a message over the channel xw_i to the process that manages the variable *x*, after which the termination message can be sent:

$$\overline{xw_i}$$
.Done

4.2.5 Skip

A skip statement ca be translated directly as τ . Done or simply Done.

4.2.6 Sequential composition

Let P_1 be the CCS process modelling the command c_1 and P_2 the CCS process modelling c_2 , then we could try to model the sequential composition

 $c_1; c_2$

simply as

 $P_1 \mid done.P_2$

but this solution is unfortunate, because when considering several processes composed sequentially, like c_1 ; c_2 ; c_3 , then the termination signal produced by P_1 could activate P_3 instead of P_2 . To amend the situation, we can introduce a restricted channel d, which is used to rename the termination channel used by P_1 (while P_2 will still use channel *done*):

$$(P_1[d/done] \mid d.P_2) \setminus d$$

4.2.7 Conditional statement

Let P_1 be the CCS process modelling the command c_1 and P_2 the CCS process modelling c_2 , then we can model the conditional statement

if
$$x = i$$
 then c_1 else c_2

as the CCS process that executes P_1 if the value *i* can be read from *x* and P_2 if a value different than *i* can be read from *x*

$$\overline{xr_1}.P_2 + \ldots + \overline{xr_{i-1}}.P_2 + \overline{xr_i}.P_1 + \overline{xr_{i+1}}.P_2 + \ldots + \overline{xr_n}.P_2$$

4.2.8 Iteration

Let P be the CCS process modelling the command c, then we can model the while statement

while $x = i \operatorname{do} c$

by using the recursive process

rec *W*. $\overline{xr_1}$. *Done* + ... + $\overline{xr_{i-1}}$. *Done* + $\overline{xr_i}$. (*P*[*d*/*done*] | *d*. *W*)*d* + $\overline{xr_{i+1}}$. *Done* + ... + $\overline{xr_n}$. *Done*

that, in the case the value i can be read from x, activates the continuation

 $(P[d/done] \mid d.$ **rec** $W. (...)) \setminus d$

and in all the other cases it activates the termination process Done.

4.2.9 Concurrent execution

Finally, we can of course allow for concurrent execution of commands. Let P_1 be the CCS process modelling the command c_1 and P_2 the CCS process modelling c_2 , then we could try to model the parallel composition

 $c_1 | c_2$

as the process that terminates when both P_1 and P_2 have terminated:

 $(P_1[d_1/done] | (P_2[d_2/done]) | d_1.d_2.Done) \setminus d_1 \setminus d_2$

Note that we can use the simpler process

 $d_1.d_2.Done$

to wait for the termination of $P_1[d_1/done]$ and $P_2[d_2/done]$ instead of the more complex process

 $d_1.d_2.Done + d_2.d_1.Done$

because the termination message cannot be released anyway until both P_1 and P_2 have terminated.

4.2.10 Optimization

Of course, all the τ moves resulting from the synchronisation over termination messages can be avoided if we give a different, slightly more involved, translation that plugs in a process its continuation in place of the *Done* process. You can investigate, as an exercise, how this translation can be formalised.