
Chapter 3

A short note on lambda-notation

3.1 �-calculus: main ideas

The �-calculus is built around two main ideas:

• applying a function to an argument

• forming (anonymous) functions by abstraction over names

These two basic concepts allow one to build a theory of functions based on rules for
computation, as opposed to the classical set-theoretic view of functions as sets of pairs
(argument, result).

Let us start with a simple example from arithmetic:

• a polynomial such as x

2 � 2x + 5

• what is the value of the above expression when x is replaced by 2?

• we compute the result by plugging in ‘2’ for ‘x’ in the expression

• we get 22 � 2 · 2 + 5 = 5

In �-notation, when we want to express that the value of an expression depends on some
value to be plugged in, we use abstraction, written

�x. (x

2 � 2x + 5)

whose informal reading is:

wait for a value v to replace x and then compute v

2 � 2v + 5.

Note that:

35

36 CHAPTER 3. LAMBDA NOTATION

• the symbol � has no particular meaning (any other symbol could have been used)

• by writing �x. t we are declaring x as a formal parameter appearing in t

• we say that �x ‘binds’ the (occurrences of the) variable x in t (to avoid interference
from the outside)

• we want to be able to pass some actual parameter to �x. t, i.e., to apply the function
�x. t to some value

• we denote application by juxtaposition, i.e., (�x. t) v means that the function �x. t is
applied to v (or in other words that the actual parameter v replaces the occurrences
of x in t)

Coming back to the previous example, the application (�x. (x

2 � 2x + 5)) 2 can be
computed by substituting 2 for x in x

2 � 2x + 5, to obtain 22 � 2 · 2 + 5 = 5.

Let us consider another example:

(�x. �y. (x

2 � 2y + 5)) 2

This time we have a function that is waiting for two arguments (first x, then y) to which
we pass one value (2). We have

(�x. �y. (x

2 � 2y + 5)) 2 = �y. (22 � 2y + 5) = �y. (9 � 2y)

that is, the result of applying �x. �y. (x

2�2y+5) to 2 is still a function (�y. (9�2y)).

In �-calculus we can pass functions as arguments and return functions as results.

Note that while we can have di↵erent terms t and t

0 that define the same function, in
general the problem of deciding whether t = t

0 is undecidable.

To limit the number of parentheses and keep the notation more readable, we assume that
application is left-associative, and lambda-abstraction is right-associative, i.e.,

t1 t2 t3 t4 is read (((t1 t2) t3) t4)
�x1. �x2. �x3. �x4.t is read �x1. (�x2. (�x3. (�x4.t)))

3.2 �-calculus: booleans and Church numerals

In the above examples, we have enriched standard arithmetic expressions with abstraction
and application.

In general, it would be possible to encode booleans and numbers (and operations over
them) just using abstraction and application.

3.2. �-CALCULUS: BOOLEANS AND CHURCH NUMERALS 37

For example, let us consider the following terms:

T

def
= �x. �y. x

F

def
= �x. �y. y

We can assume that T represents true and F represents false.

Under this convention, we can define the usual logical operations by letting:

AND def
= �p. �q. p q p

OR def
= �p. �q. p p q

NOT def
= �p. �x. �y. p y x

In fact, suppose we want to compute AND F T , we have:

AND F T = (�p. �q. p q p) F T

= (�q. F q F) T

= F T F

= (�x. �y. y) T F

= (�y. y) F

= F

As another example:

AND T T = (�p. �q. p q p) T T

= (�q. T q T) T

= T T T

= (�x. �y. x) T T

= (�y. T) T

= T

The reader is invited to try other calculations, like OR T F or NOT T .

Now suppose that P will reduce either to T or to F. The expression P A B can be read as
‘if P then A else B’.

For natural numbers, we can adopt the convention that the number n is represented by
a function that takes a function f and an argument x and applies f to x for n times

38 CHAPTER 3. LAMBDA NOTATION

consecutively. For example:

0 def
= � f . �x. x

1 def
= � f . �x. f x

2 def
= � f . �x. f (f x)

Then, the operations for successor, sum, multiplication could be defined by letting:

SUCC def
= �n. � f . �x. f (n f x)

SUM def
= �n. �m. � f . �x. m f (n f x)

MUL def
= �n. �m. � f . n (m f)

In the following, when needed, we will assume that the data types of booleans and inte-
gers, together with the common operations on them, can appear in our �-expressions.

3.3 Alpha-conversion, free variables and capture-avoiding
substitution

The names of the formal parameters we choose for a given function should not matter.
Therefore, any two expressions that di↵er just for the particular choice of �-abstracted
variables and have the same structure otherwise, should be considered as equal.

For example, we do not want to distinguish between the terms

�x. (x

2 � 2x + 5) �y. (y2 � 2y + 5)

On the other hand, the expressions

x

2 � 2x + 5 y

2 � 2y + 5

must be distinguished, because depending on the context where they are used, the
symbols x and y could have a di↵erent meaning.

We say that two terms are ↵-convertible if one is obtained from the other by renaming
some �-abstracted variables. We call free the variables x whose occurrences are not
under the scope of a � binder.

3.3. ALPHA-CONVERSION, FREE VARIABLES AND CAPTURE-AVOIDING SUBSTITUTION39

Formally, assume the following syntax for �-terms:

t ::= x | �x.t | tt | t ! t, t

where x is a variable, �x.t is the abstraction of x in t, t0 t1 is the application of t0 to t1

and t ! t0, t1 is the conditional expression (if t is true then it behaves as t0, otherwise as
t1).

We define ↵-conversion as the equivalence induced by letting

�x. t = �y. (t[y/x]) if y < fv(t)

Note the side condition y < fv(t), which is needed to avoid ‘capturing’ other free variables
appearing in t. For example,

�z. z2 � 2y + 5 = �x. x2 � 2y + 5 , �y. y2 � 2y + 5

For example, the identity function can be written �x. x or (alpha-)equivalently �z. z.

The set of free variables occurring in a term is defined by structural recursion:

fv(x) = {x}
fv(�x.t) = fv(t) \ {x}
fv(t0 t1) = fv(t0) [fv(t1)

fv(t ! t0, t1) = fv(t) [fv(t0) [fv(t1)

Let us now try to define substitutions (but be aware that the following is a wrong
attempt):

y[t/x] =
(

t if y = x

y if y , x

(�y.t0)[t/x] =
(
�y.t0 if y = x

�y.(t0[t/x]) if y , x

(t0 t1)[t/x] = (t0[t/x]) (t1[t/x])
(t0 ! t0, t1)[t/x] = (t0[t/x])! (t0[t/x]), (t1[t/x])

What is wrong with the above attempt?

Consider the terms t = �x. �y. (x

2 � 2y + 5) and t

0 = y. Then, take t t

0:

t t

0 = (�x. �y. (x

2 � 2y + 5)) y

= (�y. (x

2 � 2y + 5))[y/x]
= �y. ((x

2 � 2y + 5)[y/x])
= �y. (y2 � 2y + 5)

40 CHAPTER 3. LAMBDA NOTATION

It happens that the free variable y 2 fv(t t

0) has been ‘captured’ by the lambda-abstraction
�y. Instead, free variables occurring in t should remain free during the application of the
substitution [t/x].

Thus we need to correct the above version of substitution for the case related to (�y.t0)[t/x]
by applying first the alpha-conversion to �y.t0 (to make sure that if y 2 fv(t), then the
free occurrences of y in t will not be captured by �y when replacing x in t

0) and then the
substitution [t/x]. Formally, we let:

y[t/x] =
(

t if y = x

y if y , x

(�y.t0)[t/x] = �z.((t0[z/y])[t/x]) if z < fv(�y. t0) [fv(t) [{x}
(t0 t1)[t/x] = (t0[t/x]) (t1[t/x])

(t0 ! t0, t1)[t/x] = (t0[t/x])! (t0[t/x]), (t1[t/x])

Now, let us consider again the terms t = �x. �y. (x

2�2y+5) and t

0 = y and take t t

0:

t t

0 = (�x. �y. (x

2 � 2y + 5)) y

= (�y. (x

2 � 2y + 5))[y/x]
= �z. ((x

2 � 2y + 5)[z/y][y/x])
= �z. ((x

2 � 2z + 5)[y/x])
= �z. (x

2 � zy + 5)

3.4 Beta-rule

We have now all ingredients to define the basic computational rule, called �-rule, which
explains how to apply a function to an argument:

(�x. t0) t = t

0[t/x]

3.5 Exercises

1. Is �x. �x. x ↵-convertible to one or more of the following expressions?

(a) �y. �x. x

(b) �y. �x. y

(c) �y. �y. y

3.5. EXERCISES 41

(d) �x. �y. x

(e) �z. �w. w

2. Is (�x. �y. x) y equivalent to one or more of the following expressions?

(a) �y. �y. y

(b) �y. y

(c) �y. z

(d) �z. y

(e) �x. y

	Lecture 1
	The course
	Exam
	Objective
	References
	About you
	Syntax and semantics
	Syntax
	Semantics

	A survey of semantics methods
	Numerals vs numbers
	Concrete and abstract syntax
	An informal semantics
	A small-step operational semantics
	A big-step operational semantics (or natural semantics)
	A denotational semantics
	Semantic equivalence

	Induction and recursion
	Semantic domains
	Transition systems
	Applications of semantics

	Unification
	Signatures and terms
	Substitutions
	Unification problem

	Lambda notation
	-calculus: main ideas
	-calculus: booleans and Church numerals
	Alpha-conversion, free variables and capture-avoiding substitution
	Beta-rule
	Exercises

