
Dipartimento di Informatica, Università di Pisa

Notes on

Models of Computation

Introduction, Preliminaries,
Operational Semantics of IMP,

Induction, Recursion, Partial Orders,
Denotational Semantics of IMP,

Operational Semantics of HOFL, Domain Theory,
Denotational Semantics of HOFL,

CCS, Temporal Logic, µ-calculus, ⇡-calculus
Markov Chains with Actions and Nondeterminism,

PEPA

Roberto Bruni Lorenzo Galeotti Ugo Montanari⇤

May 16, 2015

⇤Also based on material by Andrea Cimino, Lorenzo Muti, Gianmarco Saba, Marco Stronati

Contents

Introduction ix
1. Objectives . ix
2. Structure . x
3. References . xi

1. Preliminaries 1
1.1. Inference Rules . 1
1.2. Logic Programming . 6

I. IMP language 9

2. Operational Semantics of IMP 11
2.1. Syntax of IMP . 11

2.1.1. Arithmetic Expressions . 11
2.1.2. Boolean Expressions . 12
2.1.3. Commands . 12
2.1.4. Abstract Syntax . 12

2.2. Operational Semantics of IMP . 12
2.2.1. Memory State . 12
2.2.2. Inference Rules . 13
2.2.3. Examples . 16

2.3. Abstract Semantics: Equivalence of IMP Expressions and Commands 20
2.3.1. Examples: Simple Equivalence Proofs . 21
2.3.2. Examples: Parametric Equivalence Proofs . 21
2.3.3. Inequality Proofs . 23
2.3.4. Diverging Computations . 24

3. Induction and Recursion 27
3.1. Noether Principle of Well-founded Induction . 27

3.1.1. Well-founded Relations . 27
3.1.2. Noether Induction . 32
3.1.3. Weak Mathematical Induction . 32
3.1.4. Strong Mathematical Induction . 32
3.1.5. Structural Induction . 33
3.1.6. Induction on Derivations . 35
3.1.7. Rule Induction . 35

3.2. Well-founded Recursion . 38

4. Partial Orders and Fixpoints 41
4.1. Orderings and Continuous Functions . 41

4.1.1. Orderings . 41
4.1.2. Hasse Diagrams . 42
4.1.3. Chains . 45
4.1.4. Complete Partial Orders . 46

iv Contents

4.2. Continuity and Fixpoints . 48
4.2.1. Monotone and Continuous Functions . 48
4.2.2. Fixpoints . 49
4.2.3. Fixpoint Theorem . 49

4.3. Immediate Consequence Operator . 50
4.3.1. The R̂ Operator . 50
4.3.2. Fixpoint of R̂ . 51

5. Denotational Semantics of IMP 55
5.1. �-notation . 55
5.2. Denotational Semantics of IMP . 57

5.2.1. Function A . 57
5.2.2. Function B . 58
5.2.3. Function C . 58

5.3. Equivalence Between Operational and Denotational Semantics 61
5.3.1. Equivalence Proofs for A and B . 61
5.3.2. Equivalence of C . 62

5.3.2.1. Completeness of the Denotational Semantics 62
5.3.2.2. Correctness of the Denotational Semantics 64

5.4. Computational Induction . 66

II. HOFL language 69

6. Operational Semantics of HOFL 71
6.1. HOFL . 71

6.1.1. Typed Terms . 71
6.1.2. Typability and Typechecking . 73

6.1.2.1. Church Type Theory . 74
6.1.2.2. Curry Type Theory . 74

6.2. Operational Semantics of HOFL . 75

7. Domain Theory 79
7.1. The Domain N? . 79
7.2. Cartesian Product of Two Domains . 79
7.3. Functional Domains . 80
7.4. Lifting . 83
7.5. Function’s Continuity Theorems . 84
7.6. Useful Functions . 86

8. HOFL Denotational Semantics 89
8.1. HOFL Evaluation Function . 89

8.1.1. Constants . 89
8.1.2. Variables . 89
8.1.3. Binary Operators . 90
8.1.4. Conditional . 90
8.1.5. Pairing . 90
8.1.6. Projections . 90
8.1.7. Lambda Abstraction . 90
8.1.8. Function Application . 90
8.1.9. Recursion . 91

8.2. Typing the Clauses . 91
8.3. Continuity of Meta-language’s Functions . 92

Contents v

8.4. Substitution Lemma . 94

9. Equivalence between HOFL denotational and operational semantics 95
9.1. Completeness . 95
9.2. Equivalence (on Convergence) . 97
9.3. Operational and Denotational Equivalence . 98
9.4. A Simpler Denotational Semantics . 99

III. Concurrency and Logic 101

10. CCS, the Calculus for Communicating Systems 103
10.1. Syntax of CCS . 106
10.2. Operational Semantics of CCS . 107

10.2.1. CCS with value passing . 110
10.2.2. Recursive declarations and the recursive operator 111

10.3. Abstract Semantics of CCS . 112
10.3.1. Graph Isomorphism . 113
10.3.2. Trace Equivalence . 114
10.3.3. Bisimilarity . 115

10.4. Compositionality . 118
10.4.1. Bisimilarity is Preserved by Parallel Composition 119

10.5. Hennessy - Milner Logic . 121
10.6. Axioms for Strong Bisimilarity . 123
10.7. Weak Semantics of CCS . 123

10.7.1. Weak Bisimilarity . 124
10.7.2. Weak Observational Congruence . 125
10.7.3. Dynamic Bisimilarity . 125

11. Temporal Logic and µ-Calculus 127
11.1. Temporal Logic . 127

11.1.1. Linear Temporal Logic . 127
11.1.2. Computation Tree Logic . 129

11.2. µ-Calculus . 131
11.3. Model Checking . 132

12. ⇡-Calculus 133
12.1. Syntax of ⇡-calculus . 135
12.2. Operational Semantics of ⇡-calculus . 136
12.3. Structural Equivalence of ⇡-calculus . 138

12.3.1. Reduction semantics . 139
12.4. Abstract Semantics of ⇡-calculus . 139

12.4.1. Strong Early Ground Bisimulations . 140
12.4.2. Strong Late Ground Bisimulations . 140
12.4.3. Strong Full Bisimilarity . 141
12.4.4. Weak Early and Late Ground Bisimulations . 141

IV. Probabilistic Models and PEPA 143

13. Measure Theory and Markov Chains 145
13.1. Measure Theory . 145

13.1.1. �-field . 145
13.1.2. Constructing a �-field . 146

vi Contents

13.1.3. Continuous Random Variables . 147
13.2. Stochastic Processes . 150
13.3. Markov Chains . 151

13.3.1. Discrete and Continuous Time Markov Chain . 151
13.3.2. DTMC as LTS . 152
13.3.3. DTMC Steady State Distribution . 154
13.3.4. CTMC as LTS . 155
13.3.5. Embedded DTMC of a CTMC . 155
13.3.6. CTMC Bisimilarity . 156
13.3.7. DTMC Bisimilarity . 157

14. Markov Chains with Actions and Non-determinism 159
14.1. Discrete Markov Chains With Actions . 159

14.1.1. Reactive DTMC . 159
14.1.1.1. Larsen-Skou Logic . 160

14.1.2. DTMC With Non-determinism . 161
14.1.2.1. Segala Automata . 161
14.1.2.2. Simple Segala Automata . 162
14.1.2.3. Non-determinism, Probability and Actions 163

15. PEPA - Performance Evaluation Process Algebra 165
15.1. CSP . 166

15.1.1. Syntax of CSP . 166
15.1.2. Operational Semantics of CSP . 166

15.2. PEPA . 166
15.2.1. Syntax of PEPA . 167
15.2.2. Operational Semantics of PEPA . 168

V. Appendices 173

A. Summary 175
A.1. Induction rules 3.1.2 . 175

A.1.1. Noether . 175
A.1.2. Weak Mathematical Induction 3.1.3 . 175
A.1.3. Strong Mathematical Induction 3.1.4 . 175
A.1.4. Structural Induction 3.1.5 . 175
A.1.5. Derivation Induction 3.1.6 . 175
A.1.6. Rule Induction 3.1.7 . 175
A.1.7. Computational Induction 5.4 . 175

A.2. IMP 2 . 176
A.2.1. IMP Syntax 2.1 . 176
A.2.2. IMP Operational Semantics 2.2 . 176

A.2.2.1. IMP Arithmetic Expressions . 176
A.2.2.2. IMP Boolean Expressions . 176
A.2.2.3. IMP Commands . 176

A.2.3. IMP Denotational Semantics 5 . 176
A.2.3.1. IMP Arithmetic Expressions A : Aexpr ! (⌃! N) 176
A.2.3.2. IMP Boolean Expressions B : Bexpr ! (⌃! B) 177
A.2.3.3. IMP Commands C : Com! (⌃* ⌃) 177

A.3. HOFL 6.1 . 177
A.3.1. HOFL Syntax 6.1 . 177
A.3.2. HOFL Types 6.1.1 . 177

Contents vii

A.3.3. HOFL Typing Rules 6.1.1 . 177
A.3.4. HOFL Operational Semantics 6.2 . 178

A.3.4.1. HOFL Canonical Forms . 178
A.3.4.2. HOFL Axiom . 178
A.3.4.3. HOFL Arithmetic and Conditional Expressions 178
A.3.4.4. HOFL Pairing Rules . 178
A.3.4.5. HOFL Function Application . 178
A.3.4.6. HOFL Recursion . 178

A.3.5. HOFL Denotational Semantics 8 ~t : ⌧� : Env �! (V⌧)? 178
A.4. CCS 10 . 179

A.4.1. CCS Syntax 10.1 . 179
A.4.2. CCS Operational Semantics 10.2 . 179
A.4.3. CCS Abstract Semantics 10.3 . 179

A.4.3.1. CCS Strong Bisimulation 10.3.3 . 179
A.4.3.2. CCS Weak Bisimulation 10.7 . 179
A.4.3.3. CCS Observational Congruence 10.7.2 179
A.4.3.4. CCS Axioms for Observational Congruence (Milner ⌧ Laws) 10.7.2 . . . 180
A.4.3.5. CCS Dynamic Bisimulation 10.7.3 . 180
A.4.3.6. CCS Axioms for Dynamic Bisimilarity 10.7.3 180

A.5. Temporal and Modal Logic . 180
A.5.1. Hennessy - Milner Logic 10.5 . 180
A.5.2. Linear Temporal Logic 11.1.1 . 180
A.5.3. Computation Tree Logic 11.1.2 . 181

A.6. µ-Calculus 11.2 . 181
A.7. ⇡-calculus 12 . 182

A.7.1. ⇡-calculys Syntax 12.1 . 182
A.7.2. ⇡-calculus Operational Semantics 12.2 . 182
A.7.3. ⇡-calculus Abstract Semantics 12.4 . 182

A.7.3.1. Strong Early Ground Bisimulation 12.4.1 182
A.7.3.2. Strong Early Full Bisimilarity 12.4.3 . 182
A.7.3.3. Strong Late Ground Bisimulation 12.4.2 183
A.7.3.4. Strong Late Full Bisimilarity 12.4.3 . 183
A.7.3.5. Weak Early Ground Bisimulation 12.4.4 183
A.7.3.6. Weak Late Ground Bisimulation 12.4.4 183

A.8. LTL for Action, Non-determinism and Probability . 183
A.9. Larsen-Skou Logic 14.1.1.1 . 184
A.10.PEPA 15 . 184

A.10.1. PEPA Syntax 15.2.1 . 184
A.10.2. PEPA Operational Semantics 15.2.2 . 184

7. Domain Theory

As done for IMP we would like to introduce the denotational semantics of HOFL, for which we need to
develop a proper domain theory.

In order to define the denotational semantics of IMP we have shown that the semantic domain of commands,
for which we need to apply fixpoint theorem, has the required properties. The situation is more complicated
for HOFL, because HOFL provides constructors for infinitely many term types, so there are infinitely many
domains to be considered. We will handle this problem by showing by structural induction that the type
constructors of HOFL correspond to domains which are equipped with adequate CPO? structures.

7.1. The Domain N?

We define the CPO? N? = (N [{?N?},v) as follows:

• N is the set of integer numbers

• 8x 2 N [{?N?}. ?N? v x and x v x

obviously N? is a CPO with bottom, indeed ?N? is the bottom element and each chain has a LUB (note that
chains are all of length 1 or 2).

7.2. Cartesian Product of Two Domains

We start with two CPO?:

D = (D,vD)
E = (E,vE)

Now we construct the Cartesian product D ⇥ E = (D ⇥ E,vD⇥E) which has as elements the pairs of elements
of D and E. Let us define the order as follows (note that the order is di↵erent from the lexicographic one):

• 8d0, d1 2 D 8e0, e1 2 E. (d0, e0) vD⇥E (d1, e1), d0 vD d1 ^ e0 vE e1

Let us show that vD⇥E is a partial order:

• reflexivity: since vD and vE are reflexive we have 8e 2 E e vE e and 8d 2 D d vD d so by definition
of vD⇥E we have 8d 2 D 8e 2 E. (d, e) vD⇥E (d, e).

• antisymmetry: let us assume (d0, e0) vD⇥E (d1, e1) and (d1, e1) vD⇥E (d0, e0) so by definition of vD⇥E
we have d0 vD d1 (using the first relation) and d1 vD d0 (by using the second relation) so it must be
d0 = d1 and similarly e0 = e1, hence (d0, e0) = (d1, e1).

• transitivity: let us assume (d0, e0) vD⇥E (d1, e1) and (d1, e1) vD⇥E (d2, e2). By definition of vD⇥E we
have d0 vD d1, d1 vD d2, e0 vE e1 and e1 vE e2. By transitivity of vD and vE we have d0 vD d2 and
e0 vE e2. By definition of vD⇥E we obtain (d0, e0) vD⇥E (d2, e2).

Now we show that the PO has a bottom element ?D⇥E = (?D,?E). In fact 8d 2 D, e 2 E. ?D v d ^ ?E v e,
thus (?D,?E) vD⇥E (d, e). It remains to show the completeness of D ⇥ E .

80 Domain Theory

Theorem 7.1 (Completeness of D ⇥ E)
The PO D ⇥ E defined above is complete.

Proof. We will prove that for each chain (di, ei)i2! it holds:

G

i2!
(di, ei) =

0

B

B

B

B

B

@

G

i2!
di,

G

i2!
ei

1

C

C

C

C

C

A

Obviously
�F

i2! di,
F

i2! ei
�

is an upper bound, indeed for each j 2 ! we have d j vD
F

i2! di and e j vE
F

i2! ei so by
definition of vD⇥E it holds (d j, e j) vD⇥E

�F

i2! di,
F

i2! ei
�

.
Moreover

�F

i2! di,
F

i2! ei
�

is also the least upper bound. Indeed, let (d̄, ē) be an upper bound of {(di, ei)}i2!, since
F

i2! di is the LUB of {di}i2! we have
F

i2! di vD d̄, furthermore we have that
F

i2! ei is the LUB of {ei}i2! then
F

i2! ei vE ē. So by definition of vD⇥E we have
�F

i2! di,
F

i2! ei
� vD⇥E (d̄, ē). Thus

�F

i2! di,
F

i2! ei
�

is the least upper
bound. ⇤

Let us define the projection operators of D ⇥ E .

Definition 7.2 (Projection operators ⇡1 and ⇡2)
Let (d, e) 2 D ⇥ E be a pair, we define the left and right projection functions ⇡1 : D ⇥ E ! D and
⇡2 : D ⇥ E ! E as follows.

• ⇡1 ((d, e)) = d

• ⇡2 ((d, e)) = e

Recall that in order to use a function in domain theory we have to show that it is continuous, this ensures
that the function respects the domain structure (i.e. the function does not change the order and preserves
limits) and so we can calculate its fixpoints.
So we have to prove that each function which we use on D ⇥ E is continuous. The proof that projections are
monotonic is immediate and left as an exercise.

Theorem 7.3 (Continuity of ⇡1 and ⇡2)
Let ⇡1 and ⇡2 be the projection functions of the previous definition and let {(di, ei)}i2! be a chain of elements
in D ⇥ E , then:

⇡1

0

B

B

B

B

B

@

G

i2!
(di, ei)

1

C

C

C

C

C

A

=
G

i2!
⇡1 ((di, ei))

and

⇡2

0

B

B

B

B

B

@

G

i2!
(di, ei)

1

C

C

C

C

C

A

=
G

i2!
⇡2 ((di, ei))

Proof. Let us prove the first statement:

⇡1

0

B

B

B

B

B

@

G

i2!
(di, ei)

1

C

C

C

C

C

A

= ⇡1

0

B

B

B

B

B

@

0

B

B

B

B

B

@

G

i2!
di,

G

i2!
ei

1

C

C

C

C

C

A

1

C

C

C

C

C

A

=
G

i2!
di =

G

i2!
⇡1 ((di, ei)) .

For ⇡2 the proof is analogous. ⇤

7.3. Functional Domains

As for Cartesian product, we start from two domains and we define the order on the set [D ! E] of the
continuous functions in { f | f : D ! E}. Note that as usual we require the continuity of the functions to

7.3 Functional Domains 81

preserve the applicability of fixpoint theory.
Let us consider the CPO?s:

D = (D,vD)
E = (E,vE)

Now we define an order on set of continuous functions [D! E]:

[D ! E] =
�

[D! E] ,v[D!E]
�

where:

• [D! E] = { f | f : D! E, f is continuous }

• f v[D!E] g, 8d 2 D. f (d) vE g(d)

We leave as an exercise the proof that [D ! E] is a PO with bottom, namely the order is reflexive, anti-
symmetric, transitive and that the function ?[D!E] defined by letting ?[D!E](d) = ?E for any d 2 D is a
continuous function and also the bottom element of [D ! E].
Let us show that the PO is complete. In order to simplify the completeness proof we introduce the following
lemmas:

Lemma 7.4 (Switch Lemma)
Let (E,vE) be a CPO whose elements are of the form en,m with n,m 2 !. If vE is such that:

en,m vE en0,m0 if n n0 and m m0

then it holds:
G

n,m2!
en,m =

G

n2!
(
G

m2!
en,m) =

G

m2!
(
G

n2!
en,m) =

G

k2!
ek,k

Proof. Our order can be summarized as follows:

...
...

... . .
. ...

v v v v

e20 v e21 v e22 v · · · F

i2! e2i = e2

v v v v

e10 v e11 v e12 v · · · F

i2! e1i = e1

v v v v

e00 v e01 v e02 v · · · F

i2! e0i = e0

We show that all the following sets have the same upper bounds:

{en,m}n,m2! {
G

m2!
en,m}n2! {

G

n2!
en,m}m2! {ek,k}k2!

Let us consider the first two sets. Let e be an upper bound of {
G

m2!
en,m}n2! and take any en0,m0 for some n0,m0. Then

en0,m0 v
G

m2!
en0,m v e

Thus e is an upper bound for {en,m}n,m2!.
Vice versa, let e be an upper bound of {en,m}n,m2! and consider

G

m2!
en0,m for some n0. Since {en0,m}m2! ✓ {en,m}n,m2!,

obviously e is an upper bound for {en0,m}m2! and therefore
G

m2!
en0,m v e.

The correspondence between the sets of upper bounds of {en,m}n,m2! and {
G

n2!
en,m}m2! can be proved analogously.

Now each element en,m is smaller than ek,k with k = max{n,m} thus an upper bound of {ek,k}k2! is also an upper
bound of {en,m}n,m2!. Moreover {ek,k}k2! is a subset of {en,m}n,m2! so an upper bounds of {en,m}n,m2! is also an upper
bound of {ek,k}k2!.

82 Domain Theory

The set of upper bounds {
G

m2!
en,m}n2! has a least element. In fact, n1 n2 implies

G

m2!
en1,m v

G

m2!
en2,m, since every

upper bound of
G

m2!
en2,m is an upper bound of

G

m2!
en1,m. Therefore {

G

m2!
en,m}n2! is a chain, and thus it has a LUB since

E is a CPO. ⇤

Lemma 7.5
Let { fn}n2! be a chain of functions (not necessarily continuous) in D ! E the LUB

F

n2! fn exists and is
defined as:

0

B

B

B

B

B

@

G

n2!
fn

1

C

C

C

C

C

A

(d) =
G

n2!
(fn(d))

Proof. Function �d.
F

n2!(fn(d)) is clearly an upper bound for { fn}n2! since for every k and d we have fk(d) vE
F

n2! fn(d). Function �d.
F

n2!(fn(d)) is also the LUB of { fn}n2! since taken g such that fn vD!E g for any n, we have
for any d that fn(d) vE g(d) and therefore

F

n2!(fn(d)) vE g(d). ⇤

Lemma 7.6
Let { fn}n2! be a chain of functions in [D ! E] and let {dn}n2! be a chain on D then the function

h def
= �d.

G

n2!
(fn(d))

is continuous, namely

h(
G

m2!
dm) =

G

n2!

0

B

B

B

B

B

@

fn(
G

m2!
dm)

1

C

C

C

C

C

A

=
G

m2!

0

B

B

B

B

B

@

G

n2!
fn(dm)

1

C

C

C

C

C

A

=
G

m2!
h(dm)

Furthermore, �d.
F

n2!(fn(d)) is the LUB of { fn}n2! not only in D ! E as stated by lemma 7.5, but also in
[D ! E].

Proof.

G

n2!

0

B

B

B

B

B

@

fn

0

B

B

B

B

B

@

G

m2!
dm

1

C

C

C

C

C

A

1

C

C

C

C

C

A

=
G

n2!

0

B

B

B

B

B

@

G

m2!
(fn (dm))

1

C

C

C

C

C

A

by continuity

=
G

m2!

0

B

B

B

B

B

@

G

n2!
(fn (dm))

1

C

C

C

C

C

A

by lemma 7.4 (switch lemma)

The upper bounds of { fn}n2! in D ! E are a larger set then those in [D ! E], thus if �d.
G

n2!
(fn(d)) is the LUB in

D ! E , it is also the LUB in [D ! E]. ⇤

Theorem 7.7 (Completeness of the functional space)
The PO [D ! E] is a CPO?

Proof. The statement follows immediately from the previous lemmas. ⇤

7.4 Lifting 83

7.4. Lifting

In IMP we introduced a lifting operator (Chapter 5.2.3) on memories ⌃ to obtain a CPO ⌃?. In the semantics
of HOFL we need the same operator in a more general fashion: we need to apply the operator to any domain.

Definition 7.8
Let D = (D,vD) be a CPO and let ? be an element not in D, so we define the lifted CPO? D? as follows:

• D? = {(0,?)} [{1} ⇥ D

• ?D? = (0,?)

• d1 vD d2) (1, d1) vD? (1, d2)

• ?D? vD? ?D? and 8d 2 D ?D? vD? (1, d)

Now we define a lifting function b�c : D �! D? as follows:

• bdc = (1, d) 8d 2 D

We leave it as an exercise to show that D? is a CPO?.
As it was the case for ⌃ in the IMP semantics, when we add a bottom element to a domain D we would like

to extend the continuous functions in [D! E] to continuous functions in [D? ! E]. The function defining
the extension should itself be continuous.

Definition 7.9
Let D be a CPO and let E be a CPO?. We define a lifting operator _⇤ : [D! E] ! [D? ! E] for
functions in [D! E] as follows:

8 f 2 [D! E] f ⇤(x) =
(

?E if x = ?D?
f (d) if x = bdc

Theorem 7.10
i) If f is continuous in [D! E], then f ⇤ is continuous in [D? ! E].

ii) The operator _⇤ is continuous.

Proof.

i) Let {di}i2! be a chain in D?. We have to prove f ⇤(
F

n2! dn) =
F

n2! f ⇤(dn).

If 8n. dn = ?D? , then this is obvious.

Otherwise for some k and for all m � k we have dm = bd0mc and also
F

n2! dn = b
F

n2! d0n+kc. Then:

f ⇤(
G

n2!
dn) = f ⇤(b

G

n2!
d0n+kc) by the above assumption

= f (
G

n2!
d0n+k) by definition of lifting

=
G

n2!
f (d0n+k) by continuity of f

=
G

n2!
f ⇤(dn+k) by definition of lifting

=
G

n2!
f ⇤(dn) by prefix independence of the limit

ii) We leave the proof that _⇤ is monotone as an exercise.

84 Domain Theory

Let { fi}i2! be a chain of functions in [D ! E]. We will prove that for all x 2 D?:
0

B

B

B

B

B

@

G

i2!
fi

1

C

C

C

C

C

A

⇤

(x) =
0

B

B

B

B

B

@

G

i2!
f ⇤i

1

C

C

C

C

C

A

(x)

if x = ?D? both sides of the equation simplify to ?E . So let us assume x = bdc for some d 2 D we have:

(
G

i2!
fi)⇤(bdc) = (

G

i2!
fi)(d) by definition of lifting

=
G

i2!
(fi(d)) by definition of LUB in a functional domain

=
G

i2!
(f ⇤i (bdc)) by definition of lifting

= (
G

i2!
f ⇤i)(bdc) by definition of LUB in a functional domain

⇤

7.5. Function’s Continuity Theorems

In this section we show some theorems which allow to prove the continuity of the functions which we will
define over our CPOs. We start proving that the composition of two continuous functions is continuous.

Theorem 7.11
Let f : [D! E] and g : [E ! F] be two continuous functions on CPO?’s. The composition

f ; g = g � f = �d. g(f (d)) : D! F

is a continuous function, namely for any chain {di}i2! in D we have

g(f (
G

n2!
dn)) =

G

n2!
g(f (dn))

Proof. Immediate:
g(f (

G

n2!
dn)) = g(

G

n2!
f (dn)) by the continuity of f

=
G

n2!
g(f (dn)) by the continuity of g

⇤

Now we consider a function whose outcome is a pair of values. So the function has as domain a CPO but
the result is on a product of CPOs.

f : S ! D ⇥ E

For this type of functions we introduce a theorem which allows to prove the continuity of f in a convenient
way. We will consider f as the pairing of two simpler functions g1 : S �! D and g2 : S �! E, then we can
prove the continuity of f from the continuity of g1 and g2.

Theorem 7.12
Let f : S �! D ⇥ E be a function over CPOs and let g1 : S �! D and g2 : S �! E be two functions
defined as follows:

• g1 = f ; ⇡1

7.5 Function’s Continuity Theorems 85

• g2 = f ; ⇡2

where f ; ⇡1 = �s.⇡1(f (s)) is the composition of f and ⇡1. Notice that we have

8s 2 S . f (s) = (g1(s), g2(s))

Then we have: f is continuous if and only if g1 and g2 are continuous.

Proof.

)) Immediate by Theorem 7.11 (continuity of composition) and Theorem7.3 (continuity of projections), since g1
and g2 are compositions of continuous functions.

() We assume the continuity of g1 and g2. We prove:

f (
G

i2!
si) =

G

i2!
f (si)

So we have:
f (

G

i2!
si) = (g1(

G

i2!
si), g2(

G

i2!
si)) by definition

= (
G

i2!
g1(si),

G

i2!
g2(si)) by continuity of g1 and g2

=
G

i2!
(g1(si), g2(si)) definition of LUB of pairs

=
G

i2!
f (si) by definition

⇤

Note that in our construction we defined only ordered pairs of elements, this means that if we want to
consider sequences (i.e. with finitely many elements) we have to use the pairing repeatedly. So for example
(a, b, c) is defined as ((a, b), c).

Now let us consider the case of a function f : D1 ⇥ D2 �! E over CPOs which takes two arguments and
returns an element of E. The following theorem allows us to study the continuity of f by analysing each
parameter separately.

Theorem 7.13
Let f : D1 ⇥ D2 ! E be a function over CPOs. Then f is continuous i↵ all the functions in the following
two classes are continuous.

8d1 2 D1. fd1 : D2 ! E defined as fd1
def
= �d. f (d1, d)

8d2 2 D2. fd2 : D1 ! E defined as fd2
def
= �d. f (d, d2)

Proof.

)) If f is continuous then 8d1, d2. fd1 and fd2 are continuous, since we are considering only certain chains (where one
element of the pair is fixed). For example, fix d1 and consider a chain {di}i2! in D2. Then we prove that fd1 is
continuous as follows:

fd1 (
G

i2!
di) = f (d1,

G

i2!
di) by definition of fd1

= f (
G

i2!
(d1, di)) by definition of LUB

=
G

i2!
f (d1, di) by continuity of f

=
G

i2!
fd1 (di) by definition of fd1

86 Domain Theory

() On the other hand we have:

f (
G

k2!
(xk, yk)) = f (

G

i2!
xi,

G

j2!
y j) by definition of LUB on pairs

= fF j2! y j (
G

i2!
xi) by definition of fF j2! y j

=
G

i2!
fF j2! y j (xi) by continuity of fF j2! y j

=
G

i2!
f (xi,

G

j2!
y j) by definition of fF j2! y j

=
G

i2!
fxi (

G

j2!
y j) by definition of fxi

=
G

i2!

G

j2!
fxi (y j) by continuity of fxi

=
G

i2!

G

j2!
f (xi, y j) by definition of fxi

=
G

k2!
f (xk, yk) by Lemma 7.4 (switch lemma)

⇤

7.6. Useful Functions

As done for IMP we will use the �-notation as meta-language for the denotational semantics of HOFL. In
previous sections we already defined two new functions for our meta-language: ⇡1 and ⇡2. We also showed
that ⇡1 and ⇡2 are continuous. In this section we introduce some functions that will form the kernel of our
meta-language.

Definition 7.14 (Apply)
We define a function apply : [D! E] ⇥ D! E over domains as follows:

apply(f , d) def
= f (d)

The function apply represents the application of a function in our meta-language. We leave it as an exercise
to prove that apply is monotone. In order to use apply we prove that it is continuous.

Theorem 7.15 (Continuity of apply)
Let apply : [D! E] ⇥ D ! E be the function defined above and let {(fi, di)}i2! be a chain on the CPO?
[D ! E] ⇥D then:

apply(
G

i2!
(fi, di)) =

G

i2!
apply(fi, di)

Proof. By using the Theorem 7.13 we can test the continuity on each parameter separately.
Let us fix d 2 D, we have:

apply
0

B

B

B

B

B

@

G

n2!
fn, d

1

C

C

C

C

C

A

=

0

B

B

B

B

B

@

G

n2!
fn

1

C

C

C

C

C

A

(d) by definition

=
G

n2!
(fn(d)) by definition of LUB of functions

=
G

n2!
apply(fn, d) by definition

7.6 Useful Functions 87

Now we fix f 2 [D! E]:

apply
0

B

B

B

B

B

@

f ,
G

m2!
dm

1

C

C

C

C

C

A

= f

0

B

B

B

B

B

@

G

m2!
dm

1

C

C

C

C

C

A

by definition

=
G

m2!
f (dm) by continuity of f

=
G

m2!
apply(f , dm) by definition

So apply is a continuous function. ⇤

Definition 7.16 (Curry and un-curry)
We define the function curry : (D ⇥ F ! E)! (D! (F ! E)) as:

curry g d f def
= g(d, f) where g : D ⇥ F ! E, d : D and f : F

And we define the un-curry : (D! F ! E)! (D ⇥ F ! E) as:

un-curry g (d, f) def
= g d f where g : D! F ! E, d : D and f : F

Theorem 7.17 (Continuity of the curry of a function)
Let curry : (D ⇥ F ! E)! (D! (F ! E)) be the function defined above let {di}i2! be a chain on D and
let g : D ⇥ F ! E a continuous function then (curry g) is a continuous function, namely

(curry g)(
G

i2!
di) =

G

i2!
(curry g)(di)

Proof. Let us note that since g is continuous, by Theorem 7.13 g is continuous separately on each parameter. Then
let us take f 2 F we have:

(curry g)(
G

i2!
di)(f) = g(

G

i2!
di, f) by definition of curry g

=
G

i2!
g(di, f) by continuity of g

=
G

i2!
((curry g)(di)(f)) by definition of curry g

⇤

As shown in Chapter 4 in order to define the denotational semantics of recursive definitions we provide a
fixpoint operator. So it seems quite natural to introduce the fixpoint in our meta-theory.

Definition 7.18 (Fix)
Let D be a CPO?. We define the function fix : ([D! D]! D) as:

fix def
=

G

i2!
� f . f i(?D)

Notice that the LUB does exist since {� f . f i(?D)} is a chain of functions and ([D! D]! D) is complete.

88 Domain Theory

Theorem 7.19 (Continuity of fix)
Function fix : ([D! D]! D) is continuous, namely fix : [[D! D]! D].

Proof. We know that [[D! D]! D] is complete, thus if for all i 2 ! the function � f . f i(?D) is continuous, then
F

i2! � f . f i(?D) = fix is also continuous. We prove that 8i. � f . f i(?D) is continuous by mathematical induction.

i=0) � f . f 0(?D) is a constant function and thus it is continuous.

i=n+1) Let us assume that h = � f . f n(?D) is continuous, namely that

h(
G

i2!
fi) =

0

B

B

B

B

B

@

G

i2!
fi

1

C

C

C

C

C

A

n

(?D) =
G

i2!
f n
i (?D) =

G

i2!
h(fi)

and let us prove that
0

B

B

B

B

B

@

G

i2!
fi

1

C

C

C

C

C

A

n+1

(?D) =
G

i2!
f n+1
i (?D). In fact we have:

0

B

B

B

B

B

@

G

i2!
fi

1

C

C

C

C

C

A

n+1

(?D) =

0

B

B

B

B

B

@

G

i2!
fi

1

C

C

C

C

C

A

0

B

B

B

B

B

@

0

B

B

B

B

B

@

G

i2!
fi

1

C

C

C

C

C

A

n

(?D)
1

C

C

C

C

C

A

by definition

=

0

B

B

B

B

B

@

G

i2!
fi

1

C

C

C

C

C

A

0

B

B

B

B

B

@

G

i2!
f n
i (?D)

1

C

C

C

C

C

A

by the inductive hypothesis

=
G

i2!
fi

0

B

B

B

B

B

B

@

G

j2!
f n

j (?D)

1

C

C

C

C

C

C

A

by the definition of LUB of functions

=
G

i2!

G

j2!
fi

⇣

f n
j (?D)

⌘

by continuity of fi

=
G

k2!
fk

⇣

f n
k (?D)

⌘

by Lemma 7.4 (switch lemma)

=
G

k2!
f n+1
k (?D) by definition

⇤

Finally we introduce the “let” operator, whose role is that of binding a name to a de-lifted expression. Note
that the continuity of the “let” operator directly follows from the continuity of the lifting operator.

Definition 7.20 (Let operator)
Let E be a CPO? and �x.e a function in [D! E]. We define the let operator as follows:

let x(d?. e
def
= (�x. e)

D!E

⇤

D?!E

(d?
D?

)

E

=

8

>

<

>

:

?E if d? = ?D?
e
h

d/x
i

if d? = bdc

8. HOFL Denotational Semantics

In order to define the denotational semantics of a computer language we have to define by structural recursion
an evaluation function from each syntactic domain to a semantic domain.
Since HOFL has only one syntactic domain (i.e. the set of typed terms t) we have only one evaluation function
~t�. However, since the terms are typed, the evaluation function is parametrised by the types. We have

~t : ⌧� : Env �! (V⌧)?

Here ⇢ 2 Env are environments, which contain the values to be assigned to variables, in practice the free
variables of t

⇢ : Env = Var �!
[

⌧

(V⌧)?

with the condition ⇢(x : ⌧) 2 (V⌧)?.
In our denotational semantics of HOFL we distinguish between V⌧, where we find the meanings of the

terms of type ⌧ with canonical forms, and (V⌧)?, where the additional ?(V⌧)? is the meaning of all the terms
of type ⌧ without a canonical form.

The actual semantic domains V⌧ (and (V⌧)?) are defined by structural recursion on the syntax of types:

Vint = N (Vint)? = N?
V⌧1⇤⌧2 = (V⌧1)? ⇥ (V⌧2)? (V⌧1⇤⌧2)? = ((V⌧1)? ⇥ (V⌧2)?)?
V⌧1!⌧2 =

⇥

(V⌧1)? ! (V⌧2)?
⇤

(V⌧1!⌧2)? =
⇥

(V⌧1)? ! (V⌧2)?
⇤

?

Notice that the recursive definition takes advantage of the domain constructors we defined in Chapter 7. While
the lifiting N? of the integer numbers N is strictly necessary, liftings on cartesian pairs and on continuous
functions are actually optional, since cartesian products and functional domains are already CPO?. We will
discuss the motivation of our choice at the end of the following chapter.

8.1. HOFL Evaluation Function

Now we are ready to define the evaluation function, by structural recursion. As usual we start from the
constant terms, then we define compositionally the more complicated ones.

8.1.1. Constants

We define the meaning of a constant as the obvious value on the lifted domains:

~n� ⇢ = bnc

8.1.2. Variables

The meaning of a variable is defined by its value in the given environment:

~x� ⇢ = ⇢x

90 HOFL Denotational Semantics

8.1.3. Binary Operators

We give the generic semantics of a binary operator as:

✓

t0 op t1
◆

⇢ = ~t0� ⇢ op? ~t1� ⇢

where
op? : (N? ⇥ N?) �! N?

x1op?x2 =

(bn1 op n2c if x1 = bn1c and x2 = bn2c
?N? otherwise

note that for any operator op 2 {+,�,⇥} in the syntax we have the corresponding function op : N ⇥ N �! N
on the integers N and also the binary function op? on N?. Notice also that op? yields ?N? when at least one
of the two arguments is ?N? .

Since op? is monotone over a domain with only finite chains then it is also continuous.

8.1.4. Conditional

In order to define the semantics of the conditional expression we use the conditional operator of the meta-
language:

~if t then t0 else t1� ⇢ = Cond (~t� ⇢, ~t0� ⇢, ~t1� ⇢)

where
Cond⌧ : N? ⇥ (V⌧)? ⇥ (V⌧)? �! (V⌧)?

Cond⌧(v, d0, d1) =

8

>

>

>

<

>

>

>

:

d0 if v = b0c
d1 if v = bnc ^ n , 0
?(V⌧)? if v = ?N?

8.1.5. Pairing

For the pairing operator we have:
~(t0, t1)� ⇢ = b(~t0� ⇢, ~t1� ⇢)c

8.1.6. Projections

We define the projections by using the lifted version of ⇡1 and ⇡2 functions of the meta-language:

~fst(t)� ⇢ = let d (~t� ⇢. ⇡1d = (�d.⇡1d)⇤ ~t� ⇢
~snd(t)� ⇢ = let d (~t� ⇢. ⇡2d = (�d.⇡2d)⇤ ~t� ⇢

as we said in the previous chapter the “let” operator allows to de-lift ~t� ⇢ in order to apply projections ⇡1
and ⇡2.

8.1.7. Lambda Abstraction

Obviously we use the lambda operator of the lambda calculus:

~�x.t� ⇢ =
j

�d. ~t� ⇢[d/x]
k

8.1.8. Function Application

We simply apply the de-lifted version of the function to its argument:

~(t1 t0)� ⇢ = let'(~t1� ⇢. '(~t0� ⇢) = (�'.' (~t0� ⇢))⇤ ~t1� ⇢

8.2 Typing the Clauses 91

8.1.9. Recursion

We simply apply the fix operator of the meta-language:

~rec x.t� ⇢ = fix �d. ~t� ⇢[d/x]

8.2. Typing the Clauses

Now we show that the clauses of the structural recursion are typed correctly.

Constants
~n : int�⇢
(Vint)?=N?

= bn
N

c

N?

Variables
~x : ⌧�⇢

(V⌧)?

= ⇢x
(V⌧)?

Binary operations

~(t0 : int op t1 : int) : int�⇢
(Vint)?

= ~t0� ⇢
(Vint)?

op?
(Vint)?⇥(Vint)?!(Vint)?

~t1�⇢
(Vint)?

(Vint)?

Conditional

~if t0 : int then t1 : ⌧ else t2 : ⌧�⇢
(V⌧)?

= Cond⌧
N?⇥(V⌧)?⇥(V⌧)?�!(V⌧)?

(~t0� ⇢,
(Vint)?

~t1� ⇢,
(V⌧)?

~t2� ⇢
(V⌧)?

)

(V⌧)?

Pairing
~(t0 : ⌧0, t1 : ⌧1)�⇢

(V⌧0⇤⌧1)?

= b(~t0�⇢
(V⌧0)?

, ~t1�⇢
(V⌧1)?

)

(V⌧0)?⇥(V⌧1)?

c

((V⌧0)?⇥(V⌧1)?)?

Projections
~fst(t : ⌧0 ⇤ ⌧1)�⇢

(V⌧0)?

= let d
(V⌧0)?⇥(V⌧1)?

(~t�⇢
(V⌧0⇤⌧1)?

. ⇡1
(V⌧0)?⇥(V⌧1)?!(V⌧0)?

d

(V⌧0)?

Lambda abstraction
~�x : ⌧0.t : ⌧1�⇢

(V⌧0!⌧1)?

= b� d
(V⌧0)?

. ~t�⇢[d/x]
(V⌧1)?

[(V⌧0)?!(V⌧1)?]

c

[(V⌧0)?!(V⌧1)?]?

92 HOFL Denotational Semantics

Function application

~(t1 : ⌧0 �! ⌧1 t0 : ⌧0)�⇢
(V⌧1)?

= let '

[(V⌧0)?!(V⌧1)?]

(~t1�⇢
(V⌧0!⌧1)?

.'(~t0�⇢
(V⌧0)?

)

(V⌧1)?

Recursion
~rec x : ⌧.t : ⌧�⇢

(V⌧)?

= f ix
[[(V⌧)?!(V⌧)?]!(V⌧)?]

�d
(V⌧)?

. ~t�⇢[d/x]
(V⌧)?

[(V⌧)?!(V⌧)?]

(V⌧)?

Example 8.1
Let us see some examples of evaluation of the denotational semantics. We consider three similar terms
f , g, h such that f and h have the same denotational semantics while g has a di↵erent semantics because it
requires a parameter x to be evaluated even if it is not used.

1. f def
= �x : int.3

2. g def
= �x : int. if x then 3 else 3

3. h def
= rec y : int ! int.�x : int.3

1. ~ f �⇢ = ~�x : int.3�⇢ = b�d.~3�⇢[d/x]c = b�d.b3cc

2. ~g�⇢ = ~�x : int. if x then 3 else 3�⇢ = b�d.~if x then 3 else 3�⇢[d/x]c = b�d.Cond(d, b3c, b3c)c =
b�d. let x(d.b3cc

3. ~h�⇢ = ~rec y : int ! int.�x : int.3�⇢ = fix �d.~�x.3�⇢[d/x] = fix �d.b�d0.b3cc
• d0 = ?[N?!N?]?

• d1 = (�d.b�d0.b3cc)? = b�d0.b3cc
• d2 = (�d.b�d0.b3cc)b�d0.b3cc = b�d0.b3cc = d1 = ~h�⇢ = ~ f �⇢

8.3. Continuity of Meta-language’s Functions

In order to show that the semantics is well defined we have to show that all the functions we employ in the
definition are continuous.

Theorem 8.2
The following functions are continuous:

• op?
• Cond

• (_, _)

• ⇡1, ⇡2

• let

• apply

• fix

8.3 Continuity of Meta-language’s Functions 93

Proof.

• op?: we have already proved the continuity of op? when it was introduced.

• Cond: By using the Theorem 7.13, we can prove the continuity on each parameter separately. Let us show the
continuity on the first parameter. Since chains are finite, it is enough to prove monotonicity. We fix d1 and d2
and we prove the monotonicity of Cond⌧(x, d1, d2)

– for the case ?N? v n then obviously 8n 2 N? Cond⌧(?N? , d1, d2) v Cond⌧(n, d1, d2), namely ?(V⌧)? v d1
or ?(V⌧)? v d2.

– for the case n v n0 with n , ?N? , since N? is a flat domain we have n = n0 so obviously Cond⌧(n, d1, d2) v
Cond⌧(n0, d1, d2)

Now let us show the continuity on the second parameter, namely we fix v and d and prove that

Cond⌧(v,
G

i2!
di, d) =

G

i2!
Cond⌧(v, di, d)

– if v = ?N? , then Cond⌧ is the constant function returning ?N? ;
– if v = b0c, then Cond⌧ it is the identity function;
– if v = bnc with n , 0, then Cond⌧ it is the constant function returning d.

In all cases Cond⌧ is continuous.
Continuity on the third parameter is analogous.

• (_, _) we can use the Theorem 7.13 which allows to show separately the continuity on each parameter. If we fix
the first element we have (d,

F

i2! di) =
F

i2!(d, di) by Theorem 7.1. The same holds for the second parameter.

• ⇡1 and ⇡2 are continuous as shown by Theorem 7.3.

• the let function is continuous since (_)⇤ is continuous by Theorem 7.10.

• apply is continuous as shown by Theorem 7.15

• f ix is continuous as shown by Theorem 7.19.

⇤

In the previous theorem we have omitted the proofs for lambda abstraction and recursion, in the next theorem
we fill these gaps.

Theorem 8.3
Let t be a well typed term of HOFL then the following holds:

• (�d : (V⌧1)?.~t : ⌧2�⇢[d/x]) : (V⌧1)? �! (V⌧2)? is a continuous function.

• fix �d.~t�⇢[d/x] is a continuous function.

Proof. Let us show the first proposition by structural induction on t and for any number of arguments ⇢[d/x][d0/y]

• t = x: �d.~x�⇢[d/x] is equal to the identity function �d.d which is obviously continuous.

• t = t1 op t2: �d.~t1 op t2�⇢[d/x] = �d.~t1�⇢[d/x] op? ~t2�⇢[
d/x] it is continuous since op? is continuous and by

the inductive hypothesis, and since the composition of continuous functions yields a continuous function by
Theorem 7.11.

• t = �y.t0: �d.~�y.t0�⇢[d/x] is obviously continuous if x = y. Otherwise if x , y we have by induction hypothesis
that �(d, d0).~t0�⇢[d/x,d

0
/y] is continuous, then:

curry(�(d, d0).~t0�⇢[d/x,d
0
/y]) = �d.�d0.~t0�⇢[d/x][d0/y] is continuous since curry is continuous

= �d.~�y.t0�⇢[d/x] by definition

We leave the remaining cases as an exercise.
To prove the second proposition we note that, fix �d.~t�⇢[d/x] is the application of a continuous function (i.e., the
function fix, by Theorem 7.19) to a continuous argument (i.e., �d.~t�⇢[d/x], continuous by the first part of this theorem)
so it is continuous by Theorem 7.15. ⇤

94 HOFL Denotational Semantics

8.4. Substitution Lemma

We conclude this chapter by stating some useful theorems. The most important is the Substitution Lemma
which states that the substitution operator commutes with the interpretation function.

Theorem 8.4 (Substitution Lemma)
Let t, t0 be well typed terms: we have

t[t0/x]
�

⇢ = ~t� ⇢[~t
0�⇢/x]

Proof. By structural induction. ⇤

The substitution lemma is an important result, as it implies the compositionality of denotational semantics:

~t1� ⇢ = ~t2� ⇢)

t[t1/x]
�

⇢ =

t[t2/x]
�

⇢

In words, replacing a variable x with a term t0 in a term t returns a term t[t0/x] whose denotational semantics

t[t0/x]
�

⇢ = ~t� ⇢[~t0�⇢/x] depends only on the denotational semantics ~t0� ⇢ of t0 and not on t0 itself.

Theorem 8.5
Let t be a well-defined term of HOFL. Let ⇢, ⇢0 2 Env such that 8 x 2 f v(t). ⇢(x) = ⇢0(x) then:

~t� ⇢ = ~t� ⇢0

Proof. By structural induction. ⇤

Theorem 8.6
Let c 2 C⌧ be a closed term in canonical form of type ⌧. Then we have:

8 ⇢ 2 Env. ~c� ⇢ , ?(V⌧)?

Proof. Immediate, by inspection of the clauses for terms in canonical forms. ⇤

9. Equivalence between HOFL denotational and
operational semantics

As we have done for IMP, now we address the relation between the denotational and operational semantics of
HOFL. We would like to prove a complete equivalence, as in the case of IMP:

t �! c
?() 8⇢. ~t� ⇢ = ~c� ⇢

But, as we are going to show, the situation in the case of HOFL is more complex and the(= case does not
hold, i.e., the completeness holds but not the correctness:

t �! c) 8⇢. ~t� ⇢ = ~c� ⇢ but (8⇢. ~t� ⇢ = ~c� ⇢); t �! c

Let us consider an example which shows the di↵erence between the denotational and the operational
semantics.

Example 9.1
Let c = �x. x and t = �x. x + 0 be two HOFL terms, where x : int, then we have:

~t� ⇢ = ~c� ⇢

but
t 9 c

In fact we have:

~t� ⇢ = ~�x. x + 0� ⇢ = b�d. d+?b0cc = b�d.dc = ~�x. x� ⇢ = ~c� ⇢

but for the operational semantics we have that both �x.x and �x. x + 0 are already in canonical form and
t , c.

The counterexample shows that at least for the functional type int ! int, there are di↵erent canonical
forms with the same denotational semantics, namely terms which compute the same function [N? ! N?]?.
One could think that a refined version of our operational semantics (e.g. one which could apply an axiom
like x + 0 = 0) would be able to identify exactly all the canonical forms which compute the same function.
However this is not possible on computability grounds: since HOFL is able to compute all computable
functions, the set of canonical terms which compute the same function cannot be recursively enumerable,
while the set of theorems of every inference system is recursively enumerable.

9.1. Completeness

We are ready to show the completeness of the denotational semantics of HOFL w.r.t. the operational one.

Theorem 9.2 (Completeness)
Let t : ⌧ be a HOFL closed term and let c : ⌧ be a canonical form. Then we have:

t ! c =) 8⇢ 2 Env ~t� ⇢ = ~c� ⇢

Proof. As usual we proceed by rule induction. So we will prove P(t ! c) def
= 8⇢. ~t� ⇢ = ~c� ⇢ on each rule by

assuming the premises.

96 Equivalence between HOFL denotational and operational semantics

canonical forms (integers, pairs, abstraction):

c! c
We have to prove P(c! c) that is by definition 8⇢. ~c� ⇢ = ~c� ⇢, which is obviously true.

mathematical operators:
t1 ! n1 t2 ! n2

t1 op t2 ! n1 op n2

We have to prove P(t1 op t2 ! n1 op n2) def
= 8⇢. ✓

t1 op t2
◆

⇢ =

n1 op n2
�

⇢.

We can assume the inductive hypotheses: P(t1 ! n1) def
= 8⇢. ~t1� ⇢ = ~n1� ⇢ = bn1c and P(t2 ! n2) def

=
8⇢. ~t2� ⇢ = ~n2� ⇢ = bn2c.
We have

✓

t1 op t2
◆

⇢ = ~t1� ⇢ op? ~t2� ⇢ = bn1c op?bn2c = bn1op n2c =

n1 op n2
�

⇢.

conditional:
t ! 0 t0 ! c0

if t then t0 else t1 ! c0

We want to prove P(if t then t0 else t1 ! c0) def
= 8⇢. ~if t then t0 else t1� ⇢ = ~c0� ⇢.

We can assume P(t ! 0) def
= 8⇢. ~t� ⇢ = ~0� ⇢ = b0c and P(t0 ! c0) def

= 8⇢. ~t0� ⇢ = ~c0� ⇢.
We have ~if t then t0 else t1� ⇢ = Cond(~t� ⇢, ~t0� ⇢, ~t1� ⇢) = Cond(b0c, ~t0� ⇢, ~t1� ⇢) = ~t0� ⇢ = ~c0� ⇢.
The same construction holds for the second rule of the conditional operator.

projections
t ! (t0, t1) t0 ! c0

fst(t)! c0

We want to prove P(fst(t)! c0) def
= 8⇢. ~fst(t)� ⇢ = ~c0� ⇢.

We can assume P(t ! (t0, t1)) def
= 8⇢. ~t� ⇢ = ~(t0, t1)� ⇢ and P(t0 ! c0) def

= 8⇢. ~t0� ⇢ = ~c0� ⇢.
We have:

~fst(t)� ⇢ = let v(~t� ⇢. ⇡1v by definition
= let v(~(t0, t1)� ⇢. ⇡1v by the first inductive hypothesis
= let v(b(~t0� ⇢, ~t1� ⇢)c. ⇡1v by definition
= ⇡1(~t0� ⇢, ~t1� ⇢) by de-lifting
= ~t0� ⇢ by definition of projection
= ~c0� ⇢ by the second inductive hypothesis

The same holds for the snd operator.

application

t1 ! �x.t01 t01[t0/x]! c

(t1 t0)! c

We want to prove P((t1 t0)! c) def
= 8⇢. ~(t1 t0)� ⇢ = ~c� ⇢.

We can assume P(t1 ! �x. t01) def
= 8⇢. ~t1� ⇢ =

�x. t01
�

⇢ and P(t01[t0/x]! c) def
= 8⇢.

t01[t0/x]
�

⇢ = ~c� ⇢.
We have:

~(t1 t0)� ⇢ = let'(~t1� ⇢. '(~t0� ⇢) by definition

= let'(

�x.t01
�

⇢. '(~t0� ⇢) by the first inductive hypothesis

= let'(
j

�d.

t01
�

⇢[d/x]
k

. '(~t0� ⇢) by definition

= (�d.

t01
�

⇢[d/x]) (~t0� ⇢) by de-lifting

=

t01
�

⇢[~t0�⇢/x] by definition of functional application

=

t01[t0/x]
�

⇢ by the substitution lemma

= ~c� ⇢ by the second inductive hypothesis

9.2 Equivalence (on Convergence) 97

recursion:
t[rec x.t/x]! c

rec x.t ! c

We want to prove P(rec x.t ! c) def
= 8⇢. ~rec x.t� ⇢ = ~c� ⇢.

We can assume P(t[rec x.t/x]! c) def
= 8⇢. ✓

t[rec x.t/x]
◆

⇢ = ~c� ⇢.
We have:

~rec x.t� ⇢ = fix �d. ~t� ⇢[d/x] by definition

= ~t� ⇢[~rec x.t�⇢/x] by the fixpoint property

=
✓

t[rec x.t/x]
◆

⇢ by the substitution lemma

= ~c� ⇢ by inductive hypothesis

⇤

9.2. Equivalence (on Convergence)

Now we define the concept of termination for the denotational and the operational semantics.

Definition 9.3 (Operational convergence)
Let t : ⌧ be a closed term of HOFL, we define the following predicate:

t # () 9c 2 C⌧. t �! c.

If the predicate holds for t, then we say that t converges operationally.
We say that t diverges and write t " if t does not converge.

Obviously, a term t converges operationally if the term can be evaluated to a canonical form c. For the
denotational semantics we have that a term t converges if the evaluation function applied to t takes a value
di↵erent from ? .

Definition 9.4 (Denotational convergence)
Let t be a closed term of HOFL with type ⌧, we define the following predicate:

t + () 9v 2 V⌧. ~t� ⇢ = bvc.

If the predicate holds for t then we say that t converges denotationally.

We aim to prove that the two semantics agree at least on the notion of convergence.
As we will see, we can easily prove the implication:

t #=) t +
For the opposite implication,

t +=) t #
the property holds but the proof is not straightforward: We cannot simply rely on structural induction;
instead it is necessary to introduce a particular order relation. We are not giving the full details of the
proof, but we show that the standard structural induction does not help in proving the (left implication of)
convergence agreement. Those who are interested in the full proof can refer to Winskel’s book referenced in
the introduction.

Theorem 9.5
Let t be a closed typable term of HOFL. Then we have:

t #=) t +

98 Equivalence between HOFL denotational and operational semantics

Proof. If t �! c , then ~t� ⇢ = ~c� ⇢ for Theorem 9.2. But ~c� ⇢ is a lifted value, (see Theorem 8.6) and thus it is
di↵erent than ?. ⇤

While the converse implication t +=) t # also holds, we give some insight on the reason why the usual
structural induction does not work for proving it. Let us consider function application (t1 t0). We assume
by structural induction t1 +) t1 # and t0 +) t0 #. Now we assume (t1 t0) + and would like to prove that
(t1 t0) #, i.e., that 9c. (t1 t0)! c. By definition of denotational semantics we have t1 +. In fact

~(t1 t0)� ⇢ = let'(~t1� ⇢. '(~t0� ⇢)

and therefore ~(t1 t0)� ⇢ , ? requires ~t1� ⇢ , ?. By inductive hypothesis we then have t1 # and by definition
of the operational semantics t1 �! �x.t01 for some x and t01. By completeness we also have ~t1� ⇢ =

�x.t01
�

⇢.
By denotational semantics definition we have:

~(t1 t0)� ⇢ = let'(
j

�d.

t01
�

⇢[d/x]
k

. '(~t0� ⇢) (see above)

= (�d.

t01
�

⇢[d/x]) (~t0� ⇢) by de-lifting

=

t01
�

⇢[~t0�⇢/x] by functional application

=

t01[t0/x]
�

⇢ by the substitution lemma

So (t1 t0) + if and only if t01[t0/x] +. We would like to conclude by structural induction that t01[t0/x] # and then
prove the theorem by using the rule:

t1 ! �x.t01 t01[t0/x]! c

(t1 t0)! c
but this is incorrect since t01[t0/x] is not a sub-term of (t1 t0).

9.3. Operational and Denotational Equivalence

In this section we take a closer look at the relationship between the operational and denotational semantics of
HOFL. In the introduction of this chapter we said that the denotational semantics is more abstract than the
operational. In order to study this relationship we now introduce two equivalence relations between terms.
Operationally two terms are equivalent if they both diverge or have the same canonical form.

Definition 9.6 (Operational equivalence)
Let t0 and t1 be two well-typed terms of HOFL then we define a binary relation:

t0 ⌘op t1 () (t0 " ^ t1 ") _ (t0 ! c ^ t1 ! c)

And we say that t0 is operationally equivalent to t1.

Obviously we have the denotational counterpart of the definition.

Definition 9.7 (Denotational equivalence)
Let t0 and t1 be two well-typed terms of HOFL then we define a binary relation:

t0 ⌘den t1 () 8⇢. ~t0� ⇢ = ~t1� ⇢

And we say that t0 is denotationally equivalent to t1.

From Theorem 9.2 (completeness) it follows that:

⌘op) ⌘den

As pointed out in Example 9.1, the opposite does not hold:

⌘den; ⌘op

9.4 A Simpler Denotational Semantics 99

So in this sense we can say that the denotational semantics is more abstract then the operational one. Note
that if we assume t0 ⌘den t1 and t0, t1 , ? then we can only conclude that t0 ! c0 and t1 ! c1 for some
suitable c0 and c1. So we have ~c0� ⇢ = ~c1� ⇢, but nothing ensures that c0 = c1 as shown in the Example 9.1
at the beginning of this chapter.

Now we prove that if we restrict our attention only to the integers terms of HOFL, then the corresponding
operational and denotational semantics completely agree. This is due to the fact that if c0 and c1 are canonical
forms in Cint then it holds that ~c0� ⇢ = ~c1� ⇢, c0 = c1.

Theorem 9.8
Let t : int be a closed term of HOFL and n 2 !. Then:

8⇢. ~t� ⇢ = bnc () t �! n

Proof.

)) If ~t� ⇢ = bnc, then t + and thus t # by the soundness of denotational semantics (not proved here), namely 9n0
such that t �! n0, but ~t� ⇢ = bn0c by Theorem9.2, thus n = n0 and t �! n.

() Just Theorem 9.2.

⇤

9.4. A Simpler Denotational Semantics

In this section we introduce a simpler denotational semantics which we call unlifted, which does not use the
lifted domains. This semantics is simpler but also less expressive than the lifted one.

We define the following new domains:
Dint = N?

D⌧1⇤⌧2 = D⌧1 ⇥ D⌧2

D⌧1!⌧2 = [D⌧1 ! D⌧2]

So we can simply define the interpretation function ~t : ⌧� 2 D⌧ as follows:

(as before)
~n� ⇢ = bnc
~x� ⇢ = ⇢ x

✓

t1 op t2
◆

⇢ = ~t1� ⇢ op? ~t2� ⇢
✓

i f t0 then t1 else t2
◆

⇢ = Cond(~t0� ⇢, ~t1� ⇢, ~t2� ⇢)
~rec x.t� ⇢ = fix �d. ~t� ⇢[d/x]

(updated definitions)
~(t1, t2)� ⇢ = (~t1� ⇢, ~t2� ⇢)
~fst(t)� ⇢ = ⇡1(~t� ⇢)
~snd(t)� ⇢ = ⇡2(~t� ⇢)
~�x.t� ⇢ = �d. ~t� ⇢[d/x]
~(t1 t2)� ⇢ = (~t1� ⇢)(~t2� ⇢)

Note that the “unlifted” semantics di↵er from the “lifted” one only in the cases of pairing, projections,
abstraction and application. Obviously, on the one hand this denotational semantics is much simpler. On
the other hand this semantics is more abstract then the “lifted” one and does not express some interesting
properties. For instance, consider the two HOFL terms:

t1 = rec x.x : int �! int and t2 = �x. rec y.y : int �! int

100 Equivalence between HOFL denotational and operational semantics

In the lifted semantics we have ~t1� ⇢ = ?[N?�!N?]? and ~t2� ⇢ = b?[N?�!N?]c while in unlifted semantics
~t1� ⇢ = ~t2� ⇢ = ?[N?�!N?]. Note however that t1 8 while t2 #, thus the completeness property t #)+ t
does not hold for the unlifted semantics, at least for t : int �! int, since t2 # but t2 6+. However, completeness
holds for the unlifted semantics in the case of integers.

As a final comment, notice that the existence of two di↵erent, both reasonable, denotational semantics for
HOFL shows that denotational semantics is, to some extent, an arbitrary construction, which depends on the
properties one wants to express.

Part III.

Concurrency and Logic

10. CCS, the Calculus for Communicating
Systems

In the last decade computer science technologies have boosted the growth of large scale distributed and
concurrent systems. Their formal study introduces several aspects which are not present in the case of
sequential systems. In particular, it emerges the necessity to deal with non-determinism, parallelism,
interaction and infinite behaviour. Non-determinism is needed to model time races between di↵erent signals
and to abstract from programming details which are irrelevant for the interaction behaviour of systems.
Parallelism allows agents to perform tasks independently. For our purposes, this will be modelled by using
non-determinism. Interaction allows to describe the behaviour of the system from the observational point of
view (i.e., the behaviour that the system shows to an external observer). Infinite behaviour allows to study the
semantics of non-terminating processes useful in many di↵erent contexts (e.g., think about the modelling of
operating systems). Accordingly, from the theoretical point of view, some additional e↵orts must be spent to
extend the semantics of sequential systems to that of concurrent systems in a proper way.

As we saw in the previous chapters, the study of sequential programming languages brought to di↵erent
semantics which allows to prove many di↵erent properties. In this chapter we introduce CCS, a specification
language which allows to describe concurrent communicating systems. Such systems are composed of agents
(i.e., processes) performing tasks by communicating each other through channels.

While infinite behaviour is accounted for also in IMP and HOFL (consider, e.g., the programs rec x. x
and while truedo skip), unlike the sequential languages, CCS does not assign the same semantics to all the
infinite behaviours (recall that if a sequential program does not terminate its semantics is equal to ? in the
denotational semantics).

The semantics of sequential languages can be given by defining functions. In the presence of non-
deterministic behaviours functions do not seem to provide the right tool to abstract the behaviour of concurrent
systems. As we will see this problem is worked out by modelling the system behaviour as a labelled transition
system, i.e. as a set of states equipped with a transition relation which keeps track of the interactions between
the system and its environment. As a consequence, it makes little sense to talk about denotational semantics
of CCS. In addition, recall that the denotational semantics is based on fix point theory over CPOs, while it
turns out that several interesting properties of non-deterministic systems with non-trivial infinite behaviours
are not inclusive (as it is the case of fairness, described in Example 5.14), thus the principle of computational
induction does not apply to such properties. Moreover labelled transition systems are often equipped with a
modal logic counterpart, which allows to express and prove the relevant properties of the modelled system.

Let us show how CCS works with an example.

Example 10.1 (Dynamic concurrent stack)
Let us consider the problem of modelling an extensible stack. The idea is to represent the stack as a
collection of cells that communicate by sending and receiving data over some channels:

• the send operation of data x over channel ↵ is denoted by ↵̄x;

• the receive operation of data x over channel ↵ is denoted by ↵x.

We have one so-called process (or agent) for each cell of the stack. Each process can store one or two
values or send a stored value to other processes. All processes involved in the stack have basically the same
structure. We represent graphically one of such processes as follow:

104 CCS, the Calculus for Communicating Systems

The figure shows that a cell has four channels ↵, �, �, � that can be used to communicate with other cells. In
general, a process can perform bidirectional operation on its channels. In this particular case, each cell
will use each channel for either input or output operations:

• ↵ is the input channel to receive data from either the external environment or the left cell;

• � is the channel used to send data to either the external environment or the left cell;

• � is the channel used to send data to the right cell and to manage the end of the stack;

• � is the channel used to receive data from the right cell and to manage the end of the stack.

In the following we specify the possible states that a cell can have, each corresponding to some specific
behaviour. Note that some states are parametric to certain values that represent, e.g., the particular values
stored in that cell. The four possible states are described below:

• CELL0 = �x. if x = $ then ENDCELL else CELL1(x)
This state represents the empty cell. The agent waits for data from the channel �, when a value is
received the agent controls if it is equal to a special termination character $. If the received data is $
this means that the agent is the last cell, so it switches to the ENDCELL state. Otherwise, if x is a
new value, the agent stores it by moving to the state CELL1(x).

• CELL1(y) = ↵x.CELL2(x, y) + �̄y.CELL0
This state represents an agent which contains a value y. In this case the cell can non-deterministically
wait for new data on ↵ or send the stored data on �. In the first case, the cell must store the new value
and send the old value to another agent: this task is performed by CELL2(x, y). In the second case,
it is assumed that some other agent wants to extract the stored value; then the cell becomes empty
by switching to the state CELL0. Note that the + operator represents a non-deterministic choice
performed by the agent. However a particular choice could be forced on a cell by the behaviour of
the other cells.

• CELL2(x, y) = �̄y.CELL1(x)
In this case the cell has currently two parameters x (the newly received value) and y (the previously
stored value). The agent must cooperate with its neighbors cells in order to perform a right shift of
the data. In order to do that the agent communicates to the right neighbour the old stored value y and
moves to state CELL1(x).

• ENDCELL = ↵x.(CELL1(x) _^ ENDCELL
| {z }

a new bottom cell

) + �̄$. nil
|{z}

termination
This state represents the bottom of the stack. An agent in this state can perform two actions in a
non-deterministic way. First it can wait for a new value (in order to perform a right shift), then store
the new data and generate a new agent witch represents the new bottom element. Note that the newly
created cell ENDCELL will be able to communicate with CELL1(x) only, because they will have
dedicated channels. We will explain later how this can be achieved, when giving the exact definition
of the operation _^. Alternatively, the agent can send the special character $ to the left cell, provided
it is able to receive this character. If so, than the left cell is empty and after receiving the $ character
it becomes the new ENDCELL. Then the present agent terminates.

Now we will show how the stack works. Let us start from an empty stack. We have only one cell in the state
ENDCELL, whose channels � and � are made private, written ENDCELL\�\�, because on the “right”
side there will be no communication. We perform a push operation in order to fill the stack with a new value.
So we send the new value (1 in this case) through the channel ↵ of the cell.

105

Once the cell receives the new value it generates a new bottom for the stack and changes its state to
CELL1(1) storing the new value. The result of this operation is the following:

When the stack is stabilized we perform another push, this time with value 3. In this case the first cell
changes its state to CELL2(3, 1) in order to perform a right shift.

Then, when the second cell receives the value 1 on his ↵0 channel changing its state to CELL1(1), the first
cell can stabilize itself on the state CELL1(3). Now we perform a pop operation, which will return the last
value pushed into the stack (i.e. 3).

In order to do this we read the value 3 from the channel � of the first cell. In this case the first cell changes
its state to CELL0, waiting for a value through the channel �.

When the second cell become aware of the reading performed by the first cell, it changes its state to CELL0,
and reads the value sent from the third cell. Then, since the received value from ENDCELL is $, it changes
its state to ENDCELL. Finally, since a reading operation on �00 have been performed by the second cell,
the third cell reduces to nil. The situation reached after the stabilization of the system is the following:

106 CCS, the Calculus for Communicating Systems

The above example shows that processes can synchronize in pairs, by performing dual (input/output)
operations. In the following we will present a pure version of CCS, where we abstract away from the values
communicated on channels.

10.1. Syntax of CCS

The CCS process algebra was introduced by Robin Milner in the early eighties. When presenting the syntax
of CCS we will use the following conventions:

�F ↵, �, ... Channels and (by coercion) input actions on channels
�F ↵, �, ... with � \ � = ? Output actions on channels
⇤F � [� Observable actions
⌧ < ⇤ Unobservable action

We extend the “bar” operation to all the elements in ⇤ by letting ↵ = ↵ for all ↵ 2 �. As we have seen in the
example, pairs of dual actions (e.g., ↵ and ↵) are used to synchronize two processes. The unobservable action
⌧ denotes a special action that is internal to some agent and that cannot be used to synchronize. Moreover we
will use the following convention:

µ 2 ⇤ [{⌧} generic action
� 2 ⇤ generic channel
� 2 ⇤ generic dual channel

Now we are ready to present the syntax of CCS.

p, qF x | nil | µ.p | p\↵ | p[�] | p + q | p | q | rec x.p

x represents a process name;

nil is the empty (inactive) process;

µ.p is a process p prefixed by the action µ;

p\↵ is a restricted process; it allows to make the channel ↵ private to p;

p[�] is a process that behaves like the process obtained from p by applying to it the permutation (a
bijective substitution) � of its channel names. However this operation is part of the syntax and p[�]
is syntactically di↵erent than p with the substitution performed on it. Notice that �(�) = �(�) and
�(⌧) = ⌧;

p + q is a process that can choose non-deterministically to execute either the process p or q;

p|q is the process obtained as the parallel composition of p and q; the actions of p and q can be interleaved
and also synchronized;

rec x.p is a recursively defined process.

As usual we will consider the closed terms of this language, i.e., the processes whose process names x are all
bound by recursive definitions. We name P the set of closed CCS processes.

10.2 Operational Semantics of CCS 107

10.2. Operational Semantics of CCS

Definition 10.2 (Labelled Transition System (LTS))
A labelled transition system is a triple (P, L,�!), where P is the set of states of the system, L is the set of

labels and �!✓ P ⇥ L ⇥ P is the transition relation. We write p1
l�! p2 for (p1, l, p2) 2�!.

The operational semantics of CCS is defined by a suitable LTS whose states are CCS (closed) processes and
whose transitions are labelled by actions in ⇤ [{⌧}. Formally, the LTS is given by (P ,⇤ [{⌧},�!), where
the transition relation �! is the least one generated by a set of inference rules. The LTS is thus defined by a
rule system whose formulas take the form p1

µ�! p2 meaning that the process p1 can perform the action µ and
reduce to p2.

While the LTS is the same for all CCS closed terms, starting from a CCS closed term p and using the rules
we can define the LTS which represents the operational behaviour of p by considering only processes that are
reachable from the state p. Although a term can be the parallel composition of many processes, its operational
semantics is represented by a single global state in the LTS. Therefore concurrency and interaction between
cooperating agents are not adequately represented in our CCS semantics. Now we introduce the inference
rules for CCS:

(Act)
µ.p

µ�! p

There is only one axiom in the rule system, related to the action prefix operator. It states that the process
µ.p can perform the action µ and reduce to p. For example, we have a transition

↵.nil ↵�! nil

(Res)
p
µ�! q

µ , ↵, ↵̄
p\↵ µ�! q\↵

If the process is executed under a restriction, then it can perform only actions that do not involve the
restricted name. Note that this restriction does not a↵ect the communication internal to the processes, i.e.,
when µ = ⌧ the move cannot be blocked by the restriction.

(Rel)
p
µ�! q

p[�]
�(µ)���! q[�]

For � a permutation of channel names, if p can evolve to q by performing µ, then p[�] can evolve to q[�]
by performing �(µ), i.e., the action µ renamed according to �. We remind that the unobservable action cannot
be renamed, i.e., �(⌧) = ⌧ for any �.

(Sum)
p
µ�! p0

p + q
µ�! p0

q
µ�! q0

p + q
µ�! q0

This pair of rules deals with non-deterministic choice: process p + q can choose non-deterministically to
behave like either process p or q. Moreover note that the choice can be performed only during communication,
so in order to discard, e.g., process q, process p must be capable to perform an action µ. For example, for
�(↵) = � and �(�) = � we have

(↵.nil+�.nil)[�]\↵ ��! nil and (↵.nil+�.nil)[�]\↵ ��! nil[�]\↵

108 CCS, the Calculus for Communicating Systems

(Com)
p
µ�! p0

p|q µ�! p0|q

q
µ�! q0

p|q µ�! p|q0

Also in the case of parallel composition some form of non-determinism appears. But unlike the previous
case, here non-determinism is needed to simulate the parallel behaviour of the system: in the previous rule
non-determinism was a characteristic of the modelled system, in this case it is a characteristic of the semantic
style that allows p and q to interleave their actions in p|q.

p1
��! p2 q1

��! q2

p1|q1
⌧�! p2|q2

There is a third rule for parallel composition, which allows processes to perform internal synchronizations.
The processes p1 and p2 communicate by using the channel �, which is hidden after the synchronization by
using the action ⌧. In general, if p1 and p2 can perform ↵ and ↵, respectively, then their parallel composition
can perform ↵, ↵ or ⌧. When parallel composition is used in combination with the restriction operator, like
in (p1|p2)\↵, then we can force synchronization on ↵. For example, see below the LTSs for the processes
p = (↵.nil+�.nil)|(↵.nil+�.nil) and q = p\↵:

p
� %%

↵
88

�

⌧⌧

↵

⇥⇥

⌧

##

(↵.nil+�.nil)|nil

↵

⌧⌧

�

⇥⇥
nil |(↵.nil+�.nil)

↵ %%

�
99nil |nil

q
� &&

�

⌧⌧

⌧

$$

((↵.nil+�.nil)|nil)\↵

�

⇥⇥
(nil |(↵.nil+�.nil))\↵

�
88(nil |nil)\↵

(Rec)
p[rec x.p/x]

µ�! q

rec x.p
µ�! q

The semantics of recursion is similar to the one we have presented for HOFL: to see which moves rec x.p
can perform we inspect the process p[rec x.p/x] obtained from p by replacing all free occurrences of the
process name x with its full recursive definition rec x.p. For example, the possible transitions of the recursive
process rec x.↵.x are the same ones of (↵.x)[rec x.↵.x/x] = ↵. rec x.↵.x, i.e., there is exactly one transition
rec x.↵.x

↵�! rec x.↵.x. It is interesting to compare the LTSs for the processes (rec x.↵.x) + (rec x.�.x),
rec x.(↵.x + �.x) and rec x.(↵.x + �.nil), they are shown below:

(rec x.↵.x) + (rec x.�.x)
↵

xx

�

&&
rec x.↵.x

↵

YY rec x.�.x

�

WW

rec x.(↵.x + �.x)

↵

⌥⌥

�

WW rec x.(↵.x + �.nil)

↵

⌥⌥

�

✏✏
nil

In the first case either a sequence of ↵ actions or a sequence of � actions is executed. In the second case,
any sequence of ↵ and � actions is allowed. Finally, in the last case only sequences of ↵ actions, possibly
concluded by a � action, are considered.

10.2 Operational Semantics of CCS 109

We will restrict our attention to the class of guarded agents, namely agents in which in case of recursive
terms of the form rec x.p, each free occurrence of x in p occurs under an action prefix (like in the examples
above). This allows us to exclude terms like rec x.(x | p) which can lead (in one step) to an unbounded
number of parallel repetitions of the same agent, making the LTS infinitely branching (see Example 10.19).

Example 10.3 (Derivation)
Let us show an example of the use of the derivation rules which we have just introduced. Take the following
CCS term:

(((rec x. ↵.x + �.x) | (rec x. ↵.x + �.x)) | rec x. ↵̄.x)\↵
First, let us focus on the behaviour of the (deterministic) agent rec x. ↵̄.x.

rec x. ↵̄.x
↵̄�! q -Rec

↵̄.(rec x. ↵̄.x)
↵̄�! q -Act, q=rec x. ↵̄.x

⇤

Thus:
rec x. ↵̄.x

↵̄�! rec x. ↵̄.x

There are no other rules applicable during the above derivation; thus, the LTS associated with rec x. ↵̄.x
consists of a single state and one looping arrow with label ↵̄. Correspondingly, the agent is able to perform
the action ↵̄ indefinitely. However, when embedded in the larger system above, then the action ↵̄ is blocked
by the topmost restriction _ \↵. Therefore, the only opportunity for rec x. ↵̄.x to act is by synchronizing on
channel ↵ with either one or the other of the two non-deterministic agents rec x. ↵.x+�.x and rec x. ↵.x+�.x.
In fact the synchronization produces an action ⌧ which cannot be blocked by _ \↵. Note that each of the two
non-deterministic agents is also available to interact with some external agent on another non-restricted
channel, respectively � or �.

By using the rules of the operational semantics of CCS we have, e.g.:

(((rec x. ↵.x + �.x) | (rec x. ↵.x + �.x)) | rec x. ↵̄.x) \ ↵ µ�! q -Res, q=q0\↵

((rec x. ↵.x + �.x) | (rec x. ↵.x + �.x)) | rec x. ↵̄.x
µ�! q0, µ , ↵,↵ -Com 3rd rule, µ=⌧,q0=q1 | q2

(rec x. ↵.x + �.x) | rec x. ↵.x + �.x
��! q1, rec x. ↵̄.x

�̄�! q2 -Com 2nd rule, q1=(rec x. ↵.x+�.x) | q3

rec x. ↵.x + �.x
��! q3, rec x. ↵̄.x

�̄�! q2 -Rec

↵.(rec x. ↵.x + �.x) + �.(rec x. ↵.x + �.x)
��! q3, rec x. ↵̄.x

�̄�! q2 -Sum

↵.(rec x. ↵.x + �.x)
��! q3, rec x. ↵̄.x

�̄�! q2 -Act, q3=rec x. ↵.x+�.x, �=↵

rec x. ↵̄.x
↵̄�! q2 -Rec

↵̄.(rec x. ↵̄.x)
↵̄�! q2 -Act, q2=rec x. ↵̄.x

⇤

So we have:
q2 = rec x. ↵̄.x
q3 = rec x. ↵.x + �.x
q1 = (rec x. ↵.x + �.x) | q3 = (rec x. ↵.x + �.x) | rec x. ↵.x + �.x
q0 = q1 | q2 = ((rec x. ↵.x + �.x) | (rec x. ↵.x + �.x)) | rec x. ↵̄.x
q = q0\↵ = (((rec x. ↵.x + �.x) | (rec x. ↵.x + �.x)) | rec x. ↵̄.x)\↵
µ = ⌧

and thus:

(((rec x. ↵.x+�.x) | (rec x. ↵.x+�.x)) | rec x. ↵̄.x)\↵ ⌧�! (((rec x. ↵.x+�.x) | (rec x. ↵.x+�.x)) | rec x. ↵̄.x)\↵

110 CCS, the Calculus for Communicating Systems

Note that during the derivation we had to choose several times between di↵erent rules which could be
applied; while in general it may happen that wrong choices can lead to dead ends, our choices have been
made so to complete the derivation satisfactorily, avoiding any backtracking.

Example 10.4 (Dynamic stack: concatenation operator)
Let us consider again the dynamic stack example by formalizing in CCS the concatenation operator:

P _^ Q = (P[#/�,⌘ /�] | Q[#/↵,⌘ /�])\#\⌘
where # and ⌘ are two new hidden channels shared by the processes. Note that the locality of these names
allows to avoid conflicts between channel’s names. For example, on one hand, messages sent on � by P will
be redirected to # and must be received by Q which views # as ↵. On the other hand, messages sent on � by
Q are not redirected to # and will appear as message sent on � by the whole process P _^ Q.

10.2.1. CCS with value passing

The dynamic stack example considers input/output operations where values can be received/transmitted. This
would correspond to extend the syntax of processes to allow action prefixes like ↵(x).p, where p can use the
value x received on channel ↵ and ↵v.p. Assuming a set of possible values V is fixed, the corresponding
operational semantics rules are:

(In)
v 2 V

↵(x).p
↵v��! p[v/x]

(Out)
↵v.p

↵v��! p

However, when the set V is finite, we can encode the behaviour of ↵(x).p and ↵v.p just by introducing as
many copies ↵v of each channel ↵ as the values v 2 V . If V = {v1, ..., vn} then:

• an output ↵v.p is represented by the process

↵v.p

• an input ↵(x).p is represented by the process

↵v1 .p[v1/x] + ↵v2 .p[v2/x] + ... + ↵vn .p[vn/x]

We can also represent quite easily an input followed by a test (for equality) on the received value, like the
one used in the encoding of CELL0 in the dynamic stack example.

• a process ↵(x). if x = vi then p else q is represented by the process

↵v1 .q[v1/x] + ... + ↵vi�1 .q[vi�1/x] + ↵vi .p[vi/x] + ↵vi+1 .q[vi+1/x] + ... + ↵vn .q[vn/x]

10.2 Operational Semantics of CCS 111

Example 10.5
Suppose that V = {true, f alse} is the set of booleans. Then a process that waits to receive true on the
channel ↵ before executing p, can be written as

rec x. (↵ f alse.x + ↵true.p)

10.2.2. Recursive declarations and the recursive operator

In the dynamic stack example, we have used recursive declarations, one for each possible state of the cell.
They can be expressed in CCS using the recursion operator rec. In general, suppose we are given a series of
recursive declarations, like:

X1
def
= P1

X2
def
= P2

· · ·
Xn

def
= Pn

where the symbols X1, X2, ..., Xn can appear in each of P1, P2, ..., Pn. For any i 2 {1, ..., n}, let Qi = rec Xi. Pi
be the process where all occurrences of Xi in Pi are bound by the recursive operator (while the occurrences of
X j are not bound if i , j). We can then let

Rn = Qn

Rn�1 = Qn�1[Rn/Xn]
· · ·

Ri = Qi[Rn/Xn]...[Ri+1/Xi+1]
· · ·

R1 = Q1[Rn/Xn]...[R2/X2]

where Q[R/X] denotes the syntactic replacement of X by R in Q, so that in Ri all occurrences of X j occur
under a recursive operator rec X j if j � i. Then R1 is a (closed) CCS process that corresponds to X1. If we
switch the order in which the recursive declarations are listed, the same procedure can be applied to find CCS
processes that correspond to the other symbols X2, ..., Xn.

Example 10.6
For example, suppose we are given the declarations:

X1
def
= ↵.X2

X2
def
= �.X1 + �.X3

X3
def
= �.X2

Then we have

Q1 = rec X1. ↵.X2

Q2 = rec X2. (�.X1 + �.X3)
Q3 = rec X3. �.X2

112 CCS, the Calculus for Communicating Systems

From which we derive

R3 = Q3

= rec X3. �.X2

R2 = Q2[R3/X3]
= rec X2. (�.X1 + �.X3)[R3/X3]
= rec X2. (�.X1 + �. rec X3. �.X2)

R1 = Q1[R3/X3][R2/X2]
= rec X1. ↵.X2[R3/X3][R2/X2]
= rec X1. ↵.X2[R2/X2]
= rec X1. ↵. rec X2. (�.X1 + �. rec X3. �.X2)

If instead we want to derive a CCS process R02 that corresponds to X2 we can let

R03 = Q3

= rec X3. �.X2

R01 = Q1[R03/X3]
= rec X1. ↵.X2[R03/X3]
= rec X1. ↵.X2

R02 = Q2[R03/X1][R01/X1]
= rec X2. (�.X1 + �.X3)[R03/X3][R01/X1]
= rec X2. (�.X1 + �. rec X3. �.X2)[R01/X1]
= rec X2. (�.(rec X1. ↵.X2) + �. rec X3. �.X2)

Similarly, for X3 we let:

R002 = Q2

= rec X2. (�.X1 + �.X3)
R001 = Q1[R002 /X2]

= rec X1. ↵.X2[R002 /X2]
= rec X1. ↵. rec X2. (�.X1 + �.X3)

R003 = Q3[R002 /X2][R001 /X1]
= rec X3. �.X2[R002 /X2][R001 /X1]
= rec X3. �. rec X2. (�.X1 + �.X3)[R001 /X1]
= rec X3. �. rec X2. (�.(rec X1. ↵. rec X2. (�.X1 + �.X3)) + �.X3)

10.3. Abstract Semantics of CCS

As we saw each CCS agent can be represented by an LTS, i.e., by a labelled graph. It is easy to see that such
operational semantics is much more concrete and detailed than the semantics studied for IMP and HOFL.
For example, since the states of the LTS are named by agents it is evident that two syntactically di↵erent
processes like p|q and q|p are associated with di↵erent graphs, even if intuitively one would expect that both
exhibit the same behaviour. Analogously for p|nil or p + nil and p. Thus it is important to find a good
notion of equivalence, able to provide a more abstract semantics for CCS. As it happens for the denotational
semantics of IMP and HOFL, an abstract semantics defined up to equivalence should abstract from the way
agents execute, focusing on their external visible behaviours.

10.3 Abstract Semantics of CCS 113

In this section we first show that neither graph isomorphism nor trace semantics are fully satisfactorily
abstract semantics to capture the features of communicating systems represented in CCS. Next, we introduce
a more satisfactory semantics of CCS by defining a relation, called bisimilarity, that captures the ability of
processes to simulate each other. Finally, we discuss some positive and negative aspects of bisimilarity and
present some possible alternatives.

10.3.1. Graph Isomorphism

It is quite obvious to think that two agents must be considered as equivalent if their (LTSs) graphs are
isomorphic. Recall that two graphs are said to be isomorphic if there exists a bijection f between the nodes
of the graphs that preserves the structure of the graphs, i.e., such that v

↵�! v0 i↵ f (v)
↵�! f (v0).

Example 10.7 (Isomorphic agents)
Let us consider the agents ↵.nil | �.nil and ↵.�.nil+�.↵.nil. Their LTSs are as follows:

↵.nil | �.nil
↵

zz

�

$$
nil | �.nil

� $$

↵.nil | nil

↵
zz

nil | nil

↵.�.nil+�.↵.nil
↵

{{

�

##
�.nil

� ##

↵.nil

↵
{{

nil

The two graphs are isomorphic, thus the two agents should be considered as equivalent. This result
is surprising, since they have a rather di↵erent structure. In fact, the example shows that concurrency
can be reduced to non-determinism by graph isomorphism. This is due to the interleaving of the actions
performed by processes that are composed in parallel, which is a characteristic of the semantics which we
have presented.

This approach is very simple and natural but still leads to semantics that is too concrete, i.e., graph
isomorphism still distinguishes too much. We show this fact in the following examples.

Example 10.8
Let us consider the agents rec x. ↵.x, rec x. ↵.↵.x and ↵. rec x. ↵.x Their LTSs are as follows:

rec x. ↵.x

↵

EE rec x. ↵.↵.x
↵

↵. rec x. ↵.↵.x

↵

aa ↵. rec x. ↵.x
↵

✏✏
rec x. ↵.x

↵

EE

The three graphs are not isomorphic, but it is hardly possible to distinguish between the agents according
to their behaviour: they all are able to execute any sequence of ↵.

Example 10.9
Let us denote by Bn

k a bu↵er of capacity n of which k positions are busy. For example, for representing a
bu↵er of capacity 1 in CCS one could let (using recursive definitions):

B1
0

def
= in.B1

1

B1
1

def
= out.B1

0

114 CCS, the Calculus for Communicating Systems

Analogously, for a bu↵er of capacity 2, one could let:

B2
0

def
= in.B2

1

B2
1

def
= out.B2

0 + in.B2
2

B2
2

def
= out.B2

1

Another possibility for obtaining an (empty) bu↵er of capacity 2 is to use two (empty) bu↵ers of capacity 1
composed in parallel: B1

0|B1
0. However the LTSs of B2

0 and B1
0|B1

0 are quite di↵erent:

B2
0

in

B2

1

in

out

``

B2
2

out

``

B1
0|B1

0in

��

in

⌘⌘
B1

1|B1
0

in ..

out

<<

B1
0|B1

1

inpp

out

bb

B1
1|B1

1

out
bb

out
<<

10.3.2. Trace Equivalence

A second approach, trace equivalence, observes the set of traces of an agent, namely the set of sequences of
actions labelling any path in its graph. Trace equivalence is strictly coarser than equivalence based on graph
isomorphism, since isomorphic graphs have the same traces. Conversely, Example 10.5 shows two agents
which are trace equivalent but whose graphs are not isomorphic. In fact, trace equivalence is too coarse:
the following example shows that trace equivalence is not able to capture the choice points within agent
behaviour.

Example 10.10
Let us consider the following agents:

p = ↵.(�.nil+�.nil) q = ↵.�.nil+↵.�.nil

Their LTSs are as follows:

↵.(�.nil+�.nil)

↵

✏✏
�.nil+�.nil
�
!!

�

}}
nil

↵.�.nil+↵.�.nil
↵

{{

↵

##
�.nil

� ##

�.nil

�
{{

nil
These two graphs are trace equivalent: the trace sets are both {↵�,↵�}. However the agents do not

behave in the same way if we regard the choices they make. In the second agent the choice between � and �
is made during the first step, by selecting one of the two possible ↵. In the first agent, on the contrary, the
same choice is made in a second time, after the execution of the unique ↵ action.

The di↵erence is evident if we consider, e.g., that an agent ↵̄.�̄.nil may be running in parallel, with
actions ↵, � and � restricted on top: the agent p is always able to carry out the complete interaction
with ↵̄.�̄.nil, because after the synchronization on ↵ is ready to synchronize on �; vice versa, the agent q
is only able to carry out the complete interaction with ↵̄.�̄.nil if the left choice is performed at the time
of the first interaction on ↵, as otherwise �.nil and �̄.nil cannot interact. Formally, if we consider the
context C(_) = (_ | ↵.�.nil) \ ↵ \ � \ � we have that C(q) can deadlock, while C(p) cannot. Figure out how
embarrassing could be the di↵erence if ↵ would mean for a computer to ask if a file should be deleted, and

10.3 Abstract Semantics of CCS 115

�, � were the user yes/no answer: p would behave as expected, while q could decide to delete the file in the
first place, and then deadlock if the the user decides otherwise. See also Example 10.24.

Given all the above, we can argue that neither graph isomorphism nor trace equivalence are good candidates
for our behavioural equivalence relation. Still, it is obvious that: 1) isomorphic agents must be retained as
equivalent; 2) equivalent agents must be trace equivalent. Thus, our candidate equivalence relation must be
situated in between graph isomorphism and trace equivalence.

10.3.3. Bisimilarity

In this section we introduce a class of relations between agents called bisimulations and we construct
a behavioural equivalence relation between agents called bisimilarity as the largest bisimulation. This
equivalence relation is shown to be the one we were looking for, namely the one that identifies only those
agents which intuitively have the same behaviour.

Let us start with an example which illustrates how bisimilarity works.

Example 10.11 (Game Theory)
In this example we use game theory in order to show that the agents of the example 10.10 are not
behaviourally equivalent. In our example game theory is used in order to prove that a system verifies or not
a property. We can imagine two player called Alice and Bob, the goal of Alice is to prove that the system
has not the property. Bob, on the contrary, wants to show that the system satisfies the property. The game
starts and at each turn each player can make a move in order to reach his/her goal. At the end of the game if
Alice wins this means that the system does not satisfy the property. If the winner is Bob, instead, the system
satisfies the property.

We apply this pattern to the states of LTSs which describe CCS agents. Let us take two states p and q of
an LTS. Alice would like to show that p is not behavioural equivalent to q, Bob on the other hand would like
to show that p and q have the same behaviour.

Alice starts the game. At each turn of the game Alice executes (if possible) a transition of the transition
system of either p or q and Bob must execute a transition with the same label but of the other agent. If
Alice cannot move on both p and q, then Alice has lost, since this means that p and q are both deadlocked,
and thus obviously equivalent. Alice wins if she can make a move that Bob cannot imitate; or if she has a
move which, no matter which is the answer by Bob, will lead to a situation where she can make a move
that Bob cannot imitate; or . . . and so on for any number of moves. Bob wins if Alice has no such a (finite)
strategy. Note that the game does not necessarily terminate: also in this case Bob wins, that is p and q are
equivalent.

In the example 10.10, let us take p = ↵.(�.nil+�.nil) and q = ↵.�.nil+↵.�.nil. Alice starts by choosing
p and by executing the only transition labelled ↵. Then, Bob can choose one of the two transitions labelled
↵ leaving from q. Suppose that Bob chooses the left ↵ transition (but the case where Bob chooses the
right transition leads to the same result of the game). So the reached states are �.nil+�.nil and �.nil. In
the second turn Alice chooses the transition labelled � from �.nil+�.nil, and Bob can not simulate this
execution. Since Alice has a winning, two-moves strategy, the two agents are not equivalent.

Now we define the same relation in a more formal way, as originally introduced by Robin Milner. It is
important to notice that the definition applies to a generic labelled transition systems, namely a set of states
P equipped with a ternary relation �!✓ P ⇥ L ⇥ P, where L is a generic set of actions. As we have seen,
a unique LTS is associated to CCS, where CCS agents are states and a triple (p,↵, q) belongs to �! i↵
p
↵�! q is a theorem of the operational semantics. Notice that agents with isomorphic graphs are automatically

equivalent.

Definition 10.12 (Strong Bisimulation)
Let R be a binary relation on the set of states of an LTS then it is a strong bisimulation if

8s1, s2. s1 R s2)
8

>

>

<

>

>

:

8↵, s01. if s1
↵�! s01 then 9s02 such that s2

↵�! s02 and s01 R s02
8↵, s02. if s2

↵�! s02 then 9s01 such that s1
↵�! s01 and s01 R s02

116 CCS, the Calculus for Communicating Systems

For example it is easy to check that the identity relation {(p, p) | p is a CCS process } is a strong bisimula-
tion, that graph isomorphism is a strong bisimulation and that the union R1 [R2 of two strong bisimulation
relations R1 and R2 is also a strong bisimulation relation. Moreover, given the composition of relations
defined by

R1 � R2
def
= {(p, p0) | 9p00.p R1 p00 ^ p00 R2 p0}

it can be shown that R1 � R2 is a strong bisimulation when R1 and R2 are such.

Definition 10.13 (Strong bisimilarity ')
Let s and s0 be two states of an LTS, then they are said to be bisimilar and write s ' s0 if and only if there
exists a strong bisimulation R such that s R s0.

The relation ' is called strong bisimilarity and is defined as follows:

'def
=

[

R is a strong bisimulation

R

Strong bisimilarity ' is an equivalence relation on CCS processes. Below we recall the definition of
equivalence relation.

Definition 10.14 (Equivalence Relation)
Let ⌘ be a binary relation on a set X, then we say that it is an equivalence relation if it has the following
properties:

• 8x, y 2 X. x ⌘ x (Reflexivity)

• 8x, y, z 2 X. x ⌘ y ^ y ⌘ z) x ⌘ z (Transitivity)

• 8x, y 2 X. x ⌘ y) y ⌘ x (Symmetry)

Definition 10.15 (Equivalence Class and Quotient Set)
Given an equivalence relation ⌘ on X and an element x of X we call equivalence class of x the subset [x] of
X defined as follows:

[x] = {y 2 X | x ⌘ y}
The set X/⌘ containing all the equivalence classes generated by a relation ⌘ on the set X is called quotient
set.

We omit the proof of the following theorem that is based on the above mentioned properties of strong
bisimulations and on the fact that bisimilarity is a strong bisimulation.

Theorem 10.16
The bisimilarity relation ' is an equivalence relation between CCS agents.

Now we will use the fixpoint theory, which we have introduced in the previous chapters, in order to define
bisimilarity in a more e↵ective way. Using fixpoint theory we will construct, by successive approximations,
the coarsest (maximal) bisimulation between the states of an LTS, which is actually an equivalence relation.

As usual, we define the CPO? on which the approximation function works. The CPO? is defined on the
set P(P ⇥ P), namely the power set of the pairs of states of the LTS. As we saw in the previous chapters
the pair (P(P ⇥ P),✓) (all the subsets of a given set, ordered by inclusion) is a CPO?, however it is not the
one which we will use. As we said we would like to start from the roughest relation, which considers all the
states equivalent and, by using the fixpoint operator, to reach the relation which will identify only bisimilar
agents. So we need a CPO? in which a set with more elements is considered smaller than one with few
elements. Thus we define the order relation R v R0 , R0 ✓ R between subsets of P(P ⇥ P). The resulting
CPO? (P(P ⇥ P),v) is represented in figure 10.1 .

Now we define the function � : P(P ⇥ P)!P(P ⇥ P) on relations on P.

10.3 Abstract Semantics of CCS 117

Figure 10.1.: CPO? (P(P ⇥ P),v)

p �(R) q def
=

8

>

>

<

>

>

:

8µ, p0. p
µ�! p0 implies 9q0. q

µ�! q0 and p0Rq0

8µ, q0. q
µ�! q0 implies 9p0. p

µ�! p0 and p0Rq0

Definition 10.17 (Bisimulation as fixpoint)
Let R be a relation in P(P ⇥ P) then it is said to be a bisimulation i↵ it is a pre-fixpoint of �, i.e.:

�(R) v R (or equivalently, R ✓ �(R))

Theorem 10.18 (Bisimilarity as fixpoint)
The function � is monotone and continue, i.e.:

R1 v R2) �(R1) v �(R2)
�(

G

n2!
Rn) =

G

n2!
�(Rn)

Moreover, the least fixed point of � is the bisimilarity, namely it holds:

'def
=

⌥

R=�(R)

R =
G

n2!
�n(P ⇥ P)

We do not prove the above theorem. Note that monotonicity is obvious, since a larger R will make the
conditions on �(R) weaker. Continuity of � is granted only if the LTS is finitely branching, namely if every
state has a finite number of outgoing transitions. If � is not continuous, we still have the existence of a
minimal fixpoint, but, it will not be always reachable by the ! chain of approximations.

Example 10.19 (Infinitely branching process)
Let us consider the agent p = rec x. (x | ↵.nil). The agent p is not guarded, because the occurrence of
x in the body of the recursive process is not prefixed by an action. By using the rules of the operational

118 CCS, the Calculus for Communicating Systems

semantics of CCS we have, e.g.:

rec x. (x | ↵.nil)
µ�! q -Rec

(rec x. (x | ↵.nil)) | ↵.nil
µ�! q -Com 1st rule, q=q1 | ↵.nil

rec x. (x | ↵.nil)
µ�! q1 -Rec

(rec x. (x | ↵.nil)) | ↵.nil
µ�! q1 -Com 1st rule, q1=q2 | ↵.nil

rec x. (x | ↵.nil)
µ�! q2 -Rec

...

rec x. (x | ↵.nil)
µ�! qn -Rec

(rec x. (x | ↵.nil)) | ↵.nil
µ�! qn -Com 2nd rule, qn=(rec x. (x | ↵.nil)) | q0

↵.nil
µ�! q0 -Act, µ=↵,q0=nil

⇤

It is then evident that for any n 2 ! we have:

rec x. (x | ↵.nil) ↵�! (rec x. (x | ↵.nil)) | nil | ↵.nil | · · · | ↵.nil
| {z }

n

The following lemma ensures that if we consider only guarded terms then the LTS is finitely branching.

Lemma 10.20
Let p be a guarded CCS term then {q | p µ�! q} is a finite set.

In order to apply the fixpoint theorem to calculate the bisimilarity, we consider only states which are
reachable from the states we want to compare for bisimilarity. If the number of reachable states is finite, i.e.
if the system is a finite state automata, the calculation is e↵ective, but possibly quite complex if the number
of states is large.

Example 10.21 (Bisimilarity as fixpoint)
Let us consider the example 10.10 which we have already solved with game theory techniques. Now we
show the fixpoint approach to the same system. Let us restrict the attention to the set of reachable states and
represent the relations by showing the equivalence classes which they induce (over reachable processes) .
We start with the coarsest relation, where any two processes are related (just one equivalence class):

R0 = { {↵.(�.nil+�.nil) , ↵.�. nil+↵.�.nil , �. nil+�.nil , �. nil , �. nil , nil} }

By applying �:

R1 = �(R0) = { {↵.(�.nil+�.nil),↵.�.nil+↵.�.nil} , {�.nil+�.nil} , {�.nil} , {�.nil} , {nil} }

R2 = �(R1) = { {↵.(�.nil+�.nil)} , {↵.�.nil+↵.�.nil} , {�.nil+�.nil} , {�.nil} , {�.nil} , {nil} }
Note that R2 is a fixpoint, hence it is the coarsest bisimulation.

10.4. Compositionality

In this section we focus our attention on the compositionality aspect of the abstract semantics which we have
just introduced. For an abstract semantics to be practically relevant it is important that any process used in
a system can be replaced with an equivalent process without changing the semantics of the system. Since
we have not used structural induction in defining the abstract semantics of CCS, no one ensures any kind of
compositionality w.r.t. the possible way of constructing larger systems, i.e., w.r.t. the operators of CCS.

10.4 Compositionality 119

Definition 10.22 (Context)
A context is a term with a gap which can be filled by inserting any other term of our language. We write
C[] to indicate a context.

Definition 10.23 (Congruence)
A relation ⇠C is said to be a congruence (with respect to a class of contexts) if:

8C[]. p ⇠C q) C[p] ⇠C C[q]

In order to guarantee the compositionality of CCS we must show that the bisimilarity is a congruence
relation.

Let us now see an example of a relation which is not a congruence.

Example 10.24 (Trace equivalence)
Let us consider the trace equivalence relation, which we have defined in Section 10.3.2. Take the following
context:

C[_] = (_ | ↵̄.�̄.nil)\↵\�\�
Now we can fill the gaps with the following terms:

C[p] = (↵.(�.nil+�.nil) | ↵̄.�̄.nil)\↵\�\�

C[q] = ((↵.�.nil+↵.�.nil) | ↵̄.�̄.nil)\↵\�\�
Obviously C[p] and C[q] generate the same set of traces, however one of the processes can “deadlock”
before the interaction on � takes place, but not the other. The di↵erence can be formalized if we consider
the so-called completed trace semantics.

A completed trace of a process p is a sequence of actions µ1 · · · µk (for k � 0) such that there exists a
sequence of transitions

p = p0
µ1��! p1

µ2��! · · · µk�1���! pk�1
µk��! pk 9

for some p1, ..., pk. The completed traces of a process characterize the sequences of actions that can lead
the system to a deadlocked configuration, where no further action is possible.

The completed trace semantics of p is the same as that of q, namely { ↵� , ↵� }. However, the completed
traces of C[p] and C[q] are { ⌧⌧ } and { ⌧⌧ , ⌧ }, respectively. We can thus conclude that the completed
trace semantics is not a congruence.

10.4.1. Bisimilarity is Preserved by Parallel Composition

In order to show that bisimilarity is a congruence we should prove that the property holds for all the operators
of CCS, since this implies that the property holds for all contexts. However we show the proof only for parallel
composition, which is a quite interesting case to consider. The other cases follow by similar arguments.

Formally, we need to prove that:

p1 ' p2 ^ q1 ' q2
?
==) p1 | q1 ' p2 | q2

As usual we assume the premises and we would like to prove:

9R. (p1 | q1) R (p2 | q2) ^ R ✓ �(R)

Since p1 ' p2 and q1 ' q2 we have:

p1 R1 p2 for some bisimulation R1
q1 R2 q2 for some bisimulation R2

Now we define a bisimulation that satisfies the requested property:

R def
= {(p̂1 | q̂1 , p̂2 | q̂2) | p̂1 R1 p̂2 ^ q̂1 R2 q̂2}

120 CCS, the Calculus for Communicating Systems

By definition it holds p1 | q1 R p2 | q2.
Now we show that R is a bisimulation (R ✓ �(R)):

P(p1|q1
µ�! p01|q01) def

= 8p2, q2. (p1|q1 R p2|q2 =) 9p02, q
0
2. p2|q2

µ�! p02|q02 ^ p01|q01 R p02|q02)

We proceed by rule induction. There are three possible rules for parallel composition (Com). We start by
considering the rule:

p
µ�! p0

p|q µ�! p0|q
The property for this rule is the following:

P(p|q µ�! p0|q) def
= 8p2, q2. (p|q R p2|q2 =) 9p02, q

0
2. p2|q2

µ��! p02|q02 ^ p0|q R p02|q02)

We assume that p
µ�! p0 and that, by definition of R, p R1 p2 and q R2 q2. Then we have:

9p02.p2
µ�! p02 ^ p0 R1 p02

By applying the first (Com) rule:
p2|q2

µ�! p02|q2

By definition of R we conclude:
p0|q R p02|q2

The proof for the second rule
q
µ�! q0

p|q µ�! p|q0

is analogous.
Finally, we consider the third (Com) rule:

p
��! p0 q

�̄�! q0

p|q ⌧�! p0|q0

The property for this rule is the following:

P(p|q ⌧�! p0|q0) def
= 8p2, q2. (p|q R p2|q2 =) 9p02, q

0
2. p2|q2

⌧�! p02|q02 ^ p0|q0 R p02|q02)

Assuming the premise and by definition of R we have:

p
��! p0 q

�̄�! q0 p R1 p2 q R2 q2

Therefore:
p
��! p0 ^ p R1 p2) 9p02. p2

��! p02 ^ p0 R1 p02
q
�̄�! q0 ^ q R2 q2) 9q02. q2

�̄�! q02 ^ q0 R2 q02
By applying the third (Com) rule we obtain:

p2|q2
⌧�! p02|q02

We conclude by definition of R:
p0|q0 R p02|q02

10.5 Hennessy - Milner Logic 121

10.5. Hennessy - Milner Logic

In this section we present a modal logic introduced by Matthew Hennessy and Robin Milner. Modal logic
allows to express concepts as “there exists a next state such that”, or “for all next states”, some property
holds. Typically, model checkable properties are stated as formulas in some modal logic. In particular,
Hennessy-Milner modal logic is relevant for its simplicity and for its close connection with bisimilarity. As
we will see, in fact, two bisimilar agents verify the same set of modal logic formulas. This fact shows that
bisimilarity is at the right level of abstraction.
First of all we introduce the syntax of the Hennessy-Milner logic (HM-logic):

F F true | f alse | ^i2I Fi | _i2I Fi | ⌃µF | ⇤µF
We write L for the set of the HM-logic formulas.

The formulas of HM-logic express properties of LTS states, namely in our case of CCS agents. The
meanings of the logic operators are the following:

• true: is the formula satisfied by every agent. Notice that true can be considered a shorthand for an
indexed conjunction ^i2I where the set I of indexes is empty.

• f alse: is the formula never satisfied by any agent. Notice that f alse can be considered a shorthand for
an indexed disjunction _i 2 I where the set I of indexes is empty.

• ^8i2IFi: is equivalent to the classic “and” operator applied to the set of formulas {Fi}i2I .

• _8i2IFi: is equivalent to the classic “or” operator applied to the set of formulas {Fi}i2I .

• ⌃µF: it is a modal operator, an agent p satisfies this formula if there exists a transition from p to q
labelled with µ and the formula F holds in q.

• ⇤µF: it is also a modal operator, an agent p satisfies this formula if for any q such that there is a
transition from p to q labelled with µ the formula F holds in q.

As usual in logic satisfaction is defined as a relation |= between formulas and their models, which in our
case are states of an LTS.

Definition 10.25 (Satisfaction relation)
The satisfaction relation |= ✓ P ⇥L is defined as follows:

p |= true
p |= ^i2IFi i↵ 8i 2 I. p |= Fi
p |= _i2IFi i↵ 9i 2 I. p |= Fi 8i 2 I
p |= ⌃µF i↵ 9p0. p

µ�! p0 ^ p0 |= F
p |= ⇤µF i↵ 8p0. p

µ�! p0) p0 |= F

Example 10.26 (non-equivalent agents)
Let us consider two CCS agents p and q associated with the following graphs:

p
↵

✏✏·
↵

⌥⌥
↵
⌫⌫

↵

��·
�

��
�
⌫⌫

·
�

✏✏

·
�

✏✏· · · ·

q
↵

��

↵

��·
↵

✏✏

·
↵

��
↵

��·
�

��
�
��

·
�

✏✏

·
�

✏✏· · · ·
We would like to show a formula F which is satisfied by one of the two agents and not by the other. For

122 CCS, the Calculus for Communicating Systems

example we can take:
F = ⌃↵⇤↵(⌃�true ^ ⌃�true)

we have:
q |= F p 6|= F

In fact in q we can choose the left ↵-transition and we reach a state that satisfies ⇤↵(⌃�true ^ ⌃�true) (i.e.,
the (only) state reachable by an ↵-transition can perform both � and �). On the contrary, the agent p does
not satisfy the formula F because after the unique ↵-transition it is possible to take ↵-transitions that lead
to states where either � or � is enabled, but not both.

The HM-logic induces an obvious equivalence on CCS processes: two agents are logically equivalent if
they satisfy the same set of formulas. Now we present two theorems which allow us to connect bisimilarity
and modal logic. As we said this connection is very important both from theoretical and practical point of
view. We start by introducing a measure over formulas to estimate the maximal number of consecutive steps
that must be taken into account to check the validity of the formulas.

Definition 10.27 (Depth of a formula)
We define the depth of a formula as follows:

D(true) = 0
D(f alse) = 0

D(^i2IFi) = max(D(Fi) | i 2 I)
D(_i2IFi) = max(D(Fi) | i 2 I)

D(⌃µF) = D(F) + 1
D(⇤µF) = D(F) + 1

We will denote the set of logic formulas of depth k with Lk = {F | D(F) = k}.

The first theorem ensures that if two agents are not distinguished by the kth iteration of the fixpoint
calculation of bisimilarity, then no formula of depth k can distinguish between the two agents, and viceversa.

Theorem 10.28
Let ⇠k be defined as follows:

p ⇠k q, p �k(P ⇥ P) q

and let p and q be two CCS agents. Then, we have:

p ⇠k q i↵ 8F 2 Lk. (p |= F), (q |= F)

The second theorem generalizes the above correspondence by setting up a connection between formulas of
any depth and bisimilarity. The proof is by induction on the depth of formulas.

Theorem 10.29
Let p and q two CCS agents, then we have:

p ' q i↵ 8F.(p |= F), (q |= F)

It is worth reading this result both in the positive sense, namely bisimilar agents satisfy the same set of
HM formulas; and in the negative sense, namely if two agents are not bisimilar, then there exists a formula
which distinguishes between them. From a theoretical point of view these theorems show that bisimilarity
distinguishes all and only those agents which are really di↵erent because they enjoy di↵erent properties.
These results witness that the relation ' is a good choice from the logical point of view.

10.6 Axioms for Strong Bisimilarity 123

10.6. Axioms for Strong Bisimilarity

Finally, we show that strong bisimilarity can be finitely axiomatized. First we present a theorem which allows
to derive for every non recursive CCS agent a suitable normal form.

Theorem 10.30
Let p be a (non-recursive) CCS agent, then there exists a CCS agent strongly bisimilar to p built only with
prefix, sum and nil.

Proof. We proceed by structural recursion. First define two binary operators c and k, where cq means that q does not
perform any action, and p1kp2 means that p1 and p2 must perform a synchronization. This corresponds to say that the
operational semantics rules for pcq and pkq are:

p
µ�! p0

pcq µ�! p0|q
p
��! p0 q

�̄�! q0

pkq ⌧�! p0|q0
We show how to decompose the parallel operator, then we show the other cases:

p1 | p2 ' p1cp2 + p2cp1 + p1kp2

Moreover we have the following equalities:

µ.pcq ' µ.(p | q)
(p1 + p2)cq ' p1cq + p2cq

µ1.p1kµ2.p2 ' nil if µ1 , µ̄2

�.p1k�.p2 ' ⌧.(p1 | p2)
(p1 + p2)kq ' p1kq + p2kq
pk(q1 + q2) ' pkq1 + pkq2

(µ.p) \ ↵ ' nil if µ 2 {↵,↵}
(µ.p) \ ↵ ' µ.(p \ ↵) if µ , ↵,↵

(p1 + p2) \ ↵ ' p1 \ ↵ + p2 \ ↵

(µ.p)[�] ' �(µ).p[�]
(p1 + p2)[�] ' p1[�] + p2[�]

nil \↵ ' nil[�] ' nil | nil ' nilcp ' nil kp ' pknil ' nil

⇤

From the previous theorem, it follows that every finite CCS agent can be equivalently written using action
prefix, sum and nil. Then, the axioms that characterize the strong bisimilarity relation are the following:

p + nil = p
p1 + p2 = p2 + p1

p1 + (p2 + p3) = (p1 + p2) + p3

p + p = p

Note that the axioms simply assert that processes with sum define an idempotent, commutative monoid
whose neutral element is nil.

10.7. Weak Semantics of CCS

Let us now see an example that illustrates the limits of strong bisimilarity as a behavioural equivalence
between agents.

124 CCS, the Calculus for Communicating Systems

Example 10.31
Let p and q be the following CCS agents:

p = ⌧.nil q = nil

Obviously the two agents are distinguished by the (invisible) action ⌧. So they are not bisimilar, but, since
we consider ⌧ as an internal action, not visible from outside of the system, we have that, according to the
observable behaviours, they should not be distinguished.

The above example shows that strong bisimilarity is not abstract enough. So we could think to abstract
away from the invisible (⌧-labelled) transitions by defining a new relation. This relation is called weak
bisimilarity. We start by defining a new, more abstract, LTS.

10.7.1. Weak Bisimilarity

Definition 10.32 (Weak transitions)
We let =) be the weak transition relation on the set of states of an LTS defined as follows:

p
⌧
=) q i↵ p

⌧�! . . . ⌧�! q _ p = q

p
�
=) q i↵ p

⌧
=) p0

��! q0
⌧
=) q

Note that p
⌧
=) q means that q can be reached from p via a possibly empty sequence of ⌧-transitions, i.e.,

⌧
=)

coincides with the reflexive and transitive closure (
⌧�!)⇤ of invisible transition

⌧�!, while p
�
=) q requires the

execution of one visible transition (the one labelled with �).
Now, as done for the strong bisimilarity, we define a function : P(P ⇥ P)!P(P ⇥ P) which takes a

relation on P and returns another relation by exploiting weak transitions:

p (R) q def
=

8

>

>

<

>

>

:

8µ, p0. p
µ�! p0 implies 9q0. q

µ
=) q0 and p0 R q0

8µ, q0. q
µ�! q0 implies 9p0. p

µ
=) p0 and p0 R q0

And we define the weak bisimilarity as follows:

p ⇡ q i↵ 9R. p R q ^ (R) v R

This relation seems to improve the notion of equivalence w.r.t. ', because ⇡ abstracts away from the
invisible transitions as we required. Unfortunately, there are two problems with this relation. First, the) LTS
is infinite branching also for guarded terms (consider e.g. rec x.(⌧.x|↵.nil), analogous to the agent discussed
in example 10.19). Thus function is not continuous, and the minimal fixpoint, which exists anyway, cannot
be reached in general with an !-chain of approximations. Second, and much worse, weak bisimilarity is not
a congruence with respect to the + operator, as the following example shows. As a (minor) consequence,
weak bisimilarity, di↵erently than strong bisimilarity, cannot be axiomatized.

Example 10.33
Let p and q be the following CCS agents:

p = ↵.nil q = ⌧.↵.nil

Obviously for the weak equivalence we have p ⇡ q, since their behaviours di↵er only by the ability to
perform an invisible action ⌧. Now we define the following context:

C[_] = _ + �.nil

Then by embedding p and q within the context C[_] we obtain:

C[p] = ↵.nil+�.nil 0 ⌧.↵.nil+�.nil = C[q]

10.7 Weak Semantics of CCS 125

In fact C[q] can perform a ⌧-transition and become ↵.nil, while C[p] has only one invisible weak transition
that can be used to match such a step, but such weak transition is the idle step C[p]

⌧
=) C[p] and C[p]

is clearly not equivalent to ↵.nil (because the former can perform a �-transition that the latter cannot
simulate). This phenomenon is due to the fact that ⌧-transitions are not observable but can be used to
discard some non-deterministic choices. While quite unpleasant, the above fact is not in any way due to a
CCS weakness, or misrepresentation of reality, but rather enlightens a general property of nondeterministic
choice in systems represented as black boxes.

10.7.2. Weak Observational Congruence

As shown by the Example 10.33, weak bisimilarity is not a congruence relation. In this section we will show
a possible (partial) solution. Since weak bisimilarity equivalence is a congruence for all operators except
sum, to fix our problem it is enough to impose closure for all sum contexts.

Let us consider the Example 10.33, where the execution of a ⌧-transition forces the system to make a
choice which is invisible to an external observer. In order to make this kind of choices observable we can
define the relation � as follows:

p � q i↵ p ⇡ q ^ 8r. p + r ⇡ q + r

This relation, called weak observational congruence, can be defined directly as:

p � q def
=

8

>

>

>

>

>

<

>

>

>

>

>

:

8p0. p
⌧��! p0 implies 9q0. q

⌧��! ⌧
==) q0 and p0 ⇡ q0

8�, p0. p
���! p0 implies 9q0. q

�
==) q0 and p0 ⇡ q0

(and vice versa)

As we can see we avoided the possibility to stop after the execution of an internal action. Notice however that
this is not a recursive definition, since � is simply defined in terms of ⇡. Now it is obvious that ↵.nil � ⌧↵.nil.

The relation � is a congruence but as we can see in the following example it is not a (weak) bisimulation
according to , namely � * (�).

Example 10.34
Let p and q defined as follows:

p = ↵.⌧.�.nil and q = ↵.�.nil

we have:
p � q

but, according to the weak bisimulation game, if Alice plays ↵ on p, Bob has no chance of playing ↵ and of
reaching a state in relation � with the continuation of p. Letting

p0 = ⌧.�.nil and q0 = �.nil

we have p0 � q0. Thus � is not a pre-fixpoint of .

It is possible to prove that the equivalence relation � can be axiomatized by adding to the axioms for strong
bisimilarity the following three Milner’s ⌧ laws:

p + ⌧.p = ⌧.p
µ.(p + ⌧.q) = µ.(p + ⌧.q) + µ.q
µ.⌧.p = µ.p

10.7.3. Dynamic Bisimilarity

As shown by the Example 10.34 the observational congruence is not a bisimulation. In this section we
present the largest relation which is at the same time a congruence and a -bisimulation. It is called dynamic
bisimilarity and was introduced by Vladimiro Sassone.

126 CCS, the Calculus for Communicating Systems

We define the dynamic bisimilarity ⇡d as the largest relation that satisfies:

p ⇡d q implies 8C. C[p] (⇡d) C[q]

In this case, at every step we close the relation by comparing the behaviour w.r.t. any possible embedding
context. In terms of game theory this definition can be viewed as “at each turn Alice is also allowed to insert
both agents into the same context in order to win.”

We can define the dynamic bisimilarity as follows:

p ⇥(R) q def
=

8

>

>

>

>

>

<

>

>

>

>

>

:

8p0. p
⌧�! p0 implies 9q0. q

⌧��! ⌧
==) q0 and p0 R q0

8�, p0. p
��! p0 implies 9q0. q

�
==) q0 and p0 R q0

(and vice versa)

Then, R is a dynamic bisimulation if ⇥(R) v R, and the dynamic bisimilarity is obtained by letting:

⇡d=
⌥

R✓⇥(R)

R

Example 10.35
Let p and q be defined as in the Example 10.34.

p = ↵.⌧.�.nil and q = ↵.�.nil

p0 = ⌧.�.nil and q0 = �.nil

we have:
p 0d q and p0 0d q0

As for the observational congruence we can finitely axiomatize the dynamic bisimilarity. The axiomatiza-
tion of ⇡d is obtained by omitting the third Milner’s ⌧ law as follows:

p + ⌧p = ⌧p
µ(p + ⌧q) = µ(p + ⌧q) + µq

11. Temporal Logic and µ-Calculus

As we have discussed in the previous chapter (see Section 10.5) modal logic is a powerful tool that allows
to check some behavioral properties of systems. In Section 10.5 the focus was on Hennessy-Milner logic,
whose main limitation is due to its finitary structure: only local properties can be investigated. In this chapter
we show some extensions of Hennessy-Milner logic that increase the expressiveness of the formulas. The
most powerful language that we will present is the µ-Calculus. It allows to express complex constraints about
the infinite behaviour of our systems.

Classically, we can divide the properties to be investigated in three categories:

• safety: if the property expresses the fact that something bad will not happen.

• liveness: if the property expresses the fact that something good will happen.

• fairness: if the property expresses the fact that something good will happen infinitely many times.

11.1. Temporal Logic

The first step in extending modal logic is to introduce the concept of time in our models. This will extend the
expressiveness of modal logic, making it able to talk about concepts like “ever”,“never” or “sometimes”. In
order to represent the concept of time in our logics we have to represent it in a mathematical fashion. In our
discussion we assume that the time is discrete and infinite.

While temporal logic shares similarities with HM-logic, note that:

• temporal logic is based on a set of atomic propositions whose validity is associated with a set of states,
i.e., the observations are taken on states and not on (actions labeling the) arcs;

• temporal operators allows to look further than the “next” operator of HML;

• as we will see, the choice of representing the time as linear (linear temporal logic) or as tree (computa-
tion tree logic) will lead to di↵erent types of logic, that roughly correspond to the trace semantic view
vs the bisimulation semantics view.

11.1.1. Linear Temporal Logic

In the case of Linear Temporal Logic (LTL) the time is represented as a line. This means that the evolutions
of the system are linear, they proceed from a state to another without making any choice. The formulas of
LTL are based on a set of atomic propositions, which can be composed using the classical logic operators
together with the following temporal operators:

• O: is called next operator. The formula O� means that � is true in the next state (i.e., in the next instant
of time). Some literature uses X or N in place of O.

• F: is called finally operator. The formula F� means that � is true sometime in the future.

• G: The formula G� means that � is always (globally) valid in the future.

• U: is called until operator. The formula �1U�2 means that �1 is true until the first time that �2 is true.

128 Temporal Logic and µ-Calculus

The syntax of LTL is as follows:

�F true | f alse | p | ¬� | �1 ^ �2 | �1 _ �2 | O� | F� | G� | �1U�2

In the following we let �0 ! �1 denote the logical implication, whose meaning is (¬�0) _ �1.
In order to represent the state of the system while the time elapses we introduce the following mathematical

structure.

Definition 11.1 (Linear structure)
Let P be a set of atomic propositions and S : P! 2! be a function from the atomic propositions to subsets
of natural numbers defined as follows:

8p 2 P. S (p) = {x 2 ! | x satisfies p}

Then we call the pair (S , P) a linear structure.

In a linear structure, the natural numbers 0, 1, 2 . . . represent the time instants, and the states in them, and
S represents for every predicate the states where it holds, or, alternatively, it represents for every state the
predicates which it satisfies.The operators of LTL allows to quantify (existentially and universally) w.r.t. the
traversed states. To define the satisfaction relation, we need to check properties on future states, like some
sort of “time travel”. To this aim we define the following shifting operation on S :

8i 2 ! 8p 2 P. S i(p) = {x � i | x � i ^ x 2 S (p)}

As done for the HM-logic, we define the satisfaction operator |= as follows:

S |= true
S |= p if 0 2 S (p)
S |= ¬� if it is not true that S |= �
S |= �1 ^ �2 if S |= �1 and S |= �2

S |= �1 _ �2 if S |= �1 or S |= �2

S |= O� if S 1 |= �
S |= F� if 9i 2 ! such that S i |= �
S |= G� if 8i 2 ! it holds S i |= �
S |= �1U�2 if 9i 2 ! such that S i |= �2 and 8 j < i. S j |= �1

Two LTL formulas � and �0 are called equivalent, written � ⌘ �0 if for any S we have S |= � i↵ S |= �0.
From the satisfaction relation it is easy to check that the operators F and G can be expressed in terms of

the until operator as follows:

F� ⌘ true U �
G� ⌘ ¬F¬� ⌘ ¬(true U ¬�)

We now show some examples that illustrate how powerful the LTL is.

Example 11.2
• G¬p: expresses the fact that p will never happen, so it is a safety property.

• p ! Fq = ¬p _ Fq: expresses the fact that if p happens then also q will happen sometime in the
future.

• GF p: expresses the fact that p happens infinitely many times in the future, so it is a fairness property.

• FGp: expresses the fact that p will always hold some time in the future.

• G(request ! (request U grant)): expresses the fact that whenever a request is made it holds
continuously until it is eventually granted.

11.1 Temporal Logic 129

11.1.2. Computation Tree Logic

In this section we introduce CT L and CT L⇤ two logics which use trees as models of the time. CT L and
CT L⇤ extend LTL with two operators which allows to express properties on paths over trees. The di↵erence
between CT L and CT L⇤ is that the former is a restricted version of the latter. So we start by introducing
CT L⇤.

We introduce two new operators on paths:

• E: the formula E� (read “possibly �”) means that there exists some path that satisfies �;

• A: the formula A� (read “inevitably �”) means that each path of the tree satisfies �, i.e., that � is
satisfied along all paths.

The syntax of CTL is as follows:

�F true | f alse | p | ¬� | �1 ^ �2 | �1 _ �2 | O� | F� | G� | �1U�2 | E� | A�

This time the state of the system is represented by using infinite trees as follows.

Definition 11.3 (Infinite tree)
Let T = (V,!) be a tree, with V the set of nodes, v0 the root and!✓ V ⇥ V the parent-child relation. We
say that T is an infinite tree if the following holds:

! is total on V, namely 8v 2 V 9w 2 V. v! w

Definition 11.4 (Branching structure)
Let P be a set of atomic propositions, T = (V,!) be an infinite tree and S : P! 2V be a function from the
atomic propositions to subsets of nodes of V defined as follows:

8p 2 P. S (p) = {x 2 V | x satisfies p}

Then we call (T, S , P) a branching structure.

We are interested in infinite paths on trees.

Definition 11.5 (Infinite paths)
Let (V,!) be an infinite tree and ⇡ = v0, v1, . . . , vn, . . . be an infinite sequence of nodes in V. We say that ⇡
is an infinite path over (V,!) i↵

8i 2 !. vi ! vi+1

As for the linear case, we need a shifting operators on path. So for ⇡ = v0, v1, . . . , vn, . . . we let ⇡i be
defined as follows:

8i 2 !. ⇡i = vi, vi+1, . . .

Let (T, S , P) be a branching structure and ⇡ = v0, v1, . . . , vn, . . . be an infinite path. We define the |= relation
as follows:

130 Temporal Logic and µ-Calculus

state operators:

S , ⇡ |= true
S , ⇡ |= p if v0 2 S (p)
S , ⇡ |= ¬� if it is not true that S , ⇡ |= �
S , ⇡ |= �1 ^ �2 if S , ⇡ |= �1 and S , ⇡ |= �2

S , ⇡ |= �1 _ �2 if S , ⇡ |= �1 or S , ⇡ |= �2

S , ⇡ |= O� if S , ⇡1 |= �
S , ⇡ |= F� if 9i 2 ! such that S , ⇡i |= �
S , ⇡ |= G� if 8i 2 ! it holds S , ⇡i |= �
S , ⇡ |= �1U�2 if 9i 2 ! such that S , ⇡i |= �2 and for all j < i. S , ⇡ j |= �1

path operators

S , ⇡ |= E� if there exists ⇡1 = v0, v01, . . . , v
0
n, . . . such that S , ⇡1 |= �

S , ⇡ |= A� if for all paths ⇡1 = v0, v01, . . . , v
0
n, . . . we have S , ⇡1 |= �

Two CT L⇤ formulas � and �0 are called equivalent, written � ⌘ �0 if for any S , ⇡ we have S , ⇡ |= � i↵
S , ⇡ |= �0.

Let us see some examples.

Example 11.6
• EOp: it is the analogous of the next operator ⌃ in modal logic.

• AGp: expresses the fact that p happens in all reachable states.

• EF p: expresses the fact that p happens in some reachable state.

• AF p: expresses the fact that on every path there exists a state where p holds.

• E(pUq): expresses the fact that there exists a path where p holds until q.

• AGEF p: in every future exists a successive future where p holds.

The formulas of CT L are obtained by restricting CT L⇤: a CT L⇤ formula is a CT L formula if the followings
hold:

• A and E appear only immediately before a linear operator (i.e., F,G,U and O).

• each linear operator appears immediately after a quantifier (i.e., A and E).

It is evident that CT L and LT L are both subsets1 of CT L⇤, but they are not equivalent to each other.
Without going into the detail, we mention that:

• no CTL formula is equivalent to the LTL formula F(Gp);

• no LTL formula is equivalent to the CTL formula AG(p! (EOq ^ EO¬q))

Finally, we note that all CTL formulas can be written in terms of the minimal set of operators true, ¬, _,
EG, EU, EO. In fact, for the remaining operators we have the following logical equivalences:

EF� ⌘ E(true U �)
AO� ⌘ ¬(EO¬�)
AG� ⌘ ¬(EF¬�) ⌘ ¬E(true U ¬�)
AF� ⌘ A(true U �) ⌘ ¬(EG¬�)

A(� U ') ⌘ ¬(E(¬' U ¬(� _ ')) _ EG¬')
1An LTL formula � is read as the CT L⇤ formula A�.

11.2 µ-Calculus 131

11.2. µ-Calculus

Now we introduce the µ-calculus. The idea is to add the least and greatest fixpoint operators to modal logic.
This fits nicely with the fact that many interesting properties can be conveniently expressed as fixpoints. The
two operators that we introduce are the following:

• µx.� is the least fixpoint of �.

• ⌫x.� is the greatest fixpoint of �.

The syntax of µ-calculus is as follows:

�F true | f alse | x | p | ¬� | �1 ^ �2 | �1 _ �2 | ⌃� | ⇤� | µx.� | ⌫x.�

Note that, in order to apply the fixpoint operators we require that � is monotone, this means that any
occurrence of x in � must be preceded by an even number of negations. The µ-calculus is interpreted on
LTSs.

Let (V,!) be an LTS, X be the set of predicate variables and P be a set of predicates, we introduce a
function ⇢ : P [X ! 2V which associates to each predicate and each free variable a subset of vertices. Then
we define the denotational semantics of µ-calculus which maps each predicate to the subset of states in which
it holds as follows:

~true� ⇢ = V
✓

f alse
◆

⇢ = ?

~x� ⇢ = ⇢x
✓

p
◆

⇢ = ⇢p
✓¬�◆

⇢ = V \ ✓

�
◆

⇢
✓

�1 ^ �2
◆

⇢ =
✓

�1
◆

⇢ \ ✓

�2
◆

⇢
✓

�1 _ �2
◆

⇢ =
✓

�1
◆

⇢ [✓

�2
◆

⇢
✓

⌃�
◆

⇢ = { v | 9v0.v! v0 ^ v0 2 ✓

�
◆

⇢ }
✓

⇤�
◆

⇢ = { v | 8v0.v! v0) v0 2 ✓

�
◆

⇢ }
✓

µx.�
◆

⇢ = fix �S .
✓

�
◆

⇢[S /x]
✓

⌫x.�
◆

⇢ = Fix �S .
✓

�
◆

⇢[S /x]

Example 11.7
• ✓

µx.x
◆

⇢ = ?

• ~⌫x.x� ⇢ = V

• ✓

µx.⌃x
◆

⇢ = fix �S .{v | 9v0. v! v0 ^ v0 2 S }
we have:

S 0 = ? S 1 = {v | 9v0. v! v0 ^ v0 2 ?} = ? (fixpoint reached)

• ✓

µx.⇤x
◆

⇢ = fix �S .{v | 8v0. v! v0) v0 2 S }
we have:

S 0 = ? S 1 = {v | 8v0. v! v0) v0 2 ?} = {v | v9} the set of vertices with no outgoing arcs

S 2 = {v | 8v0. v! v0) v0 2 S 1} = the set of vertices with outgoing paths of length at most 1

S n = {v | 8v0. v! v0) v0 2 S n�1} = the set of vertices with outgoing paths of length at most n � 1
[

i2!
S i = vertices with only finite outgoing paths

132 Temporal Logic and µ-Calculus

• ~⌫x.⇤x� ⇢ = Fix �S .{v | 8v0, v! v0) v0 2 S }
we have:

S 0 = V S 1 = {v | 8v0. v! v0) v0 2 V} = V (fixpoint reached)

• ✓

µx.p _ ⌃x
◆

⇢ = fix �S .⇢p [{v | 9v0.v! v0 ^ v0 2 S } (similar to EF p, meaning some node in ⇢p is
reachable)
we have:

S 0 = ? S 1 = ⇢p S 2 = ⇢p[{v | 9v0. v! v0 ^v0 2 ⇢p} = ⇢p is reachable in at most one step

S n = ⇢p is reachable in at most n � 1 steps
[

i2!
S i = ⇢p is reachable (in any number of steps)

• ✓

⌫x.µy.(p ^ ⌃x) _ ⌃y◆

⇢ (corresponds to EGF p)
start a path, µy.(p ^ ⌃x) _ ⌃y means that after a finite number of steps you find a vertex where both
(1) p holds and (2) you can reach a vertex where the property recursively holds.

• ✓

µx.(p ^ ⇤x ^ ⌃x) _ q
◆

⇢ = fix �S .(⇢p\ {v | 8v0. v! v0) v0 2 S }\ {v | 9v0. v! v0 ^ v0 2 S })[⇢q
(corresponds to ApUq)

Note that in this case the ⌃x is necessary in order to ensure that the state is not a deadlock one.

• ✓

µx.(p ^ ⌃x) _ q
◆

⇢ = fix �S .(⇢p \ {v | 9v0. v! v0 ^ v0 2 S }) [⇢q (corresponds to EpUq)

11.3. Model Checking

The problem of model checking consists in the, possibly automatic, verification of whether a given model of
a system meets or not a given logic specification of the properties the system should satisfy, like absence of
deadlocks.

The main ingredients of model checking are:

• an LTS (the model) and a vertex (the initial state);

• a formula (in temporal or modal logic) you want to check (for that state in the model)

The result of model checking should be either a positive answer (the given state in the model satisfies the
formula) or some counterexample explaining one possible reason why the formula is not satisfied.

In the case of concurrent systems, the LTS is often given implicitly, as the one associated with a term of
some process algebra, because in this way the structure of the system is handled more conveniently. However
the size of the actual translation can explode even if the system is finite state. For example, let pi = ↵i.nil for
i = 1, .., n and take the CCS process s = p1 | p2 | · · · | pn: the number of reachable states of the resulting
model is 2n.

One possibility to tackle the state explosion problem is to minimize the system according to some suitable
equivalence. Note that minimization can take place also while combining subprocesses and not just at the
end. Of course, this technique is viable only if the minimization is related to an equivalence relation that
respects the properties to be checked. For example, the µ-calculus is invariant w.r.t. bisimulation, thus we can
minimize CCS processes up to bisimilarity before model checking them.

In model checking algorithms, it is often convenient to proceed by evaluating formulas with the aid of
dynamic programming. The idea is to work in a bottom-up fashion: starting from the atomic predicates
that appear in the formula, we mark all the states with the sub formulas they satisfy. When a variable is
encountered, a separate activation of the procedure is allocated for computing the fixpoint of the corresponding
recursive definition. The complexity becomes very large in the case of formulas that involve many least and
greatest fix points in alternation.

12. ⇡-Calculus

The structures of today’s communication systems are not statically defined, but they change continuously
according to the needs of the users. The CCS calculus we saw in Chapter 10 is unsuitable for modeling
such systems, since its communication structure (the channels) cannot evolve dynamically. In this chapter
we present the ⇡-calculus, an extension of CCS introduced by Robin Milner, Joachim Parrow and David
Walker in 1989 which allows to model mobile systems. The main feature of the ⇡-calculus is its ability of
creating new channel names and of sending them in messages allowing agents to change their connections.
For example, consider the case of the CCS-like process (with value passing)

(P|Q)\a | R

and suppose that P and Q can communicate over the channel a, which is private to them, and that P and R
share a channel b for exchanging messages. If we allow channel names to be sent as message values, then it
could be the case P sends the name a over the channel b, like in

P = ba.P0

that Q waits for a message on a, like in
Q = a(x).Q0

and that R wants to input a channel name on b, where to send a message m, like in

R = b(y).ym.nil

After the communication between P and R takes place over the channel b we would like the scope of a be
extended to include R, like in

((P0|Q) | am.nil)\a
so that Q can then input m:

((P0|Q0[m/x]) | nil)\a
All this cannot be achieved in CCS, where restriction is a static operator. Moreover, suppose a process S is
initially running in parallel with R, like in

((P|Q)\a | S) | R

After the communication over b we would like the name a to be private to P,Q,R but not known by S , thus if
a is already used by S , it must be the case that after the scope extrusion a fresh private name c, not available
to S , is used by P,Q,R, like in

(((P0[c/a]|Q[c/a]) | S) | cm.nil)\c
so that the message cm cannot be intercepted by S .

The general mechanism for handling name mobility makes the formalization of the semantics of the ⇡-
calculus more complicated than that of CCS, especially because of the side-conditions that serve to guarantee
that certain names are fresh.

Let us start with an example which illustrates how the ⇡-calculus can formalize a mobile telephone system.

Example 12.1 (Mobile Phones)
The following figure which represents a mobile phone network: while the car travels, the phone can
communicate with di↵erent bases in the city, but just one at a time, typically the closest to its position. The
communication centre decides when the base must be changed and then the channel for accessing the new
base is sent to the car through the switch channel.

134 ⇡-Calculus

As for CCS, also in this case we describe agent behaviour by defining the reachable states:

CAR(talk, switch) def
= talk.CAR(talk, switch) + switch(talk0, switch0).CAR(talk0, switch0)

A car can talk on the channel assigned by the communication centre (action talk). Alternatively the car
can receive (action switch(talk0, switch0)) a new pair of channels (talk0 and switch0) and change the base
to which it is connected.

BAS Ei
def
= BAS E(talki, switchi, givei, alerti)

def
=

talki.BAS Ei + givei(talk0, switch0).switchi(talk0, switch0).IDLEBAS Ei

IDLEBAS Ei
def
= IDLEBAS E(talki, switchi, givei, alerti)

def
= alerti.BAS Ei

A generic base can be in two possible states: BAS E or IDLEBAS E. In the first case the base is connected
to the car, so either the phone can talk or the base can receive two channels from the centre and send them
to the car for allowing it to change base. In the second case the base is idle, so it can only be awakened by
the communication centre.

CENTRE1
def
= CENTRE1(give1, alert1, give2, alert2) = give1(talk2, switch2).alert2.CENTRE2

CENTRE2
def
= CENTRE2(give1, alert1, give2, alert2) = give2(talk1, switch1).alert1.CENTRE1

The communication centre can be in di↵erent states according to which base is active. In the example there
are only two possible states for the communication centre (CENTRE1 and CENTRE2), because only two
bases are considered.

S YS T EM1
def
= (CAR(talk1, switch1)|BAS E1|IDLEBAS E2|CENTRE1)

Finally we have the process which represents the entire system in the state where the first car is talking.

Example 12.2 (Secret Channel via Trusted Server)
As another example, consider two processes Alice (A) and Bob (B) that want to establish a secret channel
using a trusted server (S) with which they already have trustworthy communication link cAS (for Alice to
send private messages to the server) and cS B (for the server to send private messages to Bob). The system
can be represented by the expression:

S ys def
= (cAS)(cBS)(A|S |B)

where the restrictions (cAS) and (cBS) guarantees that the link cAS and cS B are not visible from the

12.1 Syntax of ⇡-calculus 135

environment and where the processes A, S and B are specified as follows:

A def
= (cAB)c̄AS cAB.c̄ABm.pA

S def
= !cAS (x).c̄S Bx.nil

B def
= cS B(y).y(m).qB

Name restriction, written (cAB) is similar to the CCS operator \cAB, with the important di↵erence that
in ⇡-calculus the scope of the restriction can change as the process evolves. Alice defines a private name
cAB that wants to use for communicating with B, then Alice sends the name cAB to the trusted server over
their private shared link cAS and finally sends the message m on the channel cAB and continues as pA. The
server continuously wait for messages from Alice on channel cAS and forwards the content to Bob. Here the
replication operator ! allows to serve multiple requests from Alice. Bob waits to receive the name y from the
server over the channel cS B and then uses y to input the message from Alice and continue as qB (which can
now use both y and m).

12.1. Syntax of ⇡-calculus

The ⇡-calculus has been introduced to model communicating systems where channel names, representing
addresses and links, can be created and forwarded. To this aim we rely on a set of channel names x, y, z, ...
and extend the CCS actions with the ability to send and receive channel names. In these notes we present
the monadic version of the calculus, namely the version where names can be sent only one at a time. We
introduce the syntax, with productions for processes and for actions.

p F nil | ⇡.p | [x = y]p | p + p | p|p | (y)p | !p
⇡ F ⌧ | x(y) | xy

The meaning of the operators for building ⇡-calculus processes is the following:

• nil is the inactive agent.

• ⇡.p is an agent which can perform an action ⇡ and then act like p.

• [x = y]p is the conditional process, which acts like p if x = y, and which remains blocked otherwise.

• p + q is the non-deterministic choice between two processes.

• p|q is the parallel composition of two processes.

• (y)p denotes the restriction of the channel y, which makes the name y private in p.1

• !p is a replicated process: it behaves as if an unbounded number of concurrent occurrences of p were
available in parallel. It is the analogous of the CCS recursive process rec x. (x|p).

The meaning of the actions is the following:

• ⌧ as usual is the invisible action.

• x(y) is the input on channel x, the received value would be stored in y.

• xy is the output on channel x of the name y.

1In the literature the restriction operator is sometimes written (⌫y)p to remark the fact the the name y is “new” to p: we prefer not
to use the symbol ⌫ to avoid any conflict with the maximal fixpoint operator of the µ-calculus.

136 ⇡-Calculus

In the above case, we call x the subject of the communication (i.e., the channel name where the communication
takes place) and y the object of the communication (i.e., the channel name that is transmitted or received). As
in the �-calculus, in the ⇡-calculus we have bound and free occurrence of names. The bounding operators of
⇡-calculus are input and restriction:

• x(y).p (name y is bound in p).

• (y)p (name y is bound in p).

On the contrary, the output prefix is not binding, i.e., if we take the process xy.p then the name y is free.
Formally, we define by structural induction:

f n(nil) = ? bn(nil) = ?
f n(⌧.p) = f n(p) bn(⌧.p) = bn(p)

f n(x(y).p) = {x} [(f n(p) \ {y}) bn(x(y).p) = {y} [bn(p)
f n(xy.p) = {x, y} [f n(p) bn(xy.p) = bn(p)

f n([x = y].p) = {x, y} [f n(p) bn([x = y].p) = bn(p)
f n(p0 + p1) = f n(p0) [f n(p1) bn(p0 + p1) = bn(p0) [bn(p1)

f n(p0|p1) = f n(p0) [f n(p1) bn(p0|p1) = bn(p0) [bn(p1)
f n((y).p) = f n(p) \ {y} bn((y).p) = {y} [bn(p)

f n(!p) = f n(p) bn(!p) = bn(p)

Note that for both x(y).p and xy.p the name x is free in p. Moreover we define the name set of p as follows:

n(p) = f n(p) [bn(p)

Unlike for CCS, the restriction operator (y)p does not bind statically the scope of y to coincide with p. In
fact in the ⇡-calculus channel names are values, so the process p can send the name y to another process which
thus becomes part of the scope of y. The possibility to enlarge the scope of a restricted name is a very useful
feature of the ⇡-calculus, called extrusion, which allows to modify the structure of private communications
between agents.

12.2. Operational Semantics of ⇡-calculus

Likewise CCS, we define the operational semantics by using a rule system, where well formed formulas are
triples p

↵�! q as for CCS. The possible actions ↵ that can label the transitions are:

1. the silent action ⌧;

2. the input x(y) of name y on channel x;

3. the free output x̄y of name y on channel x;

4. the bound output x̄(y) of a previously restricted name y on channel x (name extrusion).

The definition of free names f n(·), bound names bn(·) and names n(·) are extended to labels by letting:

f n(⌧) = ? bn(⌧) = ?
f n(x(y)) = {x} bn(x(y)) = {y}

f n(xy) = {x, y} bn(xy) = ?
f n(x(y)) = {x} bn(x(y)) = {y}

n(↵) = f n(↵) [bn(↵)

We can now present the operational rules of the ⇡-calculus and briefly comment on them.

(Tau)
⌧.p

⌧�! p

12.2 Operational Semantics of ⇡-calculus 137

The rule (Tau) allows to perform invisible actions.

(Out)
x y.p

x y��! p
As we said the ⇡-calculus processes can exchange messages which can contain information (i.e., channel
names). The rule (Out) allows p to send the name y on the channel x.

(In) w < f n((y)p)
x(y).p

x(w)���! p{w/y}
The rule (In) allows to receive in input over x some channel name. The received name w is bound to the name
y in the process p. In order to avoid name conflicts, we assume w does not appear as a free name in (y)p, i.e.,
the transition is defined only when w is fresh.

(SumL)
p
↵�! p0

p + q
↵�! p0

(SumR)
q
↵�! q0

p + q
↵�! q0

The rules (SumL) and (SumR) allow the system p + q to behave as p or q.

(Match)
p
↵�! p0

[x = x]p
↵�! p0

The rule (Match) allows to check the condition between square bracket and unblock the process p. If the
matching condition is not satisfied we can not continue the execution.

(ParL)
p
↵�! p0

bn(↵) \ f n(q) = ?
p|q ↵�! p0|q

(ParR)
q
↵�! q0

bn(↵) \ f n(p) = ?
p|q ↵�! p|q0

As for CCS the two rules (ParL) and (ParR) allow the interleaved execution of two ⇡-calculus agents. The
side conditions guarantee that the bound names in ↵ (if any) are fresh w.r.t. the idle process. Notice that if we
assume that the bound names of ↵ are fresh wrt. the premise of the rule, thanks to the side condition we can
conclude that they are fresh also wrt. the consequence.

(ComL) p
x z��! p0 q

x(y)���! q0

p|q ⌧�! p0|(q0{z/y})
(ComR) p

x(y)���! p0 q
x z��! q0

p|q ⌧�! p0{z/y}|q0

The rules (ComL) and (ComR) allow the synchronization of two parallel process. The formal name y is
replaced with the actual name z in the continuation of the receiver.

(Res)
p
↵�! p0

y < n(↵)
(y)p

↵�! (y)p0

The rule (Res) expresses the fact that if a name y is restricted on top of the process p, then any action which
does not involve y can be performed by p.

Now we present the most important rules of ⇡-calculus Open and Close, dealing with scope extrusion of
channel names. Rule Open publishes, i.e. makes free, a private channel name, while rule Close restricts again
the name, but with a broader scope.

(Open)
p

x y��! p0
y , x w < f n((y)p)

(y)p
x(w)���! p0{w/y}

The rule (Open) publishes the private name w, which is guaranteed to be fresh.

(CloseL) p
x (w)����! p0 q

x(w)���! q0

p|q ⌧�! (w)(p0|q0)
(CloseR) p

x(w)���! p0 q
x (w)����! q0

p|q ⌧�! (w)(p0|q0)

138 ⇡-Calculus

The rules (CloseL) and (CloseR) transform the object of the communication over x in a private channel
between p and q. Name extrusion is a convenient primitive for formalizing secure data transmission, as
implemented e.g. via cryptographic protocols.

(Rep)
p|!p

↵�! p0

!p
↵�! p0

The last rule deals with replication. It allows to replicate a process as many times as needed, in a reentrant
fashion, without consuming it. Notice that !p is able also to perform the synchronizations of p|p, if any. We
conclude this section by showing an example of the use of the rule system.

Example 12.3 (A derivation)
Let us consider the following agent:

(((y)x y.p) | q) | x(z).r

The process (y)x y.p would like to set up a private channel with x(z).r, which however should remain hidden
to q.

By using the rule system:

(((y)x y.p) | q) | x(z).r
↵�! q1 -(Close), q1=(w)(q2 |q3), ↵=⌧

((y)x y.p) | q x(w)���! q2 x(z).r
x(w)���! q3 -(ParL), q2=q4 |q

(y)x y.p
x(w)���! q4 w < f n(q) x(z).r

x(w)���! q3 -(Open), q4=q5{w/y}
x y.p

x y��! q5 w < f n(q) w < f n((y).p) x(z).r
x(w)���! q3 -(Out)+(In), q3=r{w/z}, q5=p

w < f n(q) w < f n((y).p) w < f n((z).r)

so we have:

q5 = p
q4 = q5

n

w/y
o

= p
n

w/y
o

q3 = r
�w/z

q2 = q4 | q = p
n

w/y
o

| q
q1 = (w)(q2 | q3) = (w)

⇣

(p{w/y} | q) | (r{w/z})
⌘

In conclusion:

(((y)x y.p) | q) | x(z).r
⌧�! (w)

⇣

(p{w/y} | q) | (r{w/z})
⌘

under the conditions:
w < f n(q) w < f n((y).p) w < f n((z).r)

12.3. Structural Equivalence of ⇡-calculus

As we have already noticed for CCS, there are di↵erent terms representing essentially the same process. As
the complexity of the calculus increases, it is more and more convenient to manipulate terms up to some
intuitive structural axioms. In the following we denote by ⌘ the least congruence over ⇡-calculus processes
that includes ↵-conversion of bound names and that is induced by the following set of axioms. The relation ⌘
is called structural equivalence.

p + nil ⌘ p p + q ⌘ q + p (p + q) + r ⌘ p + (q + r)
p | nil ⌘ p p | q ⌘ q | p (p | q) | r ⌘ p | (q | r)
(x) nil ⌘ nil (y)(x)p ⌘ (x)(y)p (x)(p | q) ⌘ p | (x)q if x < f n(p)

⇥

x = y
⇤

nil ⌘ nil [x = x] p ⌘ p p |!p ⌘ !p

12.4 Abstract Semantics of ⇡-calculus 139

12.3.1. Reduction semantics

The operational semantics of ⇡-calculus is much more complicated than that of CCS because it needs to
handle name passing and scope extrusion. By exploiting structural equivalence we can define a so-called
reduction semantics that is simpler to understand. The idea is to define an LTS with silent labels only
that models all the interactions that can take place in a process, without considering interaction with the
environment. This is accomplished by first rewriting the process to a structurally equivalent normal form and
then by applying basic reduction rules. In fact it can be proved that for each ⇡-calculus process p there exists:

• a finite number of names x1, x2, ..., xk;

• a finite number of guarded sums s1, s2, ..., sn;

• and a finite number of processes p1, p2, ..., pm

such that
P ⌘ (x1)...(xk)(s1|...|sn|!p1|...!pm)

Then, a reduction is either a silent action performed by some si or a communication from an input prefix
of say si with an output prefix of say s j. We write the reduction relation as a binary relation on processes
using the notation p 7! q for indicating that p reduces to q in one step. The rules defining the relation 7! are
the following:

⌧.p + s 7! p (x(y).p1 + s1)|(x̄z.p2 + s2) 7! p1
n

z/y
o

|p2

p 7! p0

p|q 7! p0|q
p 7! p0

(x)p 7! (x)p0
p ⌘ q q 7! q0 q0 ⌘ p0

p 7! p0

The reduction semantics can be put in correspondence with the (silent transitions of the) labelled operational
semantics by the following theorem.

Theorem 12.4 (Harmony Lemma)
For any ⇡-calculus processes p, p0 and any action ↵ we have that:

1. 9q. p ⌘ q ^ q
↵��! p0 implies that 9q0. p

↵��! q0 ^ q0 ⌘ p0

2. p 7! p0 i↵ 9q. p
⌧��! q ^ q ⌘ p0.

12.4. Abstract Semantics of ⇡-calculus

Now we present an abstract semantics of ⇡-calculus, namely we do not consider the internal structure of
terms but focus on their behaviours. As we saw in CCS one of the main goals of abstract semantics is to find
the correct degree of abstraction. Thus also in this case there are many kinds of bisimulations that lead to
di↵erent bisimilarities, which are useful in di↵erent circumstances depending on the properties that we want
to study.

We start from strong bisimulation of ⇡-calculus which is an extended version of the strong bisimulation of
CCS. Then we will present the weak bisimulation for ⇡-calculus. An important new feature of ⇡-calculus
is the choice of the time the names used as objects of input transitions are assigned their actual values. If
they are assigned before the choice of the (bi)simulating transition, namely if the choice of the transition may
depend on the assigned value, we get the early bisimulation. Instead, if the choice must hold for all possible
names we have the late bisimulation case. As we will see in short, the latter option leads to a finer semantics.

140 ⇡-Calculus

12.4.1. Strong Early Ground Bisimulations

In early bisimulation we require that for each name w that an agent can receive on a channel x there exists a
state q0 in which the bisimilar agent will be after receiving w on x. This means that the bisimilar agent can
choose a di↵erent transition (and thus a di↵erent state q0) depending on the observed name w. Formally, a
binary relation S on ⇡-calculus agents is a strong early ground bisimulation if:

8p, q. p S q)

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

8p0. if p
⌧�! p0 then 9q0. q

⌧�! q0 and p0 S q0

8x, y, p0. if p
xy��! p0 then 9q0. q

xy��! q0 and p0 S q0

8↵, p0. if p
x(y)���! p0 with y < f n(q), then 9q0. q

x(y)���! q0 and p0 S q0

8x, y, p0. if p
x(y)���! p0 with y < f n(q), then 8w. 9q0. q

x(y)���! q0 and p0{w/y} S q0{w/y}
(and vice versa)

The same condition can be written in a more compact form as:

8p, q. p S q)

8

>

>

>

>

>

<

>

>

>

>

>

:

8↵, p0. if p
↵�! p0 with ↵ , x(y) ^ bn(↵) \ f n(q) = ?, then 9q0. q

↵�! q0 and p0 S q0

8x, y, p0. if p
x(y)���! p0 with y < f n(q), then 8w. 9q0. q

x(y)���! q0 and p0{w/y} S q0{w/y}
(and vice versa)

Two agents p and q are said to be early bisimilar, written p �⇠E q, i↵:

p S q for some strong early ground bisimulation S .

Notice that the conditions bn(↵) < f n(q) and y < f n(q) are required, since otherwise a bound name in the
action which is fresh in p could be not fresh in q.

12.4.2. Strong Late Ground Bisimulations

In this case of late bisimulation, we require that, if an agent p can perform an input operation on a channel
x, then there exists a state q0 in which the bisimilar agent will be after receiving any possible value on x.
Formally, a binary relation S on ⇡-calculus agents is a strong late ground bisimulation if:

8p, q. p S q)

8

>

>

>

>

>

<

>

>

>

>

>

:

8↵, p0. if p
↵�! p0 with ↵ , x(y) ^ bn(↵) \ f n(q) = ?, then 9q0. q

↵�! q0 and p0 S q0

8x, y, p0. if p
x(y)���! p0 with y < f n(q), then 9q0. q

x(y)���! q0 and 8w. p0{w/y} S q0{w/y}
(and vice versa)

As usual we have that two agents p and q are said to be late bisimilar, written p �⇠L q i↵:

p S q for some strong late ground bisimulation S .

Let us show an example which illustrates the di↵erence between late and early bisimilarities.

Example 12.5 (Early vs late bisimulation)
We show two processes that are early bisimilar but not late bisimilar. Let us consider the processes:

p = x(y).⌧.nil+x(y).nil
q = p + x(y).[y = z].⌧.nil

The two processes p and q are early bisimilar. In fact, let q perform an input operation on x by choosing the
right branch of the + operation. Then, if the received name y is equal to z, then p can choose to perform the
left input operation and reach the state ⌧.nil which is equal to the state reached by q. Otherwise, if y , z,
then the guard [y = z] is not satisfied and q is blocked and p can choose to perform the right input and
reach the state nil.

On the contrary, if late bisimilarity is considered, then the two agents are not equivalent. In fact p should
find a state which can handle all the possible value sent on x. If we choose to move on the left, the choice
can work well when y = z but not in the other cases. On the other hand, if we choose to move on the right
the choice does not work well with y = z.

12.4 Abstract Semantics of ⇡-calculus 141

The above example shows that late bisimulation is not coarser than early. In fact, it is possible to prove that
late bisimulation is strictly finer than early: if two processes are late bisimilar, then they are early bisimilar.

12.4.3. Strong Full Bisimilarity

Unfortunately both early and late ground bisimilarities are not congruences, even in the strong case, as shown
by the following counterexample.

Example 12.6 (Ground bisimilarities are not congruences)
Let us consider the following agents:

p = x x.nil | x0(y).nil q = x x.x0(y).nil+x0(y).x x.nil

The agents p and q are bisimilar (according to both early and late bisimilarities), as they generate
isomorphic transition systems. Now, in order to show that ground bisimulations are not congruences, we
define the following context:

C[_] = z(x0)(_)

by filling the hole of C[_] once with p and once with q we obtain:

p0 = C[p] = z(x0)(x x.nil | x0(y).nil) q0 = C[q] = z(x0)(x x.x0(y).nil+x0(y).x x.nil)

p0 and q0 are not bisimilar. In fact, if the name x is received on z the agent p0 becomes the agent
x x.nil | x(y).nil that can perform an internal synchronization ⌧; q0 on the other hand cannot perform the
same action ⌧ after receiving x as input on z.

The problem illustrated by the previous example is due to aliasing, and it appears often in programming
languages with both global variables and parameter passing to procedures. It can be solved by defining a
finer relation between agents called strong early full bisimilarity and defined as follows:

p ⇠E q, p� �⇠E q� for every substitution �

where a substitution � is a function from names to names that is equal to the identity function almost
everywhere (i.e. it di↵ers from the identity function only on a finite number of elements of the domain). It is
possible to define strong late full bisimilarity in a similar way.

12.4.4. Weak Early and Late Ground Bisimulations

As for CCS, we can define the weak versions of bisimulation relations. The definition of weak early ground
bisimulation is the following:

8p, q. p S q)

8

>

>

>

>

>

<

>

>

>

>

>

:

8↵, p0. if p
↵�! p0 with ↵ , x(y) ^ bn(↵) \ f n(q) = ?, then 9q0. q

↵
==) q0 and p0 S q0

8x, y, p0. if p
x(y)���! p0 with y < f n(q), then 8w. 9q0. q

x(y)
==) q0 and p0{w/y} S q0{w/y}

(and vice versa)

where here ↵ could be ⌧. So we define the corresponding bisimilarity as follows:

p
•
tE q i↵ p S q for some weak early ground bisimulation S .

The late version of the weak ground bisimulation is the following:

8p, q. p S q)

8

>

>

>

>

>

<

>

>

>

>

>

:

8↵, p0. if p
↵�! p0 with ↵ , x(y) ^ bn(↵) \ f n(q) = ?, then 9q0. q

↵
==) q0 and p0 S q0

8x, y, p0. if p
x(y)���! p0 with y < f n(q), then 9q0. q

x(y)
==) q0 and 8w. p0{w/y} S q0{w/y}

(and vice versa)

142 ⇡-Calculus

So we define the corresponding bisimilarity as follow:

p
•
tL q i↵ p S q for some weak late ground bisimulation S .

As in the strong case, weak ground bisimilarities are not congruences due to aliasing. In addition, weak
bisimilarities are not congruences for a + context, as it was already the case for CCS. Both problems
can be fixed by combining the solutions we have shown for weak CCS and for ⇡-calculus strong ground
bisimilarities.

Part V.

Appendices

A. Summary

A.1. Induction rules 3.1.2

A.1.1. Noether

Let � be a well-founded relation over the set A and let P be a unary predicate over A. Then:

8a 2 A. (8b � a. P(b))! P(a)
8a 2 A.P(a)

A.1.2. Weak Mathematical Induction 3.1.3

Let P be a unary predicate over !.

P(0) 8n 2 !.(P(n)! P(n + 1))
8n 2 !.P(n)

A.1.3. Strong Mathematical Induction 3.1.4

Let P be a unary predicate over !.

P(0) 8n 2 !.(8i n.P(i))! P(n + 1)
8n 2 !.P(n)

A.1.4. Structural Induction 3.1.5

Let ⌃ be a signature, T⌃ be the set of terms over ⌃ and P be a property defined on T⌃.

8t 2 T⌃. (8t0 < t. P(t0))) P(t)

8t 2 T⌃. P(t)

A.1.5. Derivation Induction 3.1.6

Let R be a set of inference rules and D the set of derivations defined on R. We define:
8{x1, . . . , xn}/y 2 R. (P(d1) ^ . . . ^ P(dn))) P({d1, . . . , dn}/y)

8d 2 D. P(d)

where d1, . . . , dn are derivation for x1, . . . , xn.

A.1.6. Rule Induction 3.1.7

Let R be a set of rules and IR the set of theorems of R.

8(X/y) 2 R (X ✓ IR 8x 2 X. P(x)) =) P(y)

8x 2 IR.P(x)

A.1.7. Computational Induction 5.4

Let P be a property, (D,v) a CPO? and F a monotone, continuous function on it. We define:

P inclusive ? 2 P 8d 2 D.d 2 P =) F(d) 2 P

f ix(F) 2 P

176 Summary

A.2. IMP 2

A.2.1. IMP Syntax 2.1

a ::= n | x | a0 + a1 | a0 � a1 | a0 ⇥ a1

b ::= v | a0 = a1 | a0 a1 | ¬b | b0 _ b1 | b0 ^ b1

c ::= skip | x := a | c0; c1 | if b then c0 else c1 | while b do c

A.2.2. IMP Operational Semantics 2.2

A.2.2.1. IMP Arithmetic Expressions

(ide)
hx,�i ! �(x)

(num)
hn,�i ! n

ha0,�i ! n0 ha1,�i ! n1
(sum)

ha0 + a1,�i ! n0 + n1

ha0,�i ! n0 ha1,�i ! n1
(dif)

ha0 � a1,�i ! n0 � n1

ha0,�i ! n0 ha1,�i ! n1
(prod)

ha0 ⇥ a1,�i ! n0 ⇥ n1

A.2.2.2. IMP Boolean Expressions

(bool)
hv,�i ! v

ha0,�i ! n0 ha1,�i ! n1
(equ)

ha0 = a1,�i ! (n0 = n1)

ha0,�i ! n0 ha1,�i ! n1
(leq)

ha0 a1,�i ! (n0 n1)

hb,�i ! v
(not)

h¬b,�i ! ¬v

hb0,�i ! v0 hb1,�i ! v1
(or)

hb0 _ b1,�i ! (v0 _ v1)

hb0,�i ! v0 hb1,�i ! v1
(and)

hb0 ^ b1,�i ! (v0 ^ v1)

A.2.2.3. IMP Commands

(skip)
hskip,�i ! �

ha,�i ! m
(assign)

hx := a,�i ! �[m/x]

hc0,�i ! �00 hc1,�
00i ! �0

(seq)
hc0; c1,�i ! �0

hb,�i ! true hc0,�i ! �0
(iftt)

hif b then c0 else c1,�i ! �0
hb,�i ! false hc1,�i ! �0

(i↵f)
hif b then c0 else c1,�i ! �0

hb,�i ! true hc,�i ! �00 hwhile b do c,�00i ! �0
(whtt)

hwhile b do c,�i ! �0
hb,�i ! false

(wh↵)
hwhile b do c,�i ! �

A.2.3. IMP Denotational Semantics 5

A.2.3.1. IMP Arithmetic Expressions A : Aexpr ! (⌃! N)

A ~n�� = n
A ~x�� = �x

A ~a0 + a1�� = (A ~a0��) + (A ~a1��)
A ~a0 � a1�� = (A ~a0��) � (A ~a1��)
A ~a0 ⇥ a1�� = (A ~a0��) ⇥ (A ~a1��)

A.3 HOFL 6.1 177

A.2.3.2. IMP Boolean Expressions B : Bexpr ! (⌃! B)

B ~v�� = v
B ~a0 = a1�� = (A ~a0��) = (A ~a1��)
B ~a0 a1�� = (A ~a0��) (A ~a1��)

B ~¬b0�� = ¬ (B ~b��)
B ~b0 _ b1�� = (B ~b0��) _ (B ~b1��)
B ~b0 ^ b1�� = (B ~b0��) ^ (B ~b1��)

A.2.3.3. IMP Commands C : Com! (⌃* ⌃)

C
✓

skip
◆

� = �

C ~x := a�� = �
h

A ~a��/x
i

C ~c0; c1�� = C ~c1�⇤ (C ~c0��)
C ~if b then c0 else c1�� = B ~b��! C ~c0��,C ~c1��

C ~while b do c� = f ix � =
G

n2!
�n(?⌃!⌃?)

where � : (⌃! ⌃?)! ⌃! ⌃? is defined as follows:

�'� = B ~b��! '⇤ (C ~c��) ,�

A.3. HOFL 6.1

A.3.1. HOFL Syntax 6.1

t ::= x | variables
n | constants
t0 + t1 | t0 � t1 | t0 ⇥ t1 | arithmetic operators
if t then t0 else t1 | conditional
(t0, t1) | fst(t) | snd(t) | pairing and projection operators
�x.t | (t0 t1) | function abstraction and application
rec x.t recursive definition

A.3.2. HOFL Types 6.1.1

⌧ ::= int | ⌧ ⇤ ⌧ | ⌧! ⌧

A.3.3. HOFL Typing Rules 6.1.1

n : int
t0 : int t1 : int

t0 op t1 : int
with op = +, -, x

t0 : int t1 : ⌧ t2 : ⌧

if t0 then t1 else t2 : ⌧

t0 : ⌧0 t1 : ⌧1
(t0, t1) : ⌧0 ⇤ ⌧1

t : ⌧0 ⇤ ⌧1
fst(t) : ⌧0

t : ⌧0 ⇤ ⌧1
snd(t) : ⌧1

x : ⌧0 t : ⌧1
�x.t : ⌧0 ! ⌧1

t1 : ⌧0 ! ⌧1 t0 : ⌧0
(t1 t0) : ⌧1

x : ⌧ t : ⌧

rec x.t : ⌧

178 Summary

A.3.4. HOFL Operational Semantics 6.2

A.3.4.1. HOFL Canonical Forms

?

n 2 Cint

t0 : ⌧0 t1 : ⌧1 t0, t1 closed

(t0, t1) 2 C⌧0⇤⌧1

�x.t : ⌧0 ! ⌧1 �x.t closed

�x.t 2 C⌧0!⌧1

A.3.4.2. HOFL Axiom

c! c

A.3.4.3. HOFL Arithmetic and Conditional Expressions

t0 ! n0 t1 ! n1

t0 op t1 ! n0 op n1

t ! 0 t0 ! c0

if t then t0 else t1 ! c0

t ! n n , 0 t1 ! c1

if t then t0 else t1 ! c1

A.3.4.4. HOFL Pairing Rules

t ! (t0, t1) t0 ! c0

fst(t)! c0

t ! (t0, t1) t1 ! c1

snd(t)! c1

A.3.4.5. HOFL Function Application

t1 ! �x.t01 t01[t0/x]! c

(t1 t0)! c
(lazy)

t1 ! �x.t01 t0 ! c0 t01[c0/x]! c

(t1 t0)! c
(eager)

A.3.4.6. HOFL Recursion

t[rec x.t/x]! c

rec x.t ! c

A.3.5. HOFL Denotational Semantics 8 ~t : ⌧� : Env �! (V⌧)?

~n� ⇢ = bnc
~x� ⇢ = ⇢x

✓

t0 op t1
◆

⇢ = ~t0� ⇢ op? ~t1� ⇢
~if t0 then t1 else t2� ⇢ = Cond (~t0� ⇢, ~t1� ⇢, ~t2� ⇢)

~(t0, t1)� ⇢ = b(~t0� ⇢, ~t1� ⇢)c
~fst(t)� ⇢ = let v(~t� ⇢. ⇡1v
~snd(t)� ⇢ = let v(~t� ⇢. ⇡2v
~�x.t� ⇢ =

j

�d. ~t� ⇢[d/x]
k

~(t1 t0)� = let'(~t1� ⇢.'(~t0� ⇢)
~rec x.t� ⇢ = fix �d. ~t� ⇢[d/x]

A.4 CCS 10 179

A.4. CCS 10

A.4.1. CCS Syntax 10.1

p, qF x | nil | µ.p | p\↵ | p[�] | p + p | p | p | rec x.p

A.4.2. CCS Operational Semantics 10.2

(Act)
µ.p

µ�! p
(Res)

p
µ�! q

µ , ↵, ↵̄
p\↵ µ�! q\↵

(Rel)
p
µ�! q

p[�]
�(µ)���! q[�]

(Sum)
p
µ�! p0

p + q
µ�! p0

q
µ�! q0

p + q
µ�! q0

(Com)
p
µ�! p0

p|q µ�! p0|q

q
µ�! q0

p|q µ�! p|q0
p1
��! p2 q1

��! q2

p1|q1
⌧�! p2|q2

(Rec)
p[rec x.p/x]

µ�! q

rec x.p
µ�! q

A.4.3. CCS Abstract Semantics 10.3

A.4.3.1. CCS Strong Bisimulation 10.3.3

8p, q. p �(R) q def
=

8

>

>

<

>

>

:

8µ, p0. p
µ�! p0 implies 9q0. q

µ�! q0 and p0Rq0

8µ, q0. q
µ�! q0 implies 9p0. p

µ�! p0 and p0Rq0

A.4.3.2. CCS Weak Bisimulation 10.7

The weak transition relation)is defined as follows:

p
⌧
=) q i↵ p

⌧�! . . . ⌧�! q _ p = q

p
�
=) q i↵ p

⌧
=) p0

��! q0
⌧
=) q

A weak bisimulation is defined as follows:

8p, q. p (R) q def
=

8

>

>

<

>

>

:

8µ, p0. p
µ�! p0 implies 9q0. q

µ
=) q0 and p0 R q0

8µ, q0. q
µ�! q0 implies 9p0. p

µ
=) p0 and p0 R q0

A.4.3.3. CCS Observational Congruence 10.7.2

8p, q. p � q def
=

8

>

>

>

>

>

<

>

>

>

>

>

:

8p0. p
⌧��! p0 implies 9q0. q

⌧��! ⌧
==) q0 and p0 ⇡ q0

8�, p0. p
���! p0 implies 9q0. q

�
==) q0 and p0 ⇡ q0

(and vice versa)

Alternatively � can be defined as follows:

p � q i↵ p ⇡ q ^ 8r. p + r ⇡ q + r

180 Summary

A.4.3.4. CCS Axioms for Observational Congruence (Milner ⌧ Laws) 10.7.2

p + ⌧.p = ⌧.p
µ.(p + ⌧.q) = µ.(p + ⌧.q) + µ.q
µ.⌧.p = µ.p

A.4.3.5. CCS Dynamic Bisimulation 10.7.3

8p, q. p ⇥(R) q def
=

8

>

>

>

>

>

<

>

>

>

>

>

:

8p0. p
⌧�! p0 implies 9q0. q

⌧��! ⌧
==) q0 and p0 R q0

8�, p0. p
��! p0 implies 9q0. q

�
==) q0 and p0 R q0

(and vice versa)

A.4.3.6. CCS Axioms for Dynamic Bisimilarity 10.7.3

p + ⌧p = ⌧p
µ(p + ⌧q) = µ(p + ⌧q) + µq

A.5. Temporal and Modal Logic

A.5.1. Hennessy - Milner Logic 10.5

The syntax of Hennessy-Milner logic formulas is:

F F true | f alse | ^i2I Fi | _i2I Fi | ⌃µF | ⇤µF

The satisfaction relation |= ✓ P ⇥L is defined as follows:

p |= true
p |= ^i2IFi i↵ 8i 2 I. p |= Fi
p |= _i2IFi i↵ 9i 2 I. p |= Fi 8i 2 I
p |= ⌃µF i↵ 9p0. p

µ�! p0 ^ p0 |= F
p |= ⇤µF i↵ 8p0. p

µ�! p0) p0 |= F

A.5.2. Linear Temporal Logic 11.1.1

The syntax of LTL is as follows:

�F true | f alse | p | ¬� | �1 ^ �2 | �1 _ �2 | O� | F� | G� | �1U�2

Let P be a set of atomic propositions and S : P! 2!. We define the satisfaction operator |= as follows:

S |= true
S |= p if 0 2 S (p)
S |= ¬� if it is not true that S |= �
S |= �1 ^ �2 if S |= �1 and S |= �2

S |= �1 _ �2 if S |= �1 or S |= �2

S |= O� if S 1 |= �
S |= F� if 9i 2 N such that S i |= �
S |= G� if 8i 2 N it holds S i |= �
S |= �1U�2 if 9i 2 N such that S i |= �2 and 8 j < i. S j |= �1

A.6 µ-Calculus 11.2 181

A.5.3. Computation Tree Logic 11.1.2

The syntax of CTL is as follows:

�F true | f alse | p | ¬� | �1 ^ �2 | �1 _ �2 | O� | F� | G� | �1U�2 | E� | A�

Let (T, S , P) be a branching structure and ⇡ = v0, v1, . . . , vn, . . . be an infinite path. We define the |= relation
for as follows:

state operators:

S , ⇡ |= true
S , ⇡ |= p if v0 2 S (p)
S , ⇡ |= ¬� if it is not true that S , ⇡ |= �
S , ⇡ |= �1 ^ �2 if S , ⇡ |= �1 and S , ⇡ |= �2

S , ⇡ |= �1 _ �2 if S , ⇡ |= �1 or S , ⇡ |= �2

S , ⇡ |= O� if S , ⇡1 |= �
S , ⇡ |= F� if 9i 2 ! such that S , ⇡i |= �
S , ⇡ |= G� if 8i 2 ! it holds S , ⇡i |= �
S , ⇡ |= �1U�2 if 9i 2 ! such that S , ⇡i |= �2 and for all j < i. S , ⇡ j |= �1

path operators

S , ⇡ |= E� if there exists ⇡1 = v0, v01, . . . , v
0
n, . . . such that S , ⇡1 |= �

S , ⇡ |= A� if for all paths ⇡1 = v0, v01, . . . , v
0
n, . . . we have S , ⇡1 |= �

This semantics apply both for CTL and CT L⇤. The formulas of CT L are obtained by restricting CT L⇤: a
CT L⇤ formula is a CT L formula if the followings hold:

• A and E appear only immediately before a linear operator (i.e., F,G,U and O).

• each linear operator appears immediately after a quantifier (i.e., A and E).

A.6. µ-Calculus 11.2

The syntax of µ-calculus is as follows:

�F true | f alse | x | p | ¬� | �1 ^ �2 | �1 _ �2 | ⌃� | ⇤� | µx.� | ⌫x.�

We define the denotational semantics of µ-calculus which maps each predicate to the subset of states in which
it holds as follows:

~true� ⇢ = V
✓

f alse
◆

⇢ = ?

~x� ⇢ = ⇢x
✓

p
◆

⇢ = ⇢p
✓¬�◆

⇢ = V \ ✓

�
◆

⇢
✓

�1 ^ �2
◆

⇢ =
✓

�1
◆

⇢ \ ✓

�2
◆

⇢
✓

�1 _ �2
◆

⇢ =
✓

�1
◆

⇢ [✓

�2
◆

⇢
✓

⌃�
◆

⇢ = { v | 9v0.v! v0 ^ v0 2 ✓

�
◆

⇢ }
✓

⇤�
◆

⇢ = { v | 8v0.v! v0) v0 2 ✓

�
◆

⇢ }
✓

µx.�
◆

⇢ = fix �S .
✓

�
◆

⇢[S /x]
✓

⌫x.�
◆

⇢ = Fix �S .
✓

�
◆

⇢[S /x]

182 Summary

A.7. ⇡-calculus 12

A.7.1. ⇡-calculys Syntax 12.1

p F nil | ↵.p | [x = y]p | p + p | p|p | (y)p | !p
↵ F ⌧ | x(y) | xy

A.7.2. ⇡-calculus Operational Semantics 12.2

(Tau)
⌧.p

⌧�! p
(Out)

x y.p
x y��! p

(In) w < f n((y)p)
x(y).p

x(w)���! p{w/y}

(SumL)
p
↵�! p0

p + q
↵�! p0

(SumR)
q
↵�! q0

p + q
↵�! q0

(Match)
p
↵�! p0

[x = x]p
↵�! p0

(ParL)
p
↵�! p0

bn(↵) \ f n(q) = ?
p|q ↵�! p0|q

(ParR)
q
↵�! q0

bn(↵) \ f n(p) = ?
p|q ↵�! p|q0

(ComL) p
x z��! p0 q

x(y)���! q0

p|q ⌧�! p0|(q0{z/y})
(ComR) p

x(y)���! p0 q
x z��! q0

p|q ⌧�! p0{z/y}|q0

(Res)
p
↵�! p0

y < n(↵)
(y)p

↵�! (y)p0
(Open)

p
x y��! p0

y , x w < f n((y)p)
(y)p

x(w)���! p0{w/y}

(CloseL) p
x (w)����! p0 q

x(w)���! q0

p|q ⌧�! (w)(p0|q0)
(CloseR) p

x(w)���! p0 q
x (w)����! q0

p|q ⌧�! (w)(p0|q0)
(Rep)

p|!p
↵�! p0

!p
↵�! p0

A.7.3. ⇡-calculus Abstract Semantics 12.4

A.7.3.1. Strong Early Ground Bisimulation 12.4.1

8p, q. p S q)

8

>

>

>

>

>

<

>

>

>

>

>

:

8↵, p0. if p
↵�! p0 with ↵ , x(y) ^ bn(↵) \ f n(q) = ?, then 9q0. q

↵�! q0 and p0 S q0

8x, y, p0. if p
x(y)���! p0 with y < f n(q), then 8w. 9q0. q

x(y)���! q0 and p0{w/y} S q0{w/y}
(and vice versa)

We define the strong early ground bisimilarity as follows:

p �⇠E q, p S q for some strong early ground bisimulation S

A.7.3.2. Strong Early Full Bisimilarity 12.4.3

p ⇠E q, p� �⇠E q� for every substitution �

A.8 LTL for Action, Non-determinism and Probability 183

A.7.3.3. Strong Late Ground Bisimulation 12.4.2

8p, q. p S q)

8

>

>

>

>

>

<

>

>

>

>

>

:

8↵, p0. if p
↵�! p0 with ↵ , x(y) ^ bn(↵) \ f n(q) = ?, then 9q0. q

↵�! q0 and p0 S q0

8x, y, p0. if p
x(y)���! p0 with y < f n(q), then 9q0. 8w. q

x(y)���! q0 and p0{w/y} S q0{w/y}
(and vice versa)

We define the strong late ground bisimilarity as follows:

p �⇠L q, p S q for some late early ground bisimulation S

A.7.3.4. Strong Late Full Bisimilarity 12.4.3

p ⇠L q, p� �⇠L q� for every substitution �

A.7.3.5. Weak Early Ground Bisimulation 12.4.4

8p, q. p S q)

8

>

>

>

>

>

<

>

>

>

>

>

:

8↵, p0. if p
↵�! p0 with ↵ , x(y) ^ bn(↵) \ f n(q) = ?, then 9q0. q

↵
==) q0 and p0 S q0

8x, y, p0. if p
x(y)���! p0 with y < f n(q), then 8w. 9q0. q

x(y)
==) q0 and p0{w/y} S q0{w/y}

(and vice versa)

where here ↵ could be ⌧. We define the corresponding bisimilarity as follows:

p
•
tE q i↵ p S q for some weak early ground bisimulation S .

A.7.3.6. Weak Late Ground Bisimulation 12.4.4

8p, q. p S q)

8

>

>

>

>

>

<

>

>

>

>

>

:

8↵, p0. if p
↵�! p0 with ↵ , x(y) ^ bn(↵) \ f n(q) = ?, then 9q0. q

↵
==) q0 and p0 S q0

8x, y, p0. if p
x(y)���! p0 with y < f n(q), then 9q0. q

x(y)
==) q0 and 8w. p0{w/y} S q0{w/y}

(and vice versa)

We define the corresponding bisimilarity as follow:

p
•
tL q i↵ p S q for some weak late ground bisimulation S .

A.8. LTL for Action, Non-determinism and Probability

Let S be a set of states, T be a set of transitions, L be a set of labels, D(S) and D(L ⇥ S) be respectively the
set of discrete probabilistic distributions over S and over L ⇥ S .

• CCS: ↵ : S �!P(L ⇥ S)

• DTMC: ↵ : S �! (D(S) + 1)

• CTMC: ↵ : S ! S ! R

• Reactive probabilistic transition systems: ↵ : S ! L! (D(S) + 1)

• Generative probabilistic transition systems: ↵ : S ! (D(L ⇥ S) + 1)

• Segala Automata: ↵ : S !P(D(L ⇥ S))

• Simple Segala Automata: ↵ : S !P(L ⇥ D(S))

184 Summary

A.9. Larsen-Skou Logic 14.1.1.1

We define the Larsen-Skou satisfaction relation as follows:

s |= true
s |= '1 ^ '2 , s |= '1 and s |= '2
s |= ¬' , ¬s |= '
s |= hliq ' , ↵ s l

✓

'
◆ � q where

✓

'
◆

= {s 2 S |s |= '}

A.10. PEPA 15

A.10.1. PEPA Syntax 15.2.1

PF nil | (↵, r).P | P + P | P BC
L

P | P/L | C

A.10.2. PEPA Operational Semantics 15.2.2

(↵, r).P
(↵,r)���! P

P
(↵,r)���! P0

P + Q
(↵,r)���! P0

Q
(↵,r)���! Q0

P + Q
(↵,r)���! Q0

P
(↵,r)���! P0 ↵ < L

P/L
(↵,r)���! P0/L

P
(↵,r)���! P0 ↵ 2 L

P/L
(⌧,r)���! P0/L

P
(↵,r)���! P0 ↵ < L

P BC
L

Q
(↵,r)���! P0 BC

L
Q

Q
(↵,r)���! Q0 ↵ < L

P BC
L

Q
(↵,r)���! P BC

L
Q0

P
(↵,r1)����! P0 Q

(↵,r2)����! Q0 ↵ 2 L

P BC
L

Q
(↵,r)���! P0 BC

L
Q0

where r = min(r↵(P), r↵(Q)) ⇤ r1

r↵(P)
⇤ r2

r↵(Q)

P
(↵,r)���! P0 (C def

= P) 2 �

C
(↵,r)���! P0

where we have denoted by r↵(P) the apparent rate of action ↵ in P, which is defined by structural recursion
as follows:

r↵(nil) = 0

r↵((�, r).P) =
(

r if ↵ = �
0 if ↵ , �

r↵(P + Q) = r↵(P) + r↵(Q)

r↵(P/L) =
(

r↵(P) if ↵ < L
0 if ↵ 2 L

r↵(P BCL Q) =
(

min(r↵(P), r↵(Q)) if ↵ 2 L
r↵(P) + r↵(Q) if ↵ < L

	Introduction
	Objectives
	Structure
	References

	Preliminaries
	Inference Rules
	Logic Programming

	IMP language
	Operational Semantics of IMP
	Syntax of IMP
	Arithmetic Expressions
	Boolean Expressions
	Commands
	Abstract Syntax

	Operational Semantics of IMP
	Memory State
	Inference Rules
	Examples

	Abstract Semantics: Equivalence of IMP Expressions and Commands
	Examples: Simple Equivalence Proofs
	Examples: Parametric Equivalence Proofs
	Inequality Proofs
	Diverging Computations

	Induction and Recursion
	Noether Principle of Well-founded Induction
	Well-founded Relations
	Noether Induction
	Weak Mathematical Induction
	Strong Mathematical Induction
	Structural Induction
	Induction on Derivations
	Rule Induction

	Well-founded Recursion

	Partial Orders and Fixpoints
	Orderings and Continuous Functions
	Orderings
	Hasse Diagrams
	Chains
	Complete Partial Orders

	Continuity and Fixpoints
	Monotone and Continuous Functions
	Fixpoints
	Fixpoint Theorem

	Immediate Consequence Operator
	The Operator
	Fixpoint of

	Denotational Semantics of IMP
	-notation
	Denotational Semantics of IMP
	Function A
	Function B
	Function C

	Equivalence Between Operational and Denotational Semantics
	Equivalence Proofs for A and B
	Equivalence of C
	Completeness of the Denotational Semantics
	Correctness of the Denotational Semantics

	Computational Induction

	HOFL language
	Operational Semantics of HOFL
	HOFL
	Typed Terms
	Typability and Typechecking
	Church Type Theory
	Curry Type Theory

	Operational Semantics of HOFL

	Domain Theory
	The Domain N
	Cartesian Product of Two Domains
	Functional Domains
	Lifting
	Function's Continuity Theorems
	Useful Functions

	HOFL Denotational Semantics
	HOFL Evaluation Function
	Constants
	Variables
	Binary Operators
	Conditional
	Pairing
	Projections
	Lambda Abstraction
	Function Application
	Recursion

	Typing the Clauses
	Continuity of Meta-language's Functions
	Substitution Lemma

	Equivalence between HOFL denotational and operational semantics
	Completeness
	Equivalence (on Convergence)
	Operational and Denotational Equivalence
	A Simpler Denotational Semantics

	Concurrency and Logic
	CCS, the Calculus for Communicating Systems
	Syntax of CCS
	Operational Semantics of CCS
	CCS with value passing
	Recursive declarations and the recursive operator

	Abstract Semantics of CCS
	Graph Isomorphism
	Trace Equivalence
	Bisimilarity

	Compositionality
	Bisimilarity is Preserved by Parallel Composition

	Hennessy - Milner Logic
	Axioms for Strong Bisimilarity
	Weak Semantics of CCS
	Weak Bisimilarity
	Weak Observational Congruence
	Dynamic Bisimilarity

	Temporal Logic and -Calculus
	Temporal Logic
	Linear Temporal Logic
	Computation Tree Logic

	-Calculus
	Model Checking

	 -Calculus
	Syntax of -calculus
	Operational Semantics of -calculus
	Structural Equivalence of -calculus
	Reduction semantics

	Abstract Semantics of -calculus
	Strong Early Ground Bisimulations
	Strong Late Ground Bisimulations
	Strong Full Bisimilarity
	Weak Early and Late Ground Bisimulations

	Probabilistic Models and PEPA
	Measure Theory and Markov Chains
	Measure Theory
	-field
	Constructing a -field
	Continuous Random Variables

	Stochastic Processes
	Markov Chains
	Discrete and Continuous Time Markov Chain
	DTMC as LTS
	DTMC Steady State Distribution
	CTMC as LTS
	Embedded DTMC of a CTMC
	CTMC Bisimilarity
	DTMC Bisimilarity

	Markov Chains with Actions and Non-determinism
	Discrete Markov Chains With Actions
	Reactive DTMC
	Larsen-Skou Logic

	DTMC With Non-determinism
	Segala Automata
	Simple Segala Automata
	Non-determinism, Probability and Actions

	PEPA - Performance Evaluation Process Algebra
	CSP
	Syntax of CSP
	Operational Semantics of CSP

	PEPA
	Syntax of PEPA
	Operational Semantics of PEPA

	Appendices
	Summary
	Induction rules 3.1.2
	Noether
	Weak Mathematical Induction 3.1.3
	Strong Mathematical Induction 3.1.4
	Structural Induction 3.1.5
	Derivation Induction 3.1.6
	Rule Induction 3.1.7
	Computational Induction 5.4

	IMP 2
	IMP Syntax 2.1
	IMP Operational Semantics 2.2
	IMP Arithmetic Expressions
	IMP Boolean Expressions
	IMP Commands

	IMP Denotational Semantics 5
	IMP Arithmetic Expressions A: Aexpr (N)
	IMP Boolean Expressions B: Bexpr (B)
	IMP Commands C: Com ()

	HOFL 6.1
	HOFL Syntax 6.1
	HOFL Types 6.1.1
	HOFL Typing Rules 6.1.1
	HOFL Operational Semantics 6.2
	HOFL Canonical Forms
	HOFL Axiom
	HOFL Arithmetic and Conditional Expressions
	HOFL Pairing Rules
	HOFL Function Application
	HOFL Recursion

	HOFL Denotational Semantics 8 "4B7EC12 t: "5B7FC13 :Env-2.5mu(V)

	CCS 10
	CCS Syntax 10.1
	CCS Operational Semantics 10.2
	CCS Abstract Semantics 10.3
	CCS Strong Bisimulation 10.3.3
	CCS Weak Bisimulation 10.7
	CCS Observational Congruence 10.7.2
	CCS Axioms for Observational Congruence (Milner Laws) 10.7.2
	CCS Dynamic Bisimulation 10.7.3
	CCS Axioms for Dynamic Bisimilarity 10.7.3

	Temporal and Modal Logic
	Hennessy - Milner Logic 10.5
	Linear Temporal Logic 11.1.1
	Computation Tree Logic 11.1.2

	-Calculus 11.2
	-calculus 12
	-calculys Syntax 12.1
	-calculus Operational Semantics 12.2
	-calculus Abstract Semantics 12.4
	Strong Early Ground Bisimulation 12.4.1
	Strong Early Full Bisimilarity 12.4.3
	Strong Late Ground Bisimulation 12.4.2
	Strong Late Full Bisimilarity 12.4.3
	Weak Early Ground Bisimulation 12.4.4
	Weak Late Ground Bisimulation 12.4.4

	LTL for Action, Non-determinism and Probability
	Larsen-Skou Logic 14.1.1.1
	PEPA 15
	PEPA Syntax 15.2.1
	PEPA Operational Semantics 15.2.2

