Models of computation (MOD) 2013/14

Exam – September 4, 2014

[Ex. 1] Extend IMP with the command

try
$$c_1 = c_2$$
 else c_3

that returns the store obtained by computing c_1 if it coincides with the one obtained by computing c_2 ; if they differ returns the store obtained by computing c_3 ; it diverges otherwise.

- 1. Define the operational semantics of the new command.
- 2. Define the denotational semantics of the new command.
- 3. Extend the proof of correspondence between the operational and the denotational semantics.

[Ex. 2] Prove that the HOFL terms:

$$t_1 \stackrel{\text{def}}{=} \mathbf{rec} \ f.\lambda x. \ ((\lambda y. \ 1) \ (f \ x)) \qquad t_2 \stackrel{\text{def}}{=} \lambda x. \ 1$$

have the same type and the same denotational semantics.

[Ex. 3] Let us consider sequential CCS agents composed using only nil, action prefix and sum. Prove that

$$p \xrightarrow{\mu} q$$
 implies $\varphi(p) \xrightarrow{\varphi(\mu)} \varphi(q)$

for any permutation of action names φ . Use this result to prove that $p \simeq q$ implies $\varphi(p) \simeq \varphi(q)$, where \simeq denotes bisimilarity.

[Ex. 4] Given the HM-logic formula:

$$\phi \stackrel{\text{def}}{=} \Diamond \alpha. \Box \beta. true \ \land \ \Box \alpha. \Diamond \beta. \Box \gamma. true.$$

give a CCS agent that satisfies ϕ and whose LTS has a minimal number of transitions.