[Ex. 1]

Let w be the IMP command

$$w \stackrel{\text{\tiny def}}{=} \text{ while } x > y \text{ do } (x := x + 1 ; y := y - 1)$$

- 1. Characterize the set S of memories σ such that $\langle w, \sigma \rangle \not\rightarrow$ in terms of conditions over $\sigma(x)$ and $\sigma(y)$.
- 2. Use the inference rule for divergence seen in the course to prove that $\langle w, \sigma \rangle \not\rightarrow$ for any memory $\sigma \in S$.

[Ex. 2]

Let c and c' be the IMP commands defined below:

$$c \stackrel{\text{def}}{=} \mathbf{if} \ b \ \mathbf{then} \ c_1 \ \mathbf{else} \ c_2$$

 $c' \stackrel{\text{def}}{=} (\mathbf{if} \ b \ \mathbf{then} \ c_1 \ \mathbf{else} \ \mathbf{skip}) \ ; \ (\mathbf{if} \ \neg b \ \mathbf{then} \ c_2 \ \mathbf{else} \ \mathbf{skip})$

Are c and c' equivalent for any $b \in Bexp$ and $c_1, c_2 \in Com$?

- 1. Motivate the answer by exploiting the denotational semantics.
- 2. If c and c' are not equivalent provide a concrete counterexample.

[Ex. 3]

Let (D, \sqsubseteq) be a CPO_⊥ and $f : D \to D$ be a continuous function on D. We define the set \mathbf{Po}_f of post-fixpoints of f as follows:

$$\mathbf{Po}_f \stackrel{\text{\tiny def}}{=} \{ d \in D \mid d \sqsubseteq f(d) \}$$

- 1. Is $(\mathbf{Po}_f, \sqsubseteq_{\mathbf{Po}_f})$ a CPO_{\perp} , where $\sqsubseteq_{\mathbf{Po}_f} \stackrel{\text{def}}{=} \sqsubseteq \cap (\mathbf{Po}_f \times \mathbf{Po}_f)$?
- 2. Take $D = \wp(\mathbb{N})$ ordered by inclusion and $f = \lambda S X \cap S$ for a fixed non-empty subset of natural numbers X. Prove that $\mathbf{Po}_f = \wp(X)$.

[Ex. 4]

Let us consider the signature Σ for binary trees seen during the course, with $\Sigma_0 = \mathbb{N}, \Sigma_2 = \{ \text{cons} \}$ and $\Sigma_k = \emptyset$ for all $k \neq 0, 2$.

- 1. Define by structural recursion the function *seq* that returns the list of leaves of a tree (such that, e.g., $seq(cons(cons(3, 1), 5)) = 3\ 1\ 5)$.
- 2. Define by structural recursion the function dpt that returns the depth of a tree (such that, e.g., dpt(cons(cons(3,1),5)) = 3).
- 3. Let $\cong T_{\Sigma} \times T_{\Sigma}$ be the relation defined by the following inference rules:

$$\frac{n \in \mathbb{N}}{n \asymp n} \qquad \frac{n \in \mathbb{N} \quad t_0 \asymp t_1}{\cos(n, t_0) \asymp \cos(n, t_1)} \qquad \frac{t_0 \asymp \cos(n, t_2) \quad \cos(t_2, t_1) \asymp t_2}{\cos(t_0, t_1) \asymp \cos(n, t_2)}$$

Prove $\forall t, t' \in T_{\Sigma}$. $t \asymp t' \Rightarrow (seq(t) = seq(t') \land dpt(t') = |seq(t)|)$, where |s| denotes the length of the sequence s. Is the converse true?