Models of computation (MOD) 2015/16 Exam – Feb. 10, 2017

[Ex. 1] Let the transition relation \rightarrow^x with $x \in \mathbf{Loc}$ be defined by the following inference rules

$$\frac{\sigma(x) = 0}{\langle c, \sigma \rangle \to^x \sigma} \qquad \frac{\sigma(x) \neq 0 \quad \langle c, \sigma \rangle \to \sigma'' \quad \langle c, \sigma'' \rangle \to^x \sigma'}{\langle c, \sigma \rangle \to^x \sigma'}$$

- 1. Prove the determinacy of \rightarrow^x (for any $x \in \mathbf{Loc}$).
- 2. Prove that for all c, σ, σ', x :

(while
$$(x \neq 0)$$
 do $c, \sigma \rightarrow \sigma' \Rightarrow \langle c, \sigma \rangle \rightarrow^x \sigma'$.

[Ex. 2] Let S be a non-empty, finite set. A neighbourhood over S is a function $\eta: S \to \wp(S)$ that assigns to each element in S the set of its neighbours, with the constraint that $\forall x, y \in S$. $x \in \eta(y) \Leftrightarrow y \in \eta(x)$. Let $\mathcal{N}(S)$ denote the set of all neighbourhoods over S, ordered by the relation

$$\eta \sqsubseteq \eta' \stackrel{\text{def}}{=} \forall s \in S. \ \eta(s) \subseteq \eta'(s)$$

- 1. Prove that $(\mathcal{N}(S), \sqsubseteq)$ is a complete partial order with bottom.
- 2. Let $\rho: (\mathcal{N}(S), \sqsubseteq) \to (\mathbb{N}, \leq)$ be defined by $\rho(\eta) \stackrel{\text{def}}{=} |\{s \in S \mid s \in \eta(s)\}|$. Prove that ρ is monotone.

[Ex. 3] Consider the HOFL term

$$t \stackrel{\text{def}}{=} \mathbf{rec} \ f. \ \lambda x. \ \lambda y. \ \mathbf{if} \ (x+y) \ \mathbf{then} \ 0 \ \mathbf{else} \ (\ (f \ (x+1)) \ (y-1) \)$$

- 1. Under which hypothesis is t typable?
- 2. Compute the (lazy) denotational semantics of t.

[Ex. 4] Let K be a positive natural number and consider the Markov chain with K+1 states, numbered from 0 to K, and transition probabilities

$$p_{i,j} = \begin{cases} p & \text{if } i = j = 0\\ q & \text{if } j = i + 1\\ p & \text{if } j = i - 1\\ q & \text{if } i = j = K\\ 0 & \text{otherwise} \end{cases}$$

for some fixed value $p \in (0,1)$ and q = 1 - p.

- 1. Draw the transition system for K=2.
- 2. Define the corresponding DTMC (for K=2). Is it ergodic?
- 3. What is the probability to be in state 0 on the long run (for K = 2)? Does it depend on K?