Models of computation (MOD) 2016/17 Mid-term exam – April 6, 2017

[Ex. 1] Let us extend IMP with the command

x := c

whose denotational semantics is

$$\mathscr{C}\llbracket x := c \rrbracket \sigma \stackrel{\text{\tiny def}}{=} \left(\lambda \sigma_1. \ \sigma[^{\sigma_1(x)}/_x] \right)^* \left(\mathscr{C}\llbracket c \rrbracket \sigma \right)$$

- 1. Define the operational semantics for the new construct.
- 2. Extend the proofs of correctness and completeness between the operational and the denotational semantics to account for the new construct.

[Ex. 2] Let c, w and w' be the IMP commands defined below:

 $\begin{array}{rcl} c & \stackrel{\text{def}}{=} & (z := x; (x := y; \ y := z)) \\ w & \stackrel{\text{def}}{=} & \textbf{while} \ x \neq y \ \textbf{do} \ c \\ w' & \stackrel{\text{def}}{=} & \textbf{while} \ x \neq y \ \textbf{do} \ \textbf{skip} \end{array}$

Compute $\mathscr{C}[\![c]\!]\sigma$. Then prove that $\mathscr{C}[\![w]\!] = \mathscr{C}[\![w']\!]$.

[Ex. 3] Let (S, \prec) be a set $S \neq \emptyset$ with a binary relation $\prec \subseteq S \times S$ such that for all $s \in S$ the set $[s] \stackrel{\text{def}}{=} \{ x \mid x \prec s \}$ is finite. Let $f : (\wp(S), \subseteq) \to (\wp(S), \subseteq)$ be the function over the CPO_⊥ ($\wp(S), \subseteq$) such that, for any $X \in \wp(S)$

$$f(X) \stackrel{\text{\tiny def}}{=} \{ \ y \mid [y) \subseteq X \ \}$$

- 1. Is (S, \prec) always well founded? (If not, exhibit a counterexample)
- 2. Prove that f is monotone.
- 3. Prove that f is continuous.

[Ex. 4] Let us consider expressions of the form $e := n \mid e^*$ with $n \in \mathbb{N}$, whose operational semantics is defined by the rules

$$\frac{1}{n \to n}(num) \qquad \frac{e \to n}{e^* \to n}(once) \qquad \frac{e^* \to n_1 \quad e^* \to n_2}{e^* \to n_1 \times n_2}(more)$$

It is evident that $e^* \to n$ implies $(e^*)^* \to n$ (by the second rule). Prove the converse by rule induction, i.e., that $\forall e, n$. ($(e^*)^* \to n \Rightarrow e^* \to n$).

[Ex. 5] Compute the most general type of the HOFL term

$$t \stackrel{\text{\tiny def}}{=} \mathbf{rec} \ f. \ \lambda x. \ (\mathbf{fst}(x), \mathbf{snd}(f \ x))$$