
The SPIN Model Checker

Metodi di Verifica del Software
Andrea Corradini – GianLuigi Ferrari

Lezione 3
2011

Slides per gentile concessione di Gerard J. Holzmann

 2

the do-statement

• any type of basic or compound statement can be used as a guard
• a do-statement is an if statement caught in a cycle
• only a break or a goto can exit from a do-loop
• a break transfers control to the end of the loop

do
:: guard1 -> stmnt1.1; stmnt1.2; stmnt1.3; …
:: guard2 -> stmnt2.1; stmnt2.2; stmnt2.3; …
:: …
:: guardn -> stmntn.1; stmntn.2; stmntn.3; …
od

break

 3

do-statement
underlying automaton

byte x;

A: x = 1;
B: do
 :: x++
 :: x--
 :: break
 od;
C: assert(x != 128)

Q1: how many process states
do you think this model defines?

Q2: can the assertion be violated?

Q3: is the x-- statement needed? assert(x != 128)

B

A

C

x=1

x++
break

x--

the guards (and statements
in general) define state
transitions (state transfomers)
and not states

 4

exploiting executability rules
wait for (a==b) to hold

do
:: (a == b) -> break
:: else -> skip
od

L: if
:: (a==b) -> skip
:: else -> goto L
fi

the skip is not needed here
and can introduce an
unnecessary control state

(a == b)

these two constructs
are equivalent to a single
expression statement

else
a==b

a==b else

skip

a==b

note that ‘break’,like ‘goto’, is not
a basic statementbut a control-flowspecifier

 5

example: the alternating bit protocol
(Bartlett et al, 1969)

– two processes, a sender and a receiver

– to every message, the sender adds a sequence number bit

– the receiver acknowledges each message by returning the
received bit

– if the sender is sure that the receiver has correctly received
the previous message, it sends a new message and it
alternates the accompanying bit

– if the bit value doesn’t change, the receiver concludes that a
message is being repeated

msg(0)

msg(1)
ack(0)

ack(1)

 6

basic Promela model
mtype = { msg, ack };
chan s_r = [2] of { mtype, bit };
chan r_s = [2] of { mtype, bit };
active proctype sender()
{ bit seqno;

do
:: s_r!msg,seqno ->

if
:: r_s?ack,eval(seqno) ->

seqno = 1 – seqno /* fetch new msg */
:: r_s?ack,eval(1-seqno)
fi

od
}
active proctype receiver()
{ bit expect, seqno;

do
:: s_r?msg,seqno ->

r_s!ack,seqno;
if
:: seqno == expect /* store msg */
:: else /* ignore */
fi

od
}

 7

the automata view

a0

a1

local bit
variable s

s0,a0

s1a0 s2a0

s0,a1

s1a1 s2a1

sender and s together...
(a pure state automaton)

active proctype sender()
{ bit s;

do
:: s_r!msg,s ->

if
:: r_s?ack,eval(s) ->

s = 1 – s
:: r_s?ack,eval(1-s)
fi

od
}

s0

s1 s2

s_r!msg,s

r_s?ack,eval(s)

s=1-s

sender

r_s?ack,eval(1-s)

 8

a simulation run
$ spin -u20 -c abp # first 20 steps only
proc 0 = sender
proc 1 = receiver
q\p 0 1
 1 s_r!msg,0
 1 . s_r?msg,0
 2 . r_s!ack,0
 2 r_s?ack,0
 1 s_r!msg,1
 1 . s_r?msg,1
 2 . r_s!ack,1
 2 r_s?ack,1

depth-limit (-u20 steps) reached

final state:

#processes: 2
 queue 1 (s_r):
 queue 2 (r_s):
 20: proc 1 (receiver) line 18 "abp" (state 7)
 20: proc 0 (sender) line 6 "abp" (state 7)
2 processes created

 9

$ spin -a abp.pml
$ gcc –o pan pan.c
$./pan
(Spin Version 4.1.0 -- 19 November 2003)
 + Partial Order Reduction
Full statespace search for:
 never claim - (none specified)
 assertion violations +
 acceptance cycles - (not selected)
 invalid end states +
State-vector 60 byte, depth reached 11, errors: 0
 12 states, stored
 2 states, matched
 14 transitions (= stored+matched)
 0 atomic steps
hash conflicts: 0 (resolved)
(max size 2^18 states)
1.573 memory usage (Mbyte)
unreached in proctype sender
 line 11, state 5, "-end-"
 (1 of 5 states)
unreached in proctype receiver
 line 19, state 5, "-end-"
 (1 of 5 states)

the default verification

no errors…

which properties?

how was it checked?

amount of work done
(computation of a p.o.
reduction of the global
state space)

mem. resources used

unreachable
code detected
(the processes do no
terminate)

 10

the function eval()

ch!msg(12)
ch?msg(eval (x))

receive statement is executable
if the variable x equals 12

chan q = [1] of { byte, byte };
x = 12;
q!5(12); # same as writing: q!5,12
q?x(eval(x)) # same as writing: q?x,eval(x)

Q: is this receive statement
executable?

maps the current value of x to a constant
to serve as a constraint on the receive statement

 11

modelling
message
loss

mtype = { msg, ack };
chan s_c = [2] of { mtype, bit };
chan c_r = [2] of { mtype, bit };
chan c_s = [2] of { mtype, bit };
chan r_c = [2] of { mtype, bit };
active proctype sender()
{ bit seqno;

do
:: s_c!msg,seqno ->

if
:: c_s?ack,eval(seqno) ->

seqno = 1 – seqno /* fetch new msg */
:: c_s?ack,eval(1-seqno)
fi

od
}
active proctype channel()
{ mtype m; bit s;

do
:: s_c?m,s -> c_r!m,s /* faithful transmission */
:: s_c?m,s /* to model message loss */
:: r_c?m,s -> c_s!m,s /* return channel error-free */
od

}
active proctype receiver()
{ bit expect, seqno;

do
:: c_r?msg,seqno ->

r_c!ack,seqno;
if
:: seqno == expect /* store msg */
:: else /* ignore */
fi

od
}

 12

viewing the automata with xspin

 13

atomic sequences
suppressing process interleavings

 atomic { guard -> stmnt1; stmnt2; ... stmntn }
– executable if the guard statement is executable
– any statement can serve as the guard statement
– executes all statements in the sequence without

interleaving with statements in other processes
– if any statement other than the guard blocks, atomicity is lost

atomicity can be regained when the statement becomes
executable

– example: mutual exclusion with an indivisible test&set:
active [10] proctype P()
{ atomic { (busy == false) -> busy = true };
 mutex++;
 assert(mutex==1);
 mutex--;
 busy = false;
}

 14

d_step sequences
more restrictive and more efficient than atomic sequences

 d_step { guard -> stmnt1; stmnt2; ... stmntn }
– like an atomic, but must be deterministic and may not block

anywhere inside the sequence

– especially useful to perform
intermediate computations
with a deterministic result,
in a single indivisible step

– atomic and d_step sequences are often used as a model
 reduction method, to lower complexity of large models
 (improving tractability)

 d_step { /* reset array elements to 0 */
i = 0;
do
:: i < N -> x[i] = 0; i++
:: else -> break
od;
i = 0

 }

 15

d_steps and gotos

• goto-jumps into and out of atomic sequences are
allowed
– atomicity is preserved only if the jump starts inside on atomic

sequence and ends inside another atomic sequence, and
the target statement is executable

• goto-jumps into and out of d_step sequences are
forbidden

d_step {
i = 0;
do
:: i < N -> x[i] = 0; i++
:: else -> break
od

};
x[0] = x[1] + x[2];

this is a jump out
of the d_step sequence
and it will trigger an
error from Spin

the problem is prevented in this
case by adding a “; skip” after the
od keyword – there’s no runtime penalty for
this, since it’s inside the d_step

 16

atomic and d_step
• both sequences are executable only when the first (guard)

statement is executable
– atomic: if any other statement blocks, atomicity is lost at that
 point; it can be regained once the statement becomes
 executable later
– d_step: it is an error if any statement other than the guard
 statement blocks

• other differences:
– d_step: the entire sequence is executed as one single transition
– atomic: the sequence is executed step-by-step, but without
 interleaving; non-deterministic choices inside an atomic

 sequence are allowed
• caution:

– infinite loops inside atomic or d_step sequences are not detected
– the execution of this type of sequence models an indivisible step,

which means that it cannot be infinite

 17

execution with
full interleaving

active proctype P1() { t1a; t1b }
active proctype P2() { t2a; t2b }

(0,1)

t2a

t2b
(0,2)

(0,-)

end

t2a t1a

t1a

t1a

t1b

t1b

t1b

end

end

end

end

end
end

t2b
t2b

t2b

t2a
t2a

0

1

2

t1a

t1b

end

P1
0

1

2

t2a

t2b

end

P2
(0,0)

(1,0)

(2,0)

t1a
t1b

(-,0)

end (1,1)

(2,1)

(-,1)
(1,2)

(2,2)

(-,2)
(1,-)

(2,-)

(-,-)

execution
without atomics or d_steps

 18

execution with one
atomic sequence

active proctype P1() { atomic { t1a; t1b } }
active proctype P2() { t2a; t2b }

P1 could make alternate choices at
the intermediate states (e.g., in if
or do-statements)

P2 can be interrupted, but not P1

(0,1)

(0,2)

(0,-)

t2a

t2b

end

(0,0)

(1,0)

(2,0)

(-,0)

t1a
t1b

end
t1a

t1b
t1a

(1,1)

(2,1)

(-,1)
(1,2)

(2,2)

(-,2)
(1,-)

(2,-)

(-,-)

t2a

t2b

end

end t1b

end
t1a

t1b

end

0

1

2

t1a

t1b

end

P1
0

1

2

t2a

t2b

end

P2

 19

execution with a
 d_step sequence

active proctype P1() { d_step {t1a; t1b} }
active proctype P2() { t2a; t2b }

no intermediate states are created:
faster, smaller graph, but no non-
determinism possible inside d_step
sequence itself

P1 now has only one transition…

(0,0)

(0,1)

(1,0)

(1,1)

(-,1)

(-,0)
(0,2)

(1,2)

(-,2)

(0,-)

(1,-)

(-,-)

end

end

end

endend

t1a;t1b

t1a;t1b

t1a;t1b

t1a;t1b

t2a

t2b

end

end

t2a

t2bt2a

t2b

0

1

t1a;t1b

end

P1
0

1

2

t2a

t2b

end

P2

 20

the last control construct: unless sequences
(cf. book, fig. 3.1, p. 63)

active proctype pots()
{ chan who;
idle: line?offhook,who ->

{ who!dialtone;
who?number;
if
:: who!busy
:: who!ringing;

who!connected;
who!hungup;

fi;
goto wait

} unless {
if
:: who?hangup -> goto idle
:: timeout -> goto wait
fi

}
wait: who?hangup;

goto idle
}

active proctype pots()
{ chan who;
idle: line?offhook,who ->

{ who!dialtone;
who?number;
if
:: who!busy
:: who!ringing;

who!connected;
who!hungup;

fi;
goto wait

} unless {
if
:: who?hangup -> goto idle
:: timeout -> goto wait
fi

}
wait: who?hangup;

goto idle
}

main sequence

“escape”

 21

unless sequences

{ guard1; <stmnts1> } unless { guard2;<stmnts2> }

– the unless statement as a whole is executable if either the guard
statement of the main sequence is executable (guard1), or the
guard statement of the escape sequence is executable (guard2)

– statements in the main sequence continue to be executed until the
guard statement of the escape sequence becomes executable, if so

– if and only if this happens, execution of the main sequence stops
and execution proceeds with the escape sequence, which is then
executed to completion (there is no return to the main sequence)

– resembles exception handling in languages like Java
proctype cpu()
{
 { ... /* normal flow */
 ...
 } unless { port?INTERRUPT ->
 ... /* interrupt handling */
 }
}

main sequence escape sequence

 22

nesting

• unless structures may be nested arbitrarily deeply
• escape clauses can be used to define levels of

priority of execution in this way
• the order of evaluation of escape clauses by default

is inside out, but can be reversed with Spin option –J
(to match the evaluation order for nested exception
handling in Java)

 23

automaton view

b1;
{ m1 -> m2; m3 }
 unless
{ e1 -> e2 };
a1;
...

main
sequence

escape
sequencem2

m3

m1

e1

e2

a1

b1

 24

the predefined variable _
• the write-only scratch variable _
• e.g., flushing the contents of a buffer with two message fields:

d_step {
do
:: atomic { nempty(q) -> q?_,_ }
:: else -> break
od;
skip

}

d_step {
do
:: atomic { nempty(q) -> q?_,_ }
:: else -> break
od;
skip

}

• note that normally all data objects store ‘state’ information
– if two global states differ only in the value of a single local variable

in one of the active processes, then it’s still a different global state
– the write-only scratch variable _ can be useful to avoid storing

redundant data that may affect the state space size
– (you can achieve the same effect on other variables by prefixing

their declaration with the keyword hidden)

 25

other Promela language features

• conditional expressions
– (i -> t : e) works precisely like the expression (i?t:e) in C
if i is true then the result of the conditional expression is the value

of t, if false the result of the expression is the value of e
can be used to define conditional rendezvous:

chan q[3] = [0] of { mtype };
sender: q[(P->1:2)]!msg
receiver: q[(Q->1:0]?msg

• the declaration prefixes hidden and show
hidden byte x; /* x declared not to hold state information */
show byte x; /* x can be tracked in the Xspin GUI */

• embedded c_code primitives
we’ll return to this when discussing advanced model checking

techniques

rendezvous is now only possible
when P is true at the sender
and Q is true at the receiver

 26

defining correctness properties

• the basic building blocks of a Spin model
– asynchronous process behavior
– variables, data types
– message channels
– logical correctness properties

• assertions
• end-state, progress-state, and acceptance state labels
• never claims
• temporal logic formulae
• default properties:

– absence of system deadlock
– absence of dead code (unreachable code)

the properties define the real

objective of a verification

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26

