
The SPIN Model Checker

Metodi di Verifica del Software
Andrea Corradini – GianLuigi Ferrari

Lezione 4
2011

Slides per gentile concessione di Gerard J. Holzmann

 2

defining correctness properties

• the basic building blocks of a Spin model
– behavior specification (what is possible)

• asynchronous process behavior
• variables, data types
• message channels

 logical correctness properties (what is valid)
• assertions
• end-state, progress-state, and acceptance state labels
• never claims
• trace assertions
• temporal logic formulae
• default properties:

– absence of system deadlock
– absence of dead code (unreachable code)

the properties define the real

objective of a verification

 3

safety and liveness properties
(a popular terminology due to Leslie Lamport)

 safety
– “nothing bad ever happens”

– example: system invariance
• e.g., x is always less than y

– the model checker’s job is to
discover executions that lead to
the violation of a safety property
(the “bad thing” that should not
happen)

 liveness
– “something good eventually

happens”

– example: responsiveness
• e.g., when a request is issued,

eventually a response is
generated

– the model checker’s job is to
discover executions in which the
“good thing” can be postponed
indefinitely

 4

syntax for expressing
correctness properties

• correctness properties can be expressed:
– as properties of reachable states (safety properties)
– as properties of sequences of states (liveness properties)

• in Promela:
 assertions

• local process assertions
• system invariants

 end-state labels
• to define proper termination points of processes

 accept-state labels
• when looking for acceptance cycles

 progress-state labels
• when looking for non-progress cycles

 never claims (e.g., defined by LTL formulae)
 trace assertions

properties of
states

properties of
sequences
of states

 5

assertions: the oldest type of
correctness check

byte state = 1;
active proctype A()
{ (state == 1) -> state++;

assert(state == 2)
}
active proctype B()
{ (state == 1) -> state--;

assert(state == 0)
}

$ spin –a simple.pml
$ gcc –o pan pan.c
$./pan –E # -E means ignore invalid endstate errors...
pan: assertion violated (state==2) (at depth 6)
pan: wrote simple.pml.trail
...

$ spin -t -p simple.pml
 1: proc 1 (B) line 7 "simple.pml" (state 1) [((state==1))]
 2: proc 0 (A) line 3 "simple.pml" (state 1) [((state==1))]
 3: proc 1 (B) line 7 "simple.pml" (state 2) [state--]
 4: proc 1 (B) line 8 "simple.pml" (state 3) [assert((state==0))]
 5: proc 0 (A) line 3 "simple.pml" (state 2) [state++]
spin: line 4 "simple.pml", Error: assertion violated
spin: text of failed assertion: assert((state==2))

 6

preventing the race
byte state = 1;
active proctype A()
{ atomic { (state == 1) -> state++ };

assert(state == 2)
}
active proctype B()
{ atomic { (state == 1) -> state-- };

assert(state == 0)
} $ spin –a simple.pml

$ gcc –o pan pan.c
$./pan –E # -E means ignore invalid endstates...
(Spin Version 4.1.0 -- 6 December 2003)
 + Partial Order Reduction
Full statespace search for:
 never claim - (none specified)
 assertion violations +
 acceptance cycles - (not selected)
 invalid end states - (disabled by -E flag)
State-vector 20 byte, depth reached 3, errors: 0
 6 states, stored
 0 states, matched
 6 transitions (= stored+matched)
 0 atomic steps
hash conflicts: 0 (resolved)
(max size 2^18 states)
unreached in proctype A
 (0 of 5 states)
unreached in proctype B
 (0 of 5 states)

Q: are there invalid endstates?

we added two atomic
sequences to create
indivisible test&sets

nothing is unreachable

 7

defining system invariants

mtype = { p, v };
chan sem = [0] of { mtype };
byte count;
active proctype semaphore()
{
 do
 :: sem!p ->
 sem?v
 od
}
active [5] proctype user()
{
 do
 :: sem?p ->

count++;
/* critical section */
count--;

 sem!v
 od
}

active proctype invariant()
{
 assert(count <= 1)
}

instantiate

assert(count <= 1)

terminate

adding active proctype invariant
multiplies the search space 3x...
(from 16 reachable states to 48)

Q: how expensive is

it to check the

invariant in this way?

 8

the more intuitive check

mtype = { p, v };
chan sem = [0] of { mtype };
byte count;
active proctype semaphore()
{
 do
 :: sem!p ->
 sem?v
 od
}
active [5] proctype user()
{
 do
 :: sem?p;

count++;
/* critical section */
count--;

 sem!v
 od
}

active proctype invariant()
{
 do :: assert(count <= 1) od
}

instantiate

assert(count <= 1)

no increase in number of
reachable states; but lots of
extra transitions explored

 9

better ...

mtype = { p, v };
chan sem = [0] of { mtype };
byte count;
active proctype semaphore()
{
 do
 :: sem!p ->
 sem?v
 od
}
active [5] proctype user()
{
 do
 :: sem?p;

count++;
/* critical section */
count--;

 sem!v
 od
}

active proctype invariant()
{
 d_step { !(count <= 1) ->
 assert(count <= 1) }
}

no increase in number of
reachable states, no extra transitions

or: put the assertion inside
proctype user to check it only
when the value of the expression
could change

instantiate

assert(count <= 1)

terminate

(count > 1) ->

 10

valid end states

mtype = { p, v };
chan sem = [0] of { mtype };
byte count;
active proctype semaphore()
{
 do
 :: sem!p ->
 sem?v
 od
}
active [5] proctype user()
{
 do
 :: sem?p;

count++;
/* critical section */
count--;

 sem!v
 od
}

sem!p sem?v

semaphore

s0

s1

sem?p

count++

count--

sem!v

user

s0

s1

s2

s3

neither process is intended
to terminate
the proper endstate in
both proctypes is s0

end:

end:

end: end:

the model checker can now focus on
detecting reachable invalid end-states

 11

progress states

mtype = { p, v };
chan sem = [0] of { mtype };
byte count;
active proctype semaphore()
{
 do
 :: sem!p ->
 sem?v
 od
}
active [5] proctype user()
{
 do
 :: sem?p ->

count++;
/* critical section */
count--;

 sem!v
 od
}

sem!p sem?v sem?p

count++

count--

sem!v

semaphore user

s0 s0

s1 s1

s2

s3

we make effective progress
each time a user gains access
to the critical section:
each time state s1 is reached in
proctype semaphore

progress:

progress:

the model checker can now focus on
detecting reachable non-progress cycles

 12

example
byte x = 2;
active proctype A()
{
 do
 :: x = 3 - x
 od
}
active proctype B()
{
 do
 :: x = 3 - x
 od
}

x alternates between values 2 and 1 ad infinitum
each process has just 1 state
no progress labels used just yet: which by default
will mean that every cycle is suspect (i.e., treated
as a potential non-progress cycle)
$ spin -a fair.pml
$ gcc -DNP -o pan pan.c # non-progress cycle detection
$./pan -l # invoke np-cycle algorithm
pan: non-progress cycle (at depth 2)
pan: wrote fair.pml.trail
(Spin Version 4.0.7 -- 1 August 2003)
Warning: Search not completed
 + Partial Order Reduction
Full statespace search for:
 never claim +
 assertion violations + (if within scope of claim)
 non-progress cycles + (fairness disabled)
 invalid end states - (disabled by never claim)
State-vector 24 byte, depth reached 7, errors: 1
 3 states, stored (5 visited)
 4 states, matched
 9 transitions (= visited+matched)
 0 atomic steps
hash conflicts: 0 (resolved)
(max size 2^18 states)

Q1: what happens if we
mark one of the do-od
loops with a progress
label?
Q2: what happens if we
mark both do-od loops?

 13

what kind of cycle did we catch?

$ spin -t -p fair.pml
spin: couldn't find claim (ignored)
 2: proc 1 (B) line 12 "fair.pml" (state 1) [x = (3-x)]
 4: proc 1 (B) line 12 "fair.pml" (state 1) [x = (3-x)]
 <<<<<START OF CYCLE>>>>>
 6: proc 1 (B) line 12 "fair.pml" (state 1) [x = (3-x)]
 8: proc 1 (B) line 12 "fair.pml" (state 1) [x = (3-x)]
spin: trail ends after 8 steps
#processes: 2
 x = 2
 8: proc 1 (B) line 11 "fair.pml" (state 2)
 8: proc 0 (A) line 5 "fair.pml" (state 2)
2 processes created

we cannot make any assumptions about the
relative speeds of processes
it is possible (though not probable) that
process B makes infinitely many more steps
than process A
the non-progress cycle reported by Spin is
not necessarily a fair cycle

that’s ok; note that the
claim used was predefined
during verification with -DNP

 14

fair cycles
• we can reasonably assume finite progress:

when a process can make progress, it eventually will

there are two commonly used variants:

1. weak fairness:
if a statement is executable infinitely long,
it will eventually be executed

2. strong fairness:
if a statement is executable infinitely often,
it will eventually be executed

several interpretations are still possible
fairness can be applied to

1. non-deterministic statement selection within a process
2. non-deterministic statement selection between processes

 15

statement selection
vs process selection

byte x = 2, y = 2;
active proctype A()
{
 do
 :: x = 3 - x
 :: y = 3 - y
 od
}
active proctype B()
{
 do
 :: x = 3 - x
 :: y = 3 - y
 od
}

x = 3-x y = 3-yA

x = 3-x

y = 3-y

B

x = 3-x

x = 3-x

y = 3-y

y = 3-y

AxB

Spin contains an algorithm for enforcing one case
of weak-fairness (enabled by run-time option pan -f ...):

if a process contains at least one statement
that remains executable infinitely long,
that process will eventually execute a step

this applies only to potentially infinite executions (cycles)

 16

a search for weakly fair
non-progress cycles

$./pan -l -f
pan: non-progress cycle (at depth 8)
pan: wrote fair.pml.trail
(Spin Version 4.0.7 -- 1 August 2003)
Warning: Search not completed
 + Partial Order Reduction
Full statespace search for:
 never claim +
 assertion violations + (if within scope of claim)
 non-progress cycles + (fairness enabled)
 invalid end states - (disabled by never claim)
State-vector 24 byte, depth reached 15, errors: 1
 4 states, stored (12 visited)
 9 states, matched
 21 transitions (= visited+matched)
 0 atomic steps
hash conflicts: 0 (resolved)(max size 2^18 states)
1.573 memory usage (Mbyte)

$ spin -t -p fair.pml
spin: couldn't find claim (ignored)
 2: proc 1 (B) line 12 "fair.pml" (state 1) [x = (3-x)]
 4: proc 1 (B) line 12 "fair.pml" (state 1) [x = (3-x)]
 6: proc 1 (B) line 12 "fair.pml" (state 1) [x = (3-x)]
 8: proc 0 (A) line 6 "fair.pml" (state 1) [x = (3-x)]
 <<<<<START OF CYCLE>>>>>
 10: proc 1 (B) line 12 "fair.pml" (state 1) [x = (3-x)]
 12: proc 1 (B) line 12 "fair.pml" (state 1) [x = (3-x)]
 14: proc 1 (B) line 12 "fair.pml" (state 1) [x = (3-x)]
 16: proc 0 (A) line 6 "fair.pml" (state 1) [x = (3-x)]
spin: trail ends after 16 steps
#processes: 2 x = 2
 16: proc 1 (B) line 11 "fair.pml" (state 2)
 16: proc 0 (A) line 5 "fair.pml" (state 2)
2 processes created

cycle now includes steps
from both processes

 17

questions

byte x = 2, y = 2;
active proctype A()
{
 do
 :: x = 3 - x
 :: y = 3 - y; progress: skip
 od
}
active proctype B()
{
 do
 :: x = 3 - x; progress: skip
 :: y = 3 - y
 od
}

Q1: are there non-progress
 cycles in this version of the model?
Q2: are there fair non-progress
 cycles in this version of the model?

x = 3-x

y = 3-y

A

skip

P

y = 3-y

x = 3-x

B

skip

P

 18

enforcing fairness constraints
• any type of fairness (including the predefined version of

weak fairness) can be expressed in LTL formulae
– we’ll return to the use of LTL later

• adding fairness assumptions always increases the cost of
verification

• enforcing strong fairness constraints is far more costly
than enforcing weak fairness constraints

– weak: cost is linear in the number of active processes
– strong: cost is quadratic in the number of active processes
– (cost = increase in time and memory use)

 19

acceptance cycles
marking accept states

mtype = { p, v };
chan sem = [0] of { mtype };
byte count;
active proctype semaphore()
{
 do
 :: sem!p ->
 sem?v
 od
}
active [5] proctype user()
{
 do
 :: sem?p ->

count++;
/* critical section */
count--;

 sem!v
 od
}

sem!p sem?v

semaphore

s0

s1

sem?p

count++

count--

sem!v

user

s0

s1

s2

s3

we may want to find infinite
executions that do pass through
a specially marked state
such a state can be identified with
an accept-state label

accept:

accept:

the model checker can now focus on
detecting reachable acceptance cycles

 20

alternating bit protocol
with lossy transmission and timeout

mtype = { msg, ack };
chan to_sndr = [1] of { mtype, bit };
chan to_rcvr = [1] of { mtype, bit };
chan from_sndr = [1] of { mtype, bit };
chan from_rcvr = [1] of { mtype, bit };

active proctype sender()
{ bit a;

do
:: from_sndr!msg,a;

if
:: to_sndr?ack,eval(a);

a = 1 – a
:: timeout /* retransmission */
fi

 od
}

active proctype channel()
{ mtype m; bit a;

do
:: from_sndr?m,a ->

if
:: to_rcvr!m,a
:: skip /* message loss */
fi

:: from_rcvr?m,a ->
to_sndr!m,a

od
}
active proctype receiver()
{ bit a;

do
:: to_rcvr?msg,eval(a);

from_rcvr!ack,a;

a = 1 – a
od

}

progress:

Q2: is effective progress guaranteed
despite the possibility of message loss?

Q1: what constitutes progress?

 21

the answer
$ spin –a abp2.pml
$ gcc –DNP –o pan pan.c
$./pan –l
pan: non-progress cycle (at depth 4)
pan: wrote abp2.pml.trail
...
$

$ spin –t -c abp2.pml
proc 0 = sender
proc 1 = channel
proc 2 = receiver
spin: couldn't find claim (ignored)
q\p 0 1
 1 from_sndr!msg,0
 1 . from_sndr?msg,0
 <<<<<START OF CYCLE>>>>>
 1 from_sndr!msg,0
 1 . from_sndr?msg,0
spin: trail ends after 12 steps

final state:

#processes: 3
 queue 1 (from_sndr):
 12: proc 2 (receiver)line 34 "abp2.pml" (state 4)
 12: proc 1 (channel) line 23 "abp2.pml" (state 4)
 12: proc 0 (sender) line 11 "abp2.pml" (state 5)
3 processes created
$

this particular scenario
requires infinitely often
losing the same message

if the probability of loss is <1
then this is an unlikely scenario

Q: can we rule out this scenario
 and check for other possible
 non-progress cycles?

 22

refining the search
active proctype channel()
{ mtype m; bit a;

do
:: from_sndr?m,a ->

if
:: to_rcvr!m,a
:: skip; progress: skip /* message loss */
fi

:: from_rcvr?m,a ->
to_sndr!m,a

od
}
active proctype receiver()
{ bit a;

do
:: to_rcvr?msg,eval(a);

from_rcvr!ack,a;
progress:

a = 1 – a
od

}

A: consider message loss to be
a pseudo ‘progress’ event....
and check if other non-progress
cycles are still possible... from_rcvr?m,a

to_sndr?m,a

from_sndr?m,a

to_rcvr!m,a

skip

from_rcvr?m,a

to_sndr?m,a

from_sndr?m,a

to_rcvr!m,a

skip

P

skip

be careful to label the

right state – if necessary,

add a state...

 23

the refined search
$ spin –a abp3.pml
$ gcc –DNP –o pan pan.c
$./pan –l
(Spin Version 4.1.0 -- 6 December 2003)
 + Partial Order Reduction
Full statespace search for:
 never claim +
 assertion violations + (if within scope of claim)
 non-progress cycles + (fairness disabled)
 invalid end states - (disabled by never claim)
State-vector 80 byte, depth reached 53, errors: 0
 73 states, stored (98 visited)
 64 states, matched
 162 transitions (= visited+matched)
 0 atomic steps
hash conflicts: 0 (resolved)
(max size 2^18 states)
unreached in proctype sender
 line 17, state 10, "-end-"
 (1 of 10 states)
unreached in proctype channel
 line 30, state 12, "-end-"
 (1 of 12 states)
unreached in proctype receiver
 line 40, state 7, "-end-"
 (1 of 7 states)

search fornon-progress cycles

good news:
no np-cycles remain

meaning: only infinite
message loss can cause
an infinite delay of progress

 24

why are they called acceptance cycles?

• has to do with the automata theoretic foundation
– never claims (discussed next) formally define ω-automata

that accept only those sequences that violate a correctness
claim…

acceptance cycle:

a state marked with an accept label

that is reachable from the initial system

state and is also reachable from itself

i.e.,

a strongly connected component

in the reachability graph, containing

at least one accept state

 25

reviewing

• generic types of properties:
– assertions

• local process assertions
• system invariants

– end-state labels
• to define proper termination points of processes

– accept-state labels
• when looking for acceptance cycles

– progress-state labels
• when looking for non-progress cycles

never claims (optionally derived from LTL formulae)
trace assertions

states

cycles

combinations of accept and progress labels with
or without the weak fairness constraint can
already express a range of different liveness
properties

 26

reasoning about executions
• there are at least three different ways to formalize an execution

in a concurrent system:
– sequence of states
– sequence of events (state transitions)
– sequence of propositions on states (state properties)

bit x, y;
byte mutex;
active proctype A() {
 x = 1;

(y == 0) ->
 mutex++;
 printf(“%d\n”, _pid);
 mutex--;

 x = 0
}

bit x, y;
byte mutex;
active proctype A() {
 x = 1;

(y == 0) ->
 mutex++;
 printf(“%d\n”, _pid);
 mutex--;

 x = 0
}

p: (x == mutex)
q: (x != y)

x=1 (y==0) mutex++ print mutex-- x=0

x==0
y==0

mutex==0
x==1
y==0

mutex==0
x==1
y==0

mutex==1
x==1
y==0

mutex==1
x==1
y==0

mutex==1
x==1
y==0

mutex==0
x==0
y==0

mutex==0

p !p!p p p p p
!q qq !q !q !q !q

is it always true that p implies !q ?

this is what
Spin does

properties of states

 27

reasoning about executions
• checking for every state that (p implies !q) is simple – it is a

system invariant that we can check with a monitor process:

• but now consider checking:
– every state where property p holds is followed by a state where

property !q holds (a temporal instead of a causal property)
– this does not work:

active proctype invariant() {
 do
 :: assert(!p || !q) /* p implies !q */
 od
}

active proctype invariant() /* first try */
{
 (p) -> /* after p holds */
accept:
 do
 :: (q) /* then forever q is bad */
 od
}

wrong

 28

why it does not work

active proctype invariant() {
 (p) ->
accept:
 do
 :: (q) /* first p and then forever q is bad */
 od
}

!q q q q q !q q q q
!p p !p !p !p !p !p !p !p

assume
process invariant
executes a step
only at these
interleaving points:

x x x x

we cannot assume anything

about the relative speed of

execution of any process...

(p)

(q)

consider this
execution

 29

the checker for a property of this type must
execute synchronously with the system

never {
 do
 :: true
 :: (p) -> break
 od;
accept:
 do
 :: (q) /* first p and then forever q is bad */
 od
}

!q q q q q !q q q q
!p p !p !p !p !p !p p !p

a never claim executes an

expression statement at every

step in an execution

(p)

(!q)

true

x xx x x x
true (p) (q) (q) (q) stop

never claims are intended
to observe system behavior
they should not contribute
to system behavior

the automaton can be
non-deterministic

the never claim tracks
behavior and can identify
the bad executions
(in this case with an
 accept label)

be prepared to wait
for p to become true
at any point
in the execution

 30

a different property
– question q is always eventually followed by answer a (assume q

and a are properties of states) BEFORE the next question is
asked...

– this requirement is violated by any execution where a q is not
followed by an a at all, AND by any execution where a q follows a q
without an a in between

q q qa

q
true

!a
q true

never {
do
:: true
:: q -> break
od;

accept0: do
:: !a
:: q -> break
od;

accept1: do
:: true
od

}

reaching the end
of a never claim is
an automatic error
we can (but need not)
make this explicit;
as is done here

 31

conventions

never {
do
:: true
:: q -> break
od;

accept0: do
:: !a
:: q -> break
od;

accept1: do
:: true
od

}

never {
do
:: true
:: q -> break
od;

accept0: do
:: !a
:: q -> break
od

}

reaching the closing curly brace of a
never claim means that the entire behavior
pattern that was expressed was matched, and
is always interpreted as an error
(it should never happen)

never claims are designed to ‘accept’
bad behavior – property violations

 32

the language intersection picture

Promela
Behavior
Specification

Never
Claim

Specification
(negation of properties:

capturing violations)

Fairness
Constraints

counter-
examples to
correctness
claims

 33

a longer temporal sequence

• there is no execution where first p becomes true,
then q, and then r

never {
 do
 :: p -> break
 :: else
 od;
 do
 :: q -> break
 :: else
 od;
 do
 :: r -> break
 :: else
 od
}

/* first try: */
never {
 p; q; r
}

incorrect
monitors only
the first 3
steps in any
execution....

correct version
applies to an execution
of any length

error

p == true

q == true

r == true

error

p == true

q == true

r == true

else

else

else

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29
	Pagina 30
	Pagina 31
	Pagina 32
	Pagina 33

