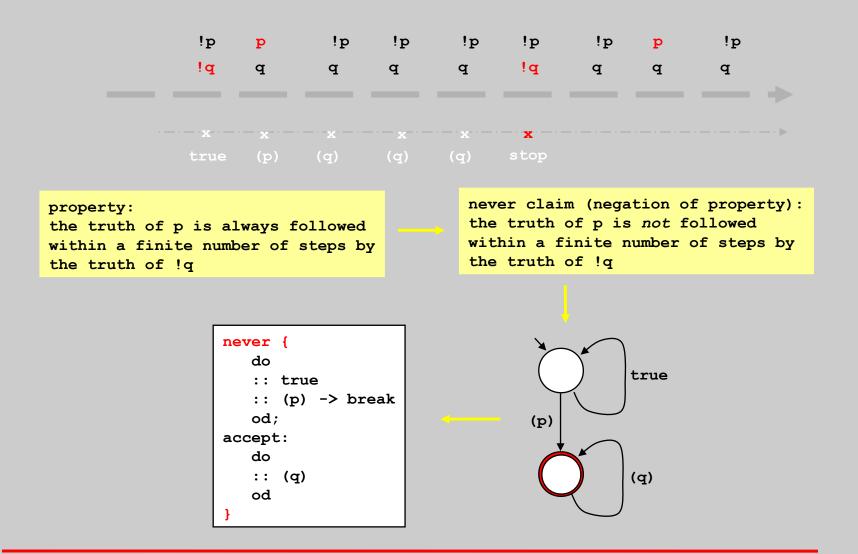
The SPIN Model Checker

Metodi di Verifica del Software

Andrea Corradini – GianLuigi Ferrari Lezione 5

Slides per gentile concessione di Gerard J. Holzmann

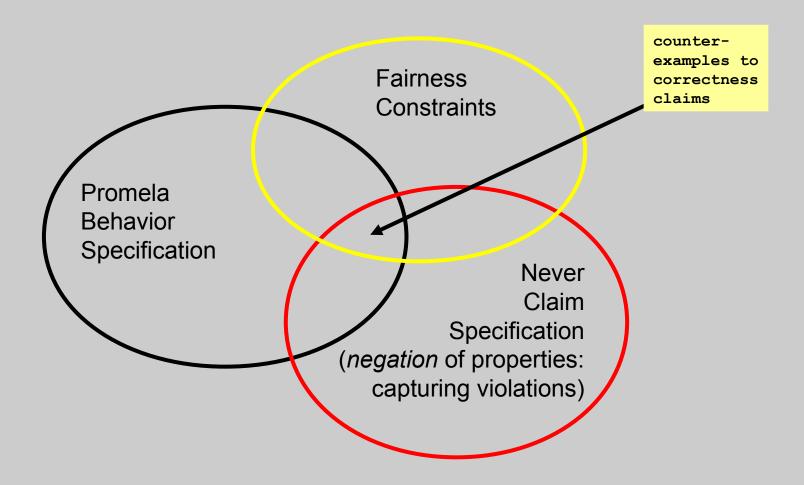
a never claim defines an *observer* process that executes synchronously with the system



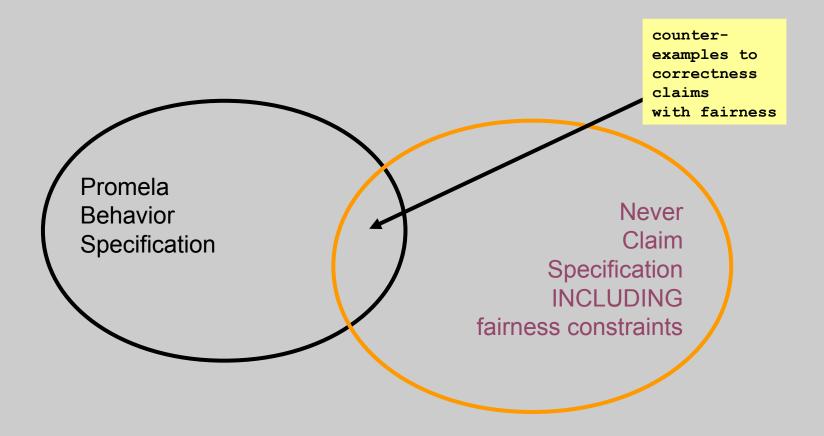
never claims

- can be either deterministic or non-deterministic
- should *only* contain side-effect free expression statements (corresponding to boolean propositions on system states)
- are used to define *invalid* execution sequences
 - a signature or pattern of invalid system behavior
- truncate (i.e. abort) when they block
 - a block means that the behavior expressed cannot be matched
 - the never claim process gives up trying to match the current execution sequence, backs up and tries to match another execution
 - pausing in the never claim must be represented explicitly with selfloops on true
- a never claim reports a violation when:
 - closing curly brace of never claim is reached
 - an acceptance cycle is closed
- non-progress can be expressed as a never claim, or as part of a never claim
 - a built-in option allows spin to generate a default never claim for checking non-progress properties, but this is optional

the language intersection picture

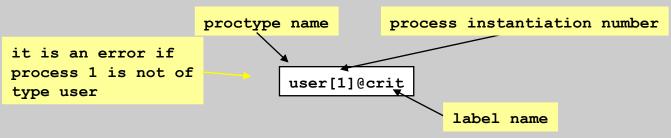


the language intersection picture



referencing process states from within never claims

- from within a never claim we can refer to the control-flow states of any active process
- the syntax of a "remote reference" is:
 - proctypename[pidnr]@labelname
- this expression is true *if and only if* the process with process instantiation number *pidnr* is currently at the control-flow point marked with *labelname* in *proctypename*



if there is only *one* process of type user, we can also omit the [pid] part and use a simpler form:

user@crit

referencing process states

an example

instead of a

```
proctype names
                                                       process instantiation numbers
                    never {
                       do
                       :: user[1]@crit && user[2]@crit -> break
                       :: else
                       od
                       /* reaching the end of a never claim is always
                    mtype = { p, v };
                    chan sem = [0] of { mtype };
                    active proctype semaphore()
using a state label,
                       do :: sem!p ; sem!v od
counter to check
mutual exclusion
                    active [2] proctype user() /
                    { assert( pid == 1 || pid == 2);
                       do
                       :: sem?p ->
                              /* critical section */
                    crit:
                          sem?v
                       od
```

a way to make sure we are using the right pid numbers in the claim

we do not need an accept label in the never claim in this case

Q1: why not?

label names

Q2: what if we added one anyway?

remote referencing expressions can only be used in never claims... (they are meant to monitor behavior not to define behavior)

checking when a process has terminated

```
active proctype runner()
{
   do
   :: ... ...
   :: else -> break
   od
}
```

```
make it visible
```

```
active proctype runner()
{
    do
    :: ... ...
    :: else -> break
    od;
L: (false)
}
```

```
the expression:
     (runner@L)
will be true if and only if the process
reaches label L
once the process reaches this label it can
never proceed beyond it
```

```
another method:
we can also try to use the predefined global variable
    __nr_pr
to count how many processes are running...
```

never claims

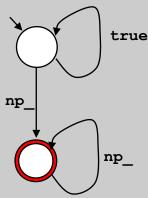
- can contain *all* control flow constructs
 - including if, do, unless, atomic, d_step, goto
- should contain *only* expression statements
 - so, q?[ack] or nfull(q) is okay, but not q?ack or q!ack
- the convention is to use accept-state labels *only* in never claims and progress and end-state labels *only* in the behavior model
- special precautions are needed if non-progress conditions are checked *in combination with* never claims
 - non-progress is normally encoded in Spin as a predefined never claim
 - you can use progress labels inside a never claim, but only if you also encode the non-progress cycle check within the claim....

the predefined non-progress cycle detector

- one of the predefined system variables in Promela (similar to 'timeout', 'else', and '_nr_pr') is np_
- np_ (non-progress state) is defined to be true if and only if none
 of the active processes is currently at a state that was marked
 with a progress label
- the predefined non-progress cycle detector is the following twostate never claim, accepting only non-progress cycles (following

any finite prefix)

```
never {
    do
    :: true
    :: np_ -> break
    od;
accept:
    do
    :: np_
    od
}
```



(non-)progress is a liveness property
captured with an accept state label inside
the never claim
non-progress cycles are therefore internally
captured as acceptance cycles

never claims can also be used to *restrict* a search for property violations to a smaller set of executions

- model checking is often an exercise in controlling computational complexity
- abstraction is the best (and morally right) way to address these problems, but not always easy
- suppose we have defined a model that is too detailed and therefore intractable / unverifiable
- we can select interesting behaviors from the system by using a never claim as a *filter*
- the model checker will not search executions where the expression statements in the claim cannot be matched...
- simple example:

```
never {
   do
   :: atomic { (p || q) -> assert(r)}
   od
}
```

restrict to behavior where either p or q remain true, and check assertion r at every step, but only in those executions

example of a constraint

```
never {
    do
    :: ( x + y < N )
    od
}</pre>
```

restrict the search to only
those executions where x+y < N holds;
place assertions or accept labels
elsewhere

```
never {
    do
    :: true
    :: np_ -> break
    od;
accept:
    do
    :: np_
    od
}
```

```
reminder:
if a never claim is present,
and we compile with -DNP,
the never claim is replaced with
the predefined non-progress claim.

if we want to check a progress
condition AND a constraint
simultaneously, we have to define
an explicit constrained NP automaton
```

```
never {
   do
   ::(x+y < N)
   :: np_ && (x+y < N) -> break
   od;
accept:
   do
   :: np_ && (x+y < N)
   od
}</pre>
```

scope and visibility

- a never claim in a Spin model is defined *globally*
- within a claim we can therefore refer to:
 - global variables
 - message channels (using poll statements)
 - process control-flow states (remote reference operations)
 - predefined global variables such as timeout, _nr_pr, np_
 - but not process local variables
- bummer: in a never claim we cannot refer to events, we can only reason about properties of states...
 - so the effect of an event has to be made visible in the state of the system to become visible in a never claim
 - there is another mechanism available, not yet discussed, that can be used to reason about a limited subset of events: trace assertions (which can be used to refer only to send/recv events...)

impossible and inevitar to generate counter-examples to can be violated... to generate counter-examples to

an assertion formalizes the claim

it is *impossible* for the given expression to evaluate to false when the assertion is reached

- an end-state label formalizes the claim
 - it is *impossible* for the system to terminate without all active processes having either terminated, or having stopped at a state that was marked with an end-state label
- a progress-state label formalizes the claim
 - it is *impossible* for the system to execute forever without passing through at least one of the states that was marked with a progress-state label infinitely often
- an accept-state label formalizes the claim
 - it is *impossible* for the system to execute forever while passing through at least one of the states that was marked with an acceptstate label infinitely often
- a never claim formalizes the claim
 - it is *impossible* for the system to exhibit the behavior (finite or infinite) that completely matches the behavior that is specified in the claim
- a trace assertion formalizes the claim
 - it is *impossible* for the system to exhibit behavior that does not completely match the pattern defined in the trace assertion

trace assertions

trace assertions can be used to reason about valid or invalid sequences of send and receive statements

```
mtype = { a, b };
chan p = [2] of { mtype };
chan q = [1] of { mtype };

trace {
   do
   :: p!a; q?b
   od
}
```

```
this assertion only claims something about how send operations on channel p relate to receive operations on channel q it claims that every send of a message a to p is followed by a receive of a message b from q a deviation from this pattern triggers an error
```

if at least one send (receive) operation on a channel q appears in the trace assertion, all send (receive) operations on that channel q must be covered by the assertion

```
only send and receive statements can appear in trace assertions

cannot use variables in trace assertions, only constants, mtypes or __

can use q?_ to specify an unconditional receive
```

notrace assertions

reverses the claim: a notrace assertion states that a particular access pattern is impossible

```
mtype = { a, b };
chan p = [2] of { mtype };
chan q = [1] of { mtype };

notrace {
   if
     :: p!a; q?b
     :: q?b; p!a
   fi
}
```

```
this notrace assertion claims that
there is no execution where the send of
a message a to channel p is followed by
the receive of a message b from q, or
vice versa: it claims that there must be
intervening sends or receives to break these
two patterns of access

a notrace assertion is fully matched (producing
and error report) when the closing curly brace
is reached
```

Spin's LTL syntax

Itl formula ::=

```
true, false any lower-case propositional symbol, e.g.: p, q, r, ... (f) round braces for grouping unary f unary operators f_1 binary f_2 binary operators
```

semantics

given a state sequence (from a run σ):

$$\mathbf{S}_0$$
, \mathbf{S}_1 , \mathbf{S}_2 , \mathbf{S}_3 ...

and a set of propositional symbols: p,q,... such that

$$\forall i, (i \geq 0)$$
 and $\forall p, s_i p \nmid is defined$

we can define the semantics of the temporal logic formulae:

[]f, <>f, Xf, and e U f

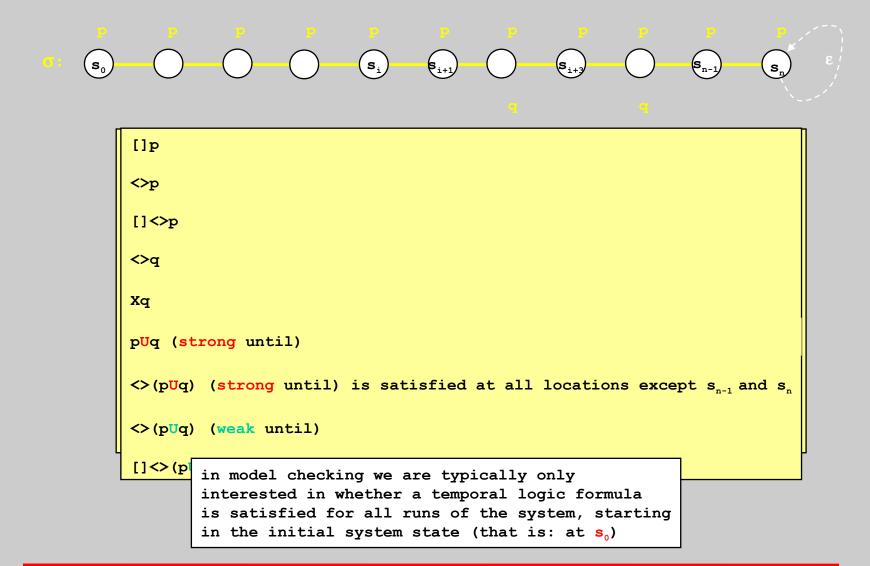
i.e., the property holds for the remainder of run σ , starting at position s_0

$$\sigma \models f$$
 iff $s_0 \models f$ $s_1 \models f$ $s_2 \models f$ $s_3 \models f$ $s_4 \models f$

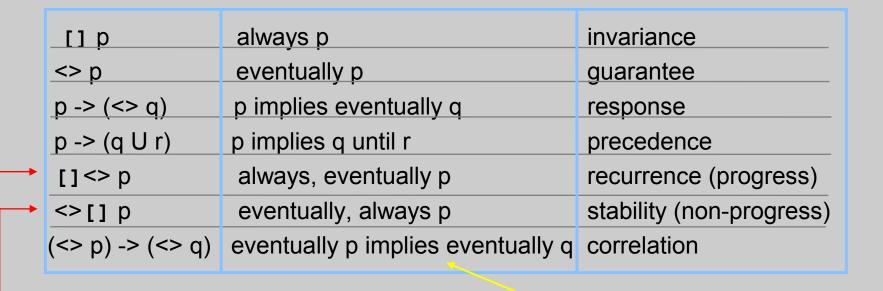
$$s_i \vdash \langle f \rangle$$
 iff $\exists j, (j >= i): s_j \vdash f$

$$s_i \models Xf$$
 iff $s_{i+1} \models f$

examples



some standard LTL formulae

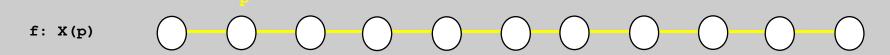


non-progress acceptance

dual types of properties

in every run where p
eventually becomes true
q also eventually becomes
true (though not necessarily
in that order)

the simplest operator: X



- the next operator X is part of LTL, but should be viewed with some suspicion
 - it makes a statement about what should be true in all possible immediately following states of a run
 - in distributed systems, this notion of 'next' is ambiguous
 - since it is unknown how statements are interleaved in time, it is unwise to build a proof that depends on specific scheduling decisions
 - the 'next' action could come from any one of a set of active processes – and could depend on relative speeds of execution
 - the only safe assumptions one can make in building correctness arguments about executions in distributed systems are those based on longer-term fairness

stutter invariant properties

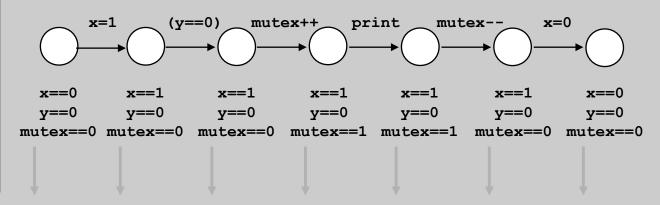
(cf. book p. 139)

- Let $\phi = V(\sigma, P)$ be a *valuation* of a run σ for a given set of propositional formulae P (a path in the Kripke structure)
 - a series of truth assignment to all propositional formulae in P, for each subsequent state that appears in σ
 - the truth of any temporal logic formula in P can be determined for a run when the valuation is given
 - we can write ϕ as a series of intervals: ϕ_1^{n1} , ϕ_2^{n2} , ϕ_3^{n3} , ... where the valuations are identical within each interval of length n1, n2, n3, ...
- Let $E(\phi)$ be the set of all valuations (for different runs) that differ from ϕ only in the values of n1, n2, n3, ... (i.e., in the length of the intervals)
 - E(φ) is called the stutter extension of φ

valuations

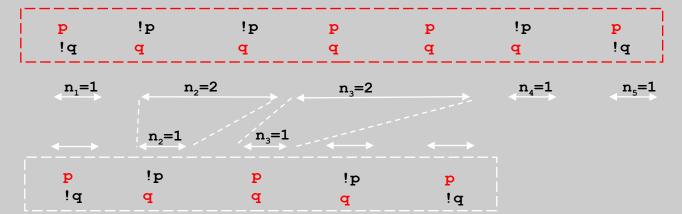
```
p: (x == mutex)
q: (x != y)
```

```
bit x, y;
byte mutex;
active proctype A() {
    x = 1;
    (y == 0) ->
    mutex++;
    printf("%d\n", _pid);
    mutex--;
    x = 0
}
```



a run σ and its valuation ϕ :

another run in the same set $E(\phi)$



stutter invariant properties

(cf. book p. 139)

a stutter invariant property is either true for all members of $E(\phi)$ or for none of them:

 $\forall \sigma \models f \land \phi = V(\sigma,P) \rightarrow \forall v \in E(\phi), v \models f$

- the truth of a stutter invariant \property does not depend on 'how long' (for how many steps) a valuation lasts, just on the order in which propositional formulae change value
- we can take advantage of stutter-invariance in the model checking algorithms to *optimize* them (using partial order reduction theory)...
- theorem: X-free temporal logic formulae are stutter invariant
 - temporal logic formula that do contain X can also be stutterinvariant, but this isn't guaranteed and can be hard to show
 - the morale: avoid the next operator in correctness arguments

example: [](p -> X (<>q))
is a stutter-invariant LTL formula
that contains a X operator

from logic to automata

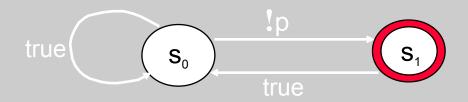
(cf. book p. 141)

- for any LTL formula f there exists a Büchi automaton that accepts precisely those runs for which the formula f is satisfied
- example: the formula <>[]p corresponds to the nondeterministic Büchi automaton:

from logic to automata

it is easy to turn an LTL correctness *requirement* into a Promela *never claim*: negate the LTL formula, and generate the claim from the negated form:

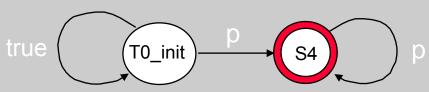
$$! <> []p = []![]p = [] <>!p$$

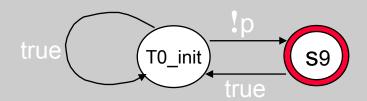


!p !p !p

the automaton only accepts a run if p keeps returning to false infinitely often i.e., securing that in the run considered p does not remain true invariantly, ever

using Spin to do the negations and the conversions





syntax rules

```
$ spin -f '([] p -> <> (a+b <= c))'
```

```
#define q (a+b \leq c)
```

```
$ spin -f `[] (p -> <> q)' 
         /* [] (p -> <> q) */
never {
TO init:
        if
        :: (((! ((p))) || ((q)))) -> goto accept S20
        :: (1) -> goto T0 S27
        fi;
accept S20:
        :: (((! ((p))) || ((q)))) -> goto T0 init
        :: (1) -> goto T0 S27
        fi;
accept S27:
        :: ((q)) -> goto T0 init
        :: (1) -> goto T0 S27
        fi;
T0 S27:
        if
        :: ((q)) -> goto accept S20
        :: (1) -> goto T0 S27
        :: ((q)) -> goto accept S27
        fi;
```

define lower-case propositional symbols for all arithmetic and boolean subformulae

beware of operator precedence rules...

there is *no* minimization algorithm for non-deterministic Büchi automata. sometimes alternative converters can produce smaller automata:

automata theoretic verification

language of the model: L(model) language of the property: L(prop)

prove that: $L(model) \subseteq L(prop)$

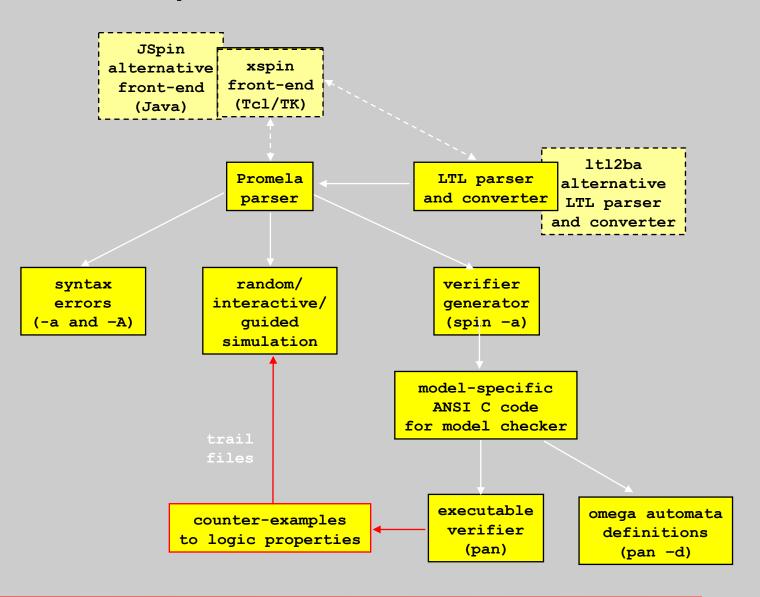
by showing that: $L(\text{model}) \cap (L^{\omega} \setminus L(\text{prop})) = \emptyset$

which means: $L(model) \cap L(\neg prop) = \emptyset$

Spin checks if the intersection of an asynchronous product of process behaviors (the global model automaton) with a property automaton (generated from a negated LTL formula) is empty (i.e., accepts *no* runs).

All accepting runs of the resulting ω -automaton correspond to *violations* of the original (non-negated) property.

spin structure



formulating LTL properties

(book p. 148)

```
int x = 100;
active proctype A()
{
    do
    :: x%2 -> x = 3*x + 1
    od
}
active proctype B()
{
    do
    :: !(x%2) -> x = x/2
    od
}
```

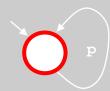
Q1: is the value of x bounded?

```
$ spin -f '[] (x > 0 && x <= 100)'

tl_spin: expected ')', saw '>'
tl_spin: [] (x > 0 && x <= 100)
-----
$
```

#define p (x > 0 && x <= 100)

```
$ spin -f `[]p'
never {    /* [] p */
accept_init:
    T0_init:
        if
        :: p -> goto T0_init
        fi
}
```



Q2: there is another mistake here, what is it?

never claims are capture *error behavior* negative, not positive properties

we forgot to negate the positive property into a claim

#define p (x > 0 && x <= 100) \$ spin -f '![]p' never { /* ![] p */ T0_init: if :: (!(p)) -> goto accept_all :: (1) -> goto T0_init fi; accept_all: skip } if property ![]p cannot be satisfied this means that property []p cannot be violated (there is no counter-example)

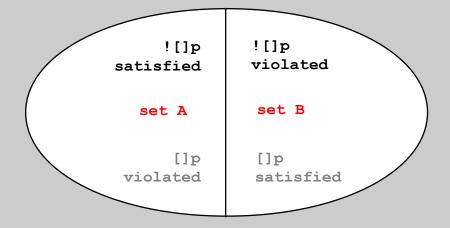
negations

there are runs in set B there are no runs in set A

if property ![]p cannot be satisfied
 this means that
 property []p cannot be violated

but if property ![]p can be violated this does not mean that therefore property []p cannot be violated

all runs are in
set B
there are no runs
in set A



classification of all runs each run either satisfies a property or it violates it

another property

```
int x = 100;
active proctype A()
{
    do
    :: x%2 -> x = 3*x + 1
    od
}
active proctype B()
{
    do
    :: !(x%2) -> x = x/2
    od
}
```

```
Q: is this formula satisfied?
    []<>p
with
#define p (x == 1)
```

even in simple cases like this it can be very hard to determine the answer by eye-balling the program/model

```
to check if []<>p is always satisfied,
prove that the negation can never be
satisfied:
   !([]<>p)
   <>!(<>p)
   <>[![]!p
```