
Principles for software composition 2022/23
05 - HOFL

[Ex. 1] Determine the type of the HOFL term

t
def
= rec x. ((λy. if y then 0 else 0) x).

Then compute its (lazy) canonical form.

[Ex. 2] Determine the type of the HOFL term

map
def
= λf. λx. ((f fst(x)), (f snd(x)))

Then, compute the (lazy) canonical forms of the terms

t1
def
= map (λz. 2× z) (1, 2) t2

def
= fst (map (λz. 2× z) (1, 2))

[Ex. 3] Let (D,⊑D) be a CPO and f : D → D be a continuous function.
Prove that the set of fixpoints of f is itself a CPO (ordered by ⊑D).

[Ex. 4] (Test for convergence) We would like to modify the denotational
semantics of HOFL assigning to the construct

if t then t0 else t1

• the semantics of t1 if the semantics of t is ⊥Z⊥ , and

• the semantics of t0 otherwise.

Is it possible? If not, why?

[Ex. 5] (Strict conditional) Modify the operational semantics of HOFL by
taking the following rules for conditionals:

t → 0 t0 → c0 t1 → c1
if t then t0 else t1 → c0

t → n n ̸= 0 t0 → c0 t1 → c1
if t then t0 else t1 → c1

.

Without changing the denotational semantics, prove that:

1. for any term t and canonical form c, we have t → c ⇒ ∀ρ. JtK ρ = JcK ρ;

2. in general t⇓ ̸⇒ t↓ (exhibit a counterexample).

[Ex. 6] Determine the type of the HOFL term

t
def
= rec f. (λx.1 , fst(f) 0)

Then, compute the (lazy) denotational semantics of t.

