
http://didawiki.di.unipi.it/doku.php/
magistraleinformatica/psc/

Principles for Software Composition

PSC 2020/21 (375AA, 9CFU)

http://www.di.unipi.it/~bruni/
Roberto Bruni

09 - Denotational semantics of commands

http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/
http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/
http://www.di.unipi.it/~bruni/

Lambda notation

2

33

Lambda notation
Key ingredients

anonymous functions

application

�x. e

<latexit sha1_base64="Q7RmXqQIgU0oUJgm5vaCq7y5i+I=">AAAB/nicbVC7TsNAEDyHVwivACXNiQiJyrJREJQRNJRBIg8ptqL1ZRNOOT90t0ZEURBfQQsVHaLlVyj4F+yQAhKmGs3MancnSJQ05DifVmFpeWV1rbhe2tjc2t4p7+41TZxqgQ0Rq1i3AzCoZIQNkqSwnWiEMFDYCoaXud+6Q21kHN3QKEE/hEEk+1IAZZLnqSzaA35vP2C3XHFsZwq+SNwZqbAZ6t3yl9eLRRpiREKBMR3XScgfgyYpFE5KXmowATGEAXYyGkGIxh9Pb57wo9QAxTxBzaXiUxF/T4whNGYUBlkyBLo1814u/ud1Uuqf+2MZJSlhJPJFJBVOFxmhZVYG8p7USAT55chlxAVoIEItOQiRiWnWTinrw53/fpE0T2y3ap9eVyu1i1kzRXbADtkxc9kZq7ErVmcNJljCntgze7EerVfrzXr/iRas2cw++wPr4xtY6JXl</latexit>

denotes a function that waits for one value to be
substituted for and then evaluates

serves as a formal parameter inx

<latexit sha1_base64="NWVbpeiBMqV2moEafHd6Lo5ebdQ=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrJREJQRNJSJREKkxIrOl0045Xy27vYQkZUvoIWKDtHyQRT8C7ZxAQlTjWZ2tbMTxFIYdN1Pp7Syura+Ud6sbG3v7O5V9w+6JrKaQ4dHMtK9gBmQQkEHBUroxRpYGEi4C6bXmX/3ANqISN3iLAY/ZBMlxoIzTKX247Bac+tuDrpMvILUSIHWsPo1GEXchqCQS2ZM33Nj9BOmUXAJ88rAGogZn7IJ9FOqWAjGT/Kgc3piDcOIxqCpkDQX4fdGwkJjZmGQToYM782il4n/eX2L40s/ESq2CIpnh1BIyA8ZrkXaANCR0IDIsuRAhaKcaYYIWlDGeSratJJK2oe3+P0y6Z7VvUb9vN2oNa+KZsrkiByTU+KRC9IkN6RFOoQTIE/kmbw41nl13pz3n9GSU+wckj9wPr4BiSGRiQ==</latexit>

e

<latexit sha1_base64="B1htBkQUejbPtsItSS5hdebO2Js=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrJREJQRNJSJRB5SYkXnyyaccj5bd3tIkZUvoIWKDtHyQRT8C7ZxAQlTjWZ2tbMTxFIYdN1Pp7S2vrG5Vd6u7Ozu7R9UD4+6JrKaQ4dHMtL9gBmQQkEHBUroxxpYGEjoBbPbzO89gjYiUvc4j8EP2VSJieAMU6kNo2rNrbs56CrxClIjBVqj6tdwHHEbgkIumTEDz43RT5hGwSUsKkNrIGZ8xqYwSKliIRg/yYMu6Jk1DCMag6ZC0lyE3xsJC42Zh0E6GTJ8MMteJv7nDSxOrv1EqNgiKJ4dQiEhP2S4FmkDQMdCAyLLkgMVinKmGSJoQRnnqWjTSippH97y96uke1H3GvXLdqPWvCmaKZMTckrOiUeuSJPckRbpEE6APJFn8uJY59V5c95/RktOsXNM/sD5+AZrhJF2</latexit>

x

<latexit sha1_base64="NWVbpeiBMqV2moEafHd6Lo5ebdQ=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrJREJQRNJSJREKkxIrOl0045Xy27vYQkZUvoIWKDtHyQRT8C7ZxAQlTjWZ2tbMTxFIYdN1Pp7Syura+Ud6sbG3v7O5V9w+6JrKaQ4dHMtK9gBmQQkEHBUroxRpYGEi4C6bXmX/3ANqISN3iLAY/ZBMlxoIzTKX247Bac+tuDrpMvILUSIHWsPo1GEXchqCQS2ZM33Nj9BOmUXAJ88rAGogZn7IJ9FOqWAjGT/Kgc3piDcOIxqCpkDQX4fdGwkJjZmGQToYM782il4n/eX2L40s/ESq2CIpnh1BIyA8ZrkXaANCR0IDIsuRAhaKcaYYIWlDGeSratJJK2oe3+P0y6Z7VvUb9vN2oNa+KZsrkiByTU+KRC9IkN6RFOoQTIE/kmbw41nl13pz3n9GSU+wckj9wPr4BiSGRiQ==</latexit>

e

<latexit sha1_base64="B1htBkQUejbPtsItSS5hdebO2Js=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrJREJQRNJSJRB5SYkXnyyaccj5bd3tIkZUvoIWKDtHyQRT8C7ZxAQlTjWZ2tbMTxFIYdN1Pp7S2vrG5Vd6u7Ozu7R9UD4+6JrKaQ4dHMtL9gBmQQkEHBUroxxpYGEjoBbPbzO89gjYiUvc4j8EP2VSJieAMU6kNo2rNrbs56CrxClIjBVqj6tdwHHEbgkIumTEDz43RT5hGwSUsKkNrIGZ8xqYwSKliIRg/yYMu6Jk1DCMag6ZC0lyE3xsJC42Zh0E6GTJ8MMteJv7nDSxOrv1EqNgiKJ4dQiEhP2S4FmkDQMdCAyLLkgMVinKmGSJoQRnnqWjTSippH97y96uke1H3GvXLdqPWvCmaKZMTckrOiUeuSJPckRbpEE6APJFn8uJY59V5c95/RktOsXNM/sD5+AZrhJF2</latexit>

e1 e2

<latexit sha1_base64="7V660RFk9/md0IdpzHMm7INFz90=">AAAB+XicbVC7TsNAEFzzDOEVoKQ5ESFRRXYUBGUEDWWQyENKLOt82YRTzg/drZEiK/wDLVR0iJavoeBfcIwLSJhqNLOrnR0/VtKQbX9aK6tr6xubpa3y9s7u3n7l4LBjokQLbItIRbrnc4NKhtgmSQp7sUYe+Aq7/uR67ncfUBsZhXc0jdEN+DiUIyk4ZVIXPecRvbpXqdo1OwdbJk5BqlCg5VW+BsNIJAGGJBQ3pu/YMbkp1ySFwll5kBiMuZjwMfYzGvIAjZvmcWfsNDGcIhajZlKxXMTfGykPjJkGfjYZcLo3i95c/M/rJzS6dFMZxglhKOaHSCrMDxmhZdYDsqHUSMTnyZHJkAmuORFqybgQmZhkxZSzPpzF75dJp15zGrXz20a1eVU0U4JjOIEzcOACmnADLWiDgAk8wTO8WKn1ar1Z7z+jK1axcwR/YH18A3VUk7Y=</latexit>

e2

<latexit sha1_base64="3dFZt5g9ypIHJU3kgGuq/XRWu08=">AAAB9XicbVC7TsNAEFyHVwivACXNiQiJKrKjICgjaCiDIA8piaLzZRNOOT90twZFVj6BFio6RMv3UPAv2MYFJEw1mtnVzo4bKmnItj+twsrq2vpGcbO0tb2zu1feP2ibINICWyJQge663KCSPrZIksJuqJF7rsKOO71K/c4DaiMD/45mIQ48PvHlWApOiXSLw9qwXLGrdga2TJycVCBHc1j+6o8CEXnok1DcmJ5jhzSIuSYpFM5L/chgyMWUT7CXUJ97aAZxFnXOTiLDKWAhaiYVy0T8vRFzz5iZ5yaTHqd7s+il4n9eL6LxxSCWfhgR+iI9RFJhdsgILZMOkI2kRiKeJkcmfSa45kSoJeNCJGKUlFJK+nAWv18m7VrVqVfPbuqVxmXeTBGO4BhOwYFzaMA1NKEFAibwBM/wYj1ar9ab9f4zWrDynUP4A+vjG5ibkhs=</latexit>

e1

<latexit sha1_base64="eiJzLAuZ+OI/dT+9Wx2UO1ZWoeo=">AAAB9XicbVC7TsNAEFyHVwivACXNiQiJKrIRCMoIGsogyENKrOh82YRTzg/drUGRlU+ghYoO0fI9FPwLtnEBCVONZna1s+NFShqy7U+rtLS8srpWXq9sbG5t71R399omjLXAlghVqLseN6hkgC2SpLAbaeS+p7DjTa4yv/OA2sgwuKNphK7Px4EcScEplW5x4AyqNbtu52CLxClIDQo0B9Wv/jAUsY8BCcWN6Tl2RG7CNUmhcFbpxwYjLiZ8jL2UBtxH4yZ51Bk7ig2nkEWomVQsF/H3RsJ9Y6a+l076nO7NvJeJ/3m9mEYXbiKDKCYMRHaIpML8kBFaph0gG0qNRDxLjkwGTHDNiVBLxoVIxTgtpZL24cx/v0jaJ3XntH52c1prXBbNlOEADuEYHDiHBlxDE1ogYAxP8Awv1qP1ar1Z7z+jJavY2Yc/sD6+AZcMkho=</latexit>

is the argument passed to the function

denotes the application of the function toe1

<latexit sha1_base64="eiJzLAuZ+OI/dT+9Wx2UO1ZWoeo=">AAAB9XicbVC7TsNAEFyHVwivACXNiQiJKrIRCMoIGsogyENKrOh82YRTzg/drUGRlU+ghYoO0fI9FPwLtnEBCVONZna1s+NFShqy7U+rtLS8srpWXq9sbG5t71R399omjLXAlghVqLseN6hkgC2SpLAbaeS+p7DjTa4yv/OA2sgwuKNphK7Px4EcScEplW5x4AyqNbtu52CLxClIDQo0B9Wv/jAUsY8BCcWN6Tl2RG7CNUmhcFbpxwYjLiZ8jL2UBtxH4yZ51Bk7ig2nkEWomVQsF/H3RsJ9Y6a+l076nO7NvJeJ/3m9mEYXbiKDKCYMRHaIpML8kBFaph0gG0qNRDxLjkwGTHDNiVBLxoVIxTgtpZL24cx/v0jaJ3XntH52c1prXBbNlOEADuEYHDiHBlxDE1ogYAxP8Awv1qP1ar1Z7z+jJavY2Yc/sD6+AZcMkho=</latexit>

e2

<latexit sha1_base64="3dFZt5g9ypIHJU3kgGuq/XRWu08=">AAAB9XicbVC7TsNAEFyHVwivACXNiQiJKrKjICgjaCiDIA8piaLzZRNOOT90twZFVj6BFio6RMv3UPAv2MYFJEw1mtnVzo4bKmnItj+twsrq2vpGcbO0tb2zu1feP2ibINICWyJQge663KCSPrZIksJuqJF7rsKOO71K/c4DaiMD/45mIQ48PvHlWApOiXSLw9qwXLGrdga2TJycVCBHc1j+6o8CEXnok1DcmJ5jhzSIuSYpFM5L/chgyMWUT7CXUJ97aAZxFnXOTiLDKWAhaiYVy0T8vRFzz5iZ5yaTHqd7s+il4n9eL6LxxSCWfhgR+iI9RFJhdsgILZMOkI2kRiKeJkcmfSa45kSoJeNCJGKUlFJK+nAWv18m7VrVqVfPbuqVxmXeTBGO4BhOwYFzaMA1NKEFAibwBM/wYj1ar9ab9f4zWrDynUP4A+vjG5ibkhs=</latexit>

reduces the need of parentheses e1(e2)

<latexit sha1_base64="lUbH5dsSbN0t6J4y4nLIZcPSk0E=">AAAB+nicbVC7TsNAEDzzDOEVoKQ5ESGFJrKjICgjaCiDRB5SYlnnyyaccj5bd2ukyOQnaKGiQ7T8DAX/gm1cQMJUo5ld7ez4kRQGbfvTWlldW9/YLG2Vt3d29/YrB4ddE8aaQ4eHMtR9nxmQQkEHBUroRxpY4Evo+dPrzO89gDYiVHc4i8AN2ESJseAMU6kPnlMDr3HmVap23c5Bl4lTkCop0PYqX8NRyOMAFHLJjBk4doRuwjQKLmFeHsYGIsanbAKDlCoWgHGTPO+cnsaGYUgj0FRImovweyNhgTGzwE8nA4b3ZtHLxP+8QYzjSzcRKooRFM8OoZCQHzJci7QIoCOhAZFlyYEKRTnTDBG0oIzzVIzTZsppH87i98uk26g7zfr5bbPauiqaKZFjckJqxCEXpEVuSJt0CCeSPJFn8mI9Wq/Wm/X+M7piFTtH5A+sj29VPZOT</latexit>

44

Function definition
f(x) , x2 � 2 · x+ 5

<latexit sha1_base64="KZWiC8B80ustPH4vGodnlVqtqDk=">AAACFnicbVA9TwJBEN3zE/Hr1NJmIzHRGMkdgWhJtLHERNAEkMwtA27c2zt35wyE0PsT/BW2WtkZW1sL/4sHUvj1qpf3ZjLzXhAracnz3p2p6ZnZufnMQnZxaXll1V1br9koMQKrIlKRuQjAopIaqyRJ4UVsEMJA4XlwfTzyz2/RWBnpM+rH2Ayhq2VHCqBUarlbnZ3eLm+QkaC7Cm9477LA93mhIdoR8R7f46WWm/Py3hj8L/EnJMcmqLTcj0Y7EkmImoQCa+u+F1NzAIakUDjMNhKLMYhr6GI9pRpCtM3BOMuQbycWKOIxGi4VH4v4fWMAobX9MEgnQ6Ar+9sbif959YQ6h82B1HFCqMXoEEmF40NWGJmWhLwtDRLB6HPkUnMBBojQSA5CpGKStpZN+/B/p/9LaoW8X8yXTou58tGkmQzbZFtsh/nsgJXZCauwKhPsjj2wR/bk3DvPzovz+jU65Ux2NtgPOG+fGVWdAw==</latexit>

f , �x. (x2 � 2 · x+ 5)

<latexit sha1_base64="b6A81UIeKu5wPtpJuWGB7/mrjx4=">AAACIHicbVDLThtBEJx1eJqXkxy5tLCQQIC1a4GSI4JLjiDhh+Q1Vu+4bUbMzi4zvZGRBR/BJ/AVXJMTN5RjkPgX1sYHXnUqVXWpuytKtXLs+/+9wpep6ZnZufniwuLS8krp67e6SzIrqSYTndhmhI60MlRjxZqaqSWMI02N6Pxw5Dd+k3UqMSd8mVI7xr5RPSWRc6lT2u5ByFah6Wu6gFDnyS7CoHK9MTitwg5UQ9lNGAawBXubnVLZr/hjwEcSTEhZTHDUKT2F3URmMRmWGp1rBX7K7SFaVlLTVTHMHKUoz7FPrZwajMm1h+OvrmA9c8gJpGRBaRiL9DoxxNi5yzjKJ2PkM/feG4mfea2Mez/bQ2XSjMnI0SJWmsaLnLQqr4ugqywx4+hyAmVAokVmsgpQylzM8v6KeR/B++8/knq1EuxW9o53y/sHk2bmxKpYExsiED/EvvgljkRNSHEj7sQf8de79e69B+/fy2jBm2S+izfwHp8Bowag8A==</latexit>

unnecessary parentheses
added for clarity

55

Associative rules
e1 e2 e3

<latexit sha1_base64="jnLWkETG7o5LPFRCT+Tl69K4zaY=">AAAB/XicbVBNS8NAEN34WetX1aOXxSJ4Kkmt6LHoxWMF+wFtCJvttC7dbMLuRCih+iu86smbePW3ePC/mMQctPXBwOO9GWbm+ZEUBm3701paXlldWy9tlDe3tnd2K3v7HRPGmkObhzLUPZ8ZkEJBGwVK6EUaWOBL6PqTq8zv3oM2IlS3OI3ADdhYiZHgDFOpD57zAF49rVOvUrVrdg66SJyCVEmBllf5GgxDHgegkEtmTN+xI3QTplFwCbPyIDYQMT5hY+inVLEAjJvkJ8/ocWwYhjQCTYWkuQi/JxIWGDMN/LQzYHhn5r1M/M/rxzi6cBOhohhB8WwRCgn5IsO1SLMAOhQaEFl2OVChKGeaIYIWlHGeinEaTjnNw5n/fpF06jWnUTu7aVSbl0UyJXJIjsgJccg5aZJr0iJtwklInsgzebEerVfrzXr/aV2yipkD8gfWxzdbG5VT</latexit>

(e1 e2) e3

<latexit sha1_base64="wASKGlMKvXvI4zTGJIyAhUz9YAY=">AAAB/3icbVC7TsNAEDyHVwivACXNiQgpNJEdgqCMoKEMEnlIiWWdL5twyvnB3RopsoLEV9BCRYdo+RQK/gXbuICEKVajmV3t7rihFBpN89MoLC2vrK4V10sbm1vbO+XdvY4OIsWhzQMZqJ7LNEjhQxsFSuiFCpjnSui6k8vU796D0iLwb3Aagu2xsS9GgjNMJLsKjvUATv04KSdOuWLWzAx0kVg5qZAcLaf8NRgGPPLARy6Z1n3LDNGOmULBJcxKg0hDyPiEjaGfUJ95oO04O3pGjyLNMKAhKCokzUT4PREzT+up5yadHsNbPe+l4n9eP8LRuR0LP4wQfJ4uQiEhW6S5EkkaQIdCASJLLwcqfMqZYoigBGWcJ2KUxFNK8rDmv18knXrNatROrxuV5kWeTJEckENSJRY5I01yRVqkTTi5I0/kmbwYj8ar8Wa8/7QWjHxmn/yB8fENKF6VuA==</latexit>

is read application is
left-associative

�x. �y. �z. e

<latexit sha1_base64="Ed7mUk/uuAV8UPVIqixVlbg8CLM=">AAACGHicbVC7TsNAEDyHVwgvAyXNiYBEZdkoCMoIGsogEYiURNH6ssAp54fu1ogQwQfwCXwFLVR0iJaOgn/hEhyJ11SjmVnt7oSpkoZ8/90pTExOTc8UZ0tz8wuLS+7yyolJMi2wLhKV6EYIBpWMsU6SFDZSjRCFCk/D3sHQP71EbWQSH1M/xXYE57E8kwLISh13o6VsuAv8yrvlY973bsf02srYccu+54/A/5IgJ2WWo9ZxP1rdRGQRxiQUGNMM/JTaA9AkhcKbUiszmILowTk2LY0hQtMejL654ZuZAUp4ippLxUcifp8YQGRMPwptMgK6ML+9ofif18zobK89kHGaEcZiuIikwtEiI7S0NSHvSo1EMLwcuYy5AA1EqCUHIayY2d5Kto/g9/d/ycm2F1S8naNKubqfN1Nka2ydbbGA7bIqO2Q1VmeC3bEH9sienHvn2XlxXr+iBSefWWU/4Lx9AvxXn0s=</latexit>

�x. (�y. (�z. e))

<latexit sha1_base64="GQZ7KHW4FgZquL4Xobs8Q4I32Cg=">AAACHHicbVDLSgNBEJyN7/iKevQyGITksuxKRI9BLx4VjApJCL2TThwy+2CmV4xBP8FP8Cu86smbeBU8+C/OxiCaWKeaqmp6uoJESUOe9+HkpqZnZufmF/KLS8srq4W19TMTp1pgTcQq1hcBGFQywhpJUniRaIQwUHge9A4z//wKtZFxdEr9BJshdCPZkQLISq1CqaFsuA382r3jP4++e/fDb6yB5XKrUPRcbwg+SfwRKbIRjluFz0Y7FmmIEQkFxtR9L6HmADRJofA230gNJiB60MW6pRGEaJqD4UW3fDs1QDFPUHOp+FDE3xMDCI3ph4FNhkCXZtzLxP+8ekqd/eZARklKGIlsEUmFw0VGaGmrQt6WGokg+zlyGXEBGohQSw5CWDG13eVtH/749ZPkbMf1K+7uSaVYPRg1M8822RYrMZ/tsSo7YsesxgS7Z4/siT07D86L8+q8fUdzzmhmg/2B8/4FuqKgFQ==</latexit>

is read abstraction is
right-associative

66

Scoping
�x. e

<latexit sha1_base64="K3rQhhxGVPFqw4ckujPp0hWG8aA=">AAAB/3icbVC7TsNAEDyHVwivACXNiQiJKrJREJQRNJRBIg8psaL1ZRNOOT+4WyMiKwVfQQsVHaLlUyj4FxzjAhKmGs3ManfHi5Q0ZNufVmFpeWV1rbhe2tjc2t4p7+61TBhrgU0RqlB3PDCoZIBNkqSwE2kE31PY9saXM799j9rIMLihSYSuD6NADqUASiW3p9LoAPhDtcexX67YVTsDXyROTiosR6Nf/uoNQhH7GJBQYEzXsSNyE9AkhcJpqRcbjECMYYTdlAbgo3GT7OgpP4oNUMgj1Fwqnon4eyIB35iJ76VJH+jWzHsz8T+vG9Pw3E1kEMWEgZgtIqkwW2SElmkbyAdSIxHMLkcuAy5AAxFqyUGIVIzTekppH87894ukdVJ1atXT61qlfpE3U2QH7JAdM4edsTq7Yg3WZILdsSf2zF6sR+vVerPef6IFK5/ZZ39gfXwDfqyV7Q==</latexit>

the scope of isx

<latexit sha1_base64="NWVbpeiBMqV2moEafHd6Lo5ebdQ=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrJREJQRNJSJREKkxIrOl0045Xy27vYQkZUvoIWKDtHyQRT8C7ZxAQlTjWZ2tbMTxFIYdN1Pp7Syura+Ud6sbG3v7O5V9w+6JrKaQ4dHMtK9gBmQQkEHBUroxRpYGEi4C6bXmX/3ANqISN3iLAY/ZBMlxoIzTKX247Bac+tuDrpMvILUSIHWsPo1GEXchqCQS2ZM33Nj9BOmUXAJ88rAGogZn7IJ9FOqWAjGT/Kgc3piDcOIxqCpkDQX4fdGwkJjZmGQToYM782il4n/eX2L40s/ESq2CIpnh1BIyA8ZrkXaANCR0IDIsuRAhaKcaYYIWlDGeSratJJK2oe3+P0y6Z7VvUb9vN2oNa+KZsrkiByTU+KRC9IkN6RFOoQTIE/kmbw41nl13pz3n9GSU+wckj9wPr4BiSGRiQ==</latexit>

e

<latexit sha1_base64="B1htBkQUejbPtsItSS5hdebO2Js=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrJREJQRNJSJRB5SYkXnyyaccj5bd3tIkZUvoIWKDtHyQRT8C7ZxAQlTjWZ2tbMTxFIYdN1Pp7S2vrG5Vd6u7Ozu7R9UD4+6JrKaQ4dHMtL9gBmQQkEHBUroxxpYGEjoBbPbzO89gjYiUvc4j8EP2VSJieAMU6kNo2rNrbs56CrxClIjBVqj6tdwHHEbgkIumTEDz43RT5hGwSUsKkNrIGZ8xqYwSKliIRg/yYMu6Jk1DCMag6ZC0lyE3xsJC42Zh0E6GTJ8MMteJv7nDSxOrv1EqNgiKJ4dQiEhP2S4FmkDQMdCAyLLkgMVinKmGSJoQRnnqWjTSippH97y96uke1H3GvXLdqPWvCmaKZMTckrOiUeuSJPckRbpEE6APJFn8uJY59V5c95/RktOsXNM/sD5+AZrhJF2</latexit>

not visible outsidex

<latexit sha1_base64="NWVbpeiBMqV2moEafHd6Lo5ebdQ=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrJREJQRNJSJREKkxIrOl0045Xy27vYQkZUvoIWKDtHyQRT8C7ZxAQlTjWZ2tbMTxFIYdN1Pp7Syura+Ud6sbG3v7O5V9w+6JrKaQ4dHMtK9gBmQQkEHBUroxRpYGEi4C6bXmX/3ANqISN3iLAY/ZBMlxoIzTKX247Bac+tuDrpMvILUSIHWsPo1GEXchqCQS2ZM33Nj9BOmUXAJ88rAGogZn7IJ9FOqWAjGT/Kgc3piDcOIxqCpkDQX4fdGwkJjZmGQToYM782il4n/eX2L40s/ESq2CIpnh1BIyA8ZrkXaANCR0IDIsuRAhaKcaYYIWlDGeSratJJK2oe3+P0y6Z7VvUb9vN2oNa+KZsrkiByTU+KRC9IkN6RFOoQTIE/kmbw41nl13pz3n9GSU+wckj9wPr4BiSGRiQ==</latexit>

e

<latexit sha1_base64="B1htBkQUejbPtsItSS5hdebO2Js=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrJREJQRNJSJRB5SYkXnyyaccj5bd3tIkZUvoIWKDtHyQRT8C7ZxAQlTjWZ2tbMTxFIYdN1Pp7S2vrG5Vd6u7Ozu7R9UD4+6JrKaQ4dHMtL9gBmQQkEHBUroxxpYGEjoBbPbzO89gjYiUvc4j8EP2VSJieAMU6kNo2rNrbs56CrxClIjBVqj6tdwHHEbgkIumTEDz43RT5hGwSUsKkNrIGZ8xqYwSKliIRg/yYMu6Jk1DCMag6ZC0lyE3xsJC42Zh0E6GTJ8MMteJv7nDSxOrv1EqNgiKJ4dQiEhP2S4FmkDQMdCAyLLkgMVinKmGSJoQRnnqWjTSippH97y96uke1H3GvXLdqPWvCmaKZMTckrOiUeuSJPckRbpEE6APJFn8uJY59V5c95/RktOsXNM/sD5+AZrhJF2</latexit>

like a local variable

77

Alpha-conversion
�x. (x2 � 2 · x+ 5)

<latexit sha1_base64="NGEAtJGUdQcszYljvvdleH4JM+0=">AAACD3icbVDLSgNBEJz1bXytesxlMAiKuOwGRY+iF48RjAayMfROOnFw9sFMrySECH6CX+FVT97Eq5/gwX9xs+ag0ToVVdV0dwWJkoZc98OamJyanpmdmy8sLC4tr9iraxcmTrXAqohVrGsBGFQywipJUlhLNEIYKLwMbk6G/uUtaiPj6Jx6CTZC6ESyLQVQJjXtoq+ycAt417nb6l6Vd8u+aMXEuzv720275DpuDv6XeCNSYiNUmvan34pFGmJEQoExdc9NqNEHTVIoHBT81GAC4gY6WM9oBCGaRj9/YsA3UwMU8wQ1l4rnIv6c6ENoTC8MsmQIdG3GvaH4n1dPqX3Y6MsoSQkjMVxEUmG+yAgts3aQt6RGIhhejlxGXIAGItSSgxCZmGZ1FbI+vPHv/5KLsuPtOftne6Wj41Ezc6zINtgW89gBO2KnrMKqTLB79sie2LP1YL1Yr9bbd3TCGs2ss1+w3r8AGrGa/Q==</latexit>

�y. (y2 � 2 · y + 5)

<latexit sha1_base64="R94EgfA+UbqZGM5QTCJAcMLEGhk=">AAACD3icbVDLSgNBEJyNrxhfqx69DAZBEcNuSNBj0ItHBZMISQy9k1aHzD6Y6RWWEMFP8Cu86smbePUTPPgvbtY9+KpTUVVNd5cXKWnIcd6twtT0zOxccb60sLi0vGKvrrVMGGuBTRGqUJ97YFDJAJskSeF5pBF8T2HbGx5N/PYNaiPD4IySCHs+XAXyUgqgVOrbG12VhgfAk8rtdnJR3at2xSAknuzWd/p22ak4Gfhf4uakzHKc9O2P7iAUsY8BCQXGdFwnot4INEmhcFzqxgYjEEO4wk5KA/DR9EbZE2O+FRugkEeouVQ8E/H7xAh8YxLfS5M+0LX57U3E/7xOTJcHvZEMopgwEJNFJBVmi4zQMm0H+UBqJILJ5chlwAVoIEItOQiRinFaVyntw/39/V/SqlbcWqV+Wis3DvNmimyDbbJt5rJ91mDH7IQ1mWB37IE9sifr3nq2XqzXr2jBymfW2Q9Yb58fgZsA</latexit>

names of formal parameters
are inessential:
the two expressions denote
the same function

�x. e ⌘ �y. (e[y/x])

<latexit sha1_base64="8NEjhAaXA4HSr4biyUrOCA6OEEg=">AAACHXicbVDLSgNBEJyN7/iKevQyGAS9rLsS0WPQi0cF84BkDb2TThwy+3CmNyQE/QU/wa/wqidv4lU8+C9uYgSN1qmoqqa7y4+VNOQ471Zmanpmdm5+Ibu4tLyymltbL5so0QJLIlKRrvpgUMkQSyRJYTXWCIGvsOJ3ToZ+pYvayCi8oH6MXgDtULakAEqlRm63rtJwE3jPvkVex+tEdrPfWt++3cHaZX+v0fN2G7m8Yzsj8L/EHZM8G+OskfuoNyORBBiSUGBMzXVi8gagSQqFN9l6YjAG0YE21lIaQoDGG4xeuuHbiQGKeIyaS8VHIv6cGEBgTD/w02QAdGUmvaH4n1dLqHXkDWQYJ4ShGC4iqXC0yAgt066QN6VGIhhejlyGXIAGItSSgxCpmKTlZdM+3Mnv/5Lyvu0W7IPzQr54PG5mnm2yLbbDXHbIiuyUnbESE+yOPbBH9mTdW8/Wi/X6Fc1Y45kN9gvW2yepUKE1</latexit>

(under suitable conditions on)e, y

<latexit sha1_base64="jsywmOH3DDKBlJP9UhMlrKC2HXc=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJAkU2CoIygoYyCPKQkihaXzbhlPNDd2tQZOUTaKGiQ7R8DwX/gm1cQMJUo5ld7ey4oZKGbPvTKiwtr6yuFddLG5tb2zvl3b2WCSItsCkCFeiOCwaV9LFJkhR2Qo3guQrb7uQq9dsPqI0M/Duahtj3YOzLkRRAiXSLJ9NBuWJX7Qx8kTg5qbAcjUH5qzcMROShT0KBMV3HDqkfgyYpFM5KvchgCGICY+wm1AcPTT/Oos74UWSAAh6i5lLxTMTfGzF4xkw9N5n0gO7NvJeK/3ndiEYX/Vj6YUToi/QQSYXZISO0TDpAPpQaiSBNjlz6XIAGItSSgxCJGCWllJI+nPnvF0nrtOrUqmc3tUr9Mm+myA7YITtmDjtndXbNGqzJBBuzJ/bMXqxH69V6s95/RgtWvrPP/sD6+Aa3lJIv</latexit>

capture-avoiding
substitution
(to be formalised later)

88

Application (beta rule)

(�x. e) e0

<latexit sha1_base64="CNVxb58TMoZs5xwPImvl1jjND1M=">AAACB3icbVC7TgJBFJ3FF+JrldJmIjHBhuwajJZEG0tM5JEAIXeHC06YfWTmrpEQ6P0KW63sjK2fYeG/uOAWCp7q5Jxzc+89XqSkIcf5tDIrq2vrG9nN3Nb2zu6evX9QN2GsBdZEqELd9MCgkgHWSJLCZqQRfE9hwxtezfzGPWojw+CWRhF2fBgEsi8FUCJ17XyxrZJ0D/hDaYonU45dp2sXnJIzB18mbkoKLEW1a3+1e6GIfQxIKDCm5ToRdcagSQqFk1w7NhiBGMIAWwkNwEfTGc+Pn/Dj2ACFPELNpeJzEX9PjME3ZuR7SdIHujOL3kz8z2vF1L/ojGUQxYSBmC0iqXC+yAgtk1aQ96RGIphdjlwGXIAGItSSgxCJGCc15ZI+3MXvl0n9tOSWS2c35ULlMm0myw7ZESsyl52zCrtmVVZjgo3YE3tmL9aj9Wq9We8/0YyVzuTZH1gf3+hGmD8=</latexit>

application of a function

evaluation via substitutione[e0/x]

<latexit sha1_base64="L3Lb/maSW/yg+OOv2GNDs3Lzv2w=">AAAB/nicbVC7TsNAEDzzDOEVoKQ5ESFRBRsFQRlBQxkk8pAcY50vm3DK2T7drRGRFYmvoIWKDtHyKxT8C45xAQlTjWZ2tbMTKCkM2vantbC4tLyyWlorr29sbm1XdnbbJk40hxaPZay7ATMgRQQtFCihqzSwMJDQCUaXU79zD9qIOLrBsQIvZMNIDARnmEk9cG9T8O3Jsf/g+ZWqXbNz0HniFKRKCjT9ylevH/MkhAi5ZMa4jq3QS5lGwSVMyr3EgGJ8xIbgZjRiIRgvzTNP6GFiGMZUgaZC0lyE3xspC40Zh0E2GTK8M7PeVPzPcxMcnHupiFSCEPHpIRQS8kOGa5GVAbQvNCCyaXKgIqKcaYYIWlDGeSYmWTvlrA9n9vt50j6pOfXa6XW92rgomimRfXJAjohDzkiDXJEmaRFOFHkiz+TFerRerTfr/Wd0wSp29sgfWB/fY9aV7A==</latexit>

capture-avoiding
substitution

⌘

<latexit sha1_base64="Ygll3yr7aqwHtytIhQZwDoOcdUo=">AAAB+HicbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeURNH5sglHzmdztxcpWPkHWqjoEC1/Q8G/YBsXkDDVaGZXOzt+JIVB1/10CkvLK6trxfXSxubW9k55d69pQqs5NHgoQ932mQEpFDRQoIR2pIEFvoSWP75K/dYEtBGhusVpBL2AjZQYCs4wkZpdeLBi0i9X3KqbgS4SLycVkqPeL391ByG3ASjkkhnT8dwIezHTKLiEWalrDUSMj9kIOglVLADTi7O0M3pkDcOQRqCpkDQT4fdGzAJjpoGfTAYM78y8l4r/eR2Lw4teLFRkERRPD6GQkB0yXIukBqADoQGRpcmBCkU50wwRtKCM80S0SS+lpA9v/vtF0jypeqfVs5vTSu0yb6ZIDsghOSYeOSc1ck3qpEE4uSdP5Jm8OI/Oq/PmvP+MFpx8Z5/8gfPxDXv0k8k=</latexit>

99

Example
�x. (x2 � 2 · x+ 5)

<latexit sha1_base64="NGEAtJGUdQcszYljvvdleH4JM+0=">AAACD3icbVDLSgNBEJz1bXytesxlMAiKuOwGRY+iF48RjAayMfROOnFw9sFMrySECH6CX+FVT97Eq5/gwX9xs+ag0ToVVdV0dwWJkoZc98OamJyanpmdmy8sLC4tr9iraxcmTrXAqohVrGsBGFQywipJUlhLNEIYKLwMbk6G/uUtaiPj6Jx6CTZC6ESyLQVQJjXtoq+ycAt417nb6l6Vd8u+aMXEuzv720275DpuDv6XeCNSYiNUmvan34pFGmJEQoExdc9NqNEHTVIoHBT81GAC4gY6WM9oBCGaRj9/YsA3UwMU8wQ1l4rnIv6c6ENoTC8MsmQIdG3GvaH4n1dPqX3Y6MsoSQkjMVxEUmG+yAgts3aQt6RGIhhejlxGXIAGItSSgxCZmGZ1FbI+vPHv/5KLsuPtOftne6Wj41Ezc6zINtgW89gBO2KnrMKqTLB79sie2LP1YL1Yr9bbd3TCGs2ss1+w3r8AGrGa/Q==</latexit>

(�x. (x2 � 2 · x+ 5)) 2

<latexit sha1_base64="Il86/VkGdLZ1Hvql/nbfLW3TcPA=">AAACE3icbVDLTgJBEJzFF+IL9ejBicQEYiS7RKJHohePmMgjASS9Q4MTZx+Z6TUQAjc/wa/wqidvxqsf4MF/cUEOvupUqapOd5cbKmnItt+txNz8wuJScjm1srq2vpHe3KqaINICKyJQga67YFBJHyskSWE91Aieq7Dm3pxN/NotaiMD/5IGIbY86PmyKwVQLLXTu9mmitMd4P38ONu/KhwWmqITEO8fFHO5caGdzth5ewr+lzgzkmEzlNvpj2YnEJGHPgkFxjQcO6TWEDRJoXCUakYGQxA30MNGTH3w0LSG00dGfD8yQAEPUXOp+FTE7xND8IwZeG6c9ICuzW9vIv7nNSLqnrSG0g8jQl9MFpFUOF1khJZxQ8g7UiMRTC5HLn0uQAMRaslBiFiM4spScR/O7+//kmoh7xzlixdHmdLprJkk22F7LMscdsxK7JyVWYUJdsce2CN7su6tZ+vFev2KJqzZzDb7AevtE2AXnCY=</latexit>

a function

its application

22 � 2 · 2 + 5

<latexit sha1_base64="u10wiBwhGYtftAbcUejMyZV4UmY=">AAACAHicbVC7TsNAEDyHVwivACXNiQgJCRHZViIoI2gog0QeUuJE58smnHJ+6G6NFFlp+ApaqOgQLX9Cwb9gGxeQMNVoZlc7O24ohUbT/DQKK6tr6xvFzdLW9s7uXnn/oK2DSHFo8UAGqusyDVL40EKBErqhAua5Ejru9Dr1Ow+gtAj8O5yF4Hhs4oux4AwTaWAP7HO7z0cBUvusPixXzKqZgS4TKycVkqM5LH/1RwGPPPCRS6Z1zzJDdGKmUHAJ81I/0hAyPmUT6CXUZx5oJ85Sz+lJpBkGNARFhaSZCL83YuZpPfPcZNJjeK8XvVT8z+tFOL50YuGHEYLP00MoJGSHNFciqQPoSChAZGlyoMKnnCmGCEpQxnkiRkk/paQPa/H7ZdK2q1atWr+tVRpXeTNFckSOySmxyAVpkBvSJC3CiSJP5Jm8GI/Gq/FmvP+MFox855D8gfHxDcfrlWw=</latexit>

its evaluation= 5

<latexit sha1_base64="ryTvqMt9wL3PP/9oVq1O0G4gCoU=">AAAB9HicbVC7TsNAEFyHVwivACXNiQiJKrJRImiQImgoAyIPKbGi82UTTjk/dLeOFEX5A1qo6BAt/0PBv2AbFxCYajSzq50dL1LSkG1/WIWV1bX1jeJmaWt7Z3evvH/QNmGsBbZEqELd9bhBJQNskSSF3Ugj9z2FHW9ynfqdKWojw+CeZhG6Ph8HciQFp0S6u6wPyhW7amdgf4mTkwrkaA7Kn/1hKGIfAxKKG9Nz7IjcOdckhcJFqR8bjLiY8DH2EhpwH407z5Iu2ElsOIUsQs2kYpmIPzfm3Ddm5nvJpM/pwSx7qfif14tpdOHOZRDFhIFID5FUmB0yQsukAmRDqZGIp8mRyYAJrjkRasm4EIkYJ52Ukj6c5e//kvZZ1alV67e1SuMqb6YIR3AMp+DAOTTgBprQAgEjeIQneLam1ov1ar19jxasfOcQfsF6/wKk85GN</latexit>

⌘

<latexit sha1_base64="Ygll3yr7aqwHtytIhQZwDoOcdUo=">AAAB+HicbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeURNH5sglHzmdztxcpWPkHWqjoEC1/Q8G/YBsXkDDVaGZXOzt+JIVB1/10CkvLK6trxfXSxubW9k55d69pQqs5NHgoQ932mQEpFDRQoIR2pIEFvoSWP75K/dYEtBGhusVpBL2AjZQYCs4wkZpdeLBi0i9X3KqbgS4SLycVkqPeL391ByG3ASjkkhnT8dwIezHTKLiEWalrDUSMj9kIOglVLADTi7O0M3pkDcOQRqCpkDQT4fdGzAJjpoGfTAYM78y8l4r/eR2Lw4teLFRkERRPD6GQkB0yXIukBqADoQGRpcmBCkU50wwRtKCM80S0SS+lpA9v/vtF0jypeqfVs5vTSu0yb6ZIDsghOSYeOSc1ck3qpEE4uSdP5Jm8OI/Oq/PmvP+MFpx8Z5/8gfPxDXv0k8k=</latexit>

1010

Example
a function

its application

its evaluation

�x. �y. (x2 � 2 · y + 5)

<latexit sha1_base64="rtrwgGG2h87AbtjU6GUvPBTtxjw=">AAACGnicbVDLSgNBEJyN7/ha9ehlMCiKuOwGgx5FLx4jmERIYuiddOLg7IOZXkkI+gV+gl/hVU/exKsXD/6LmxhBE+tUVFXT3eXHShpy3Q8rMzE5NT0zO5edX1hcWrZXVssmSrTAkohUpC98MKhkiCWSpPAi1giBr7DiX5/0/coNaiOj8Jy6MdYDaIeyJQVQKjXsrZpKw03gHefuh3adu+3OZX4vXxPNiHh3t7DTsHOu4w7Ax4k3JDk2RLFhf9aakUgCDEkoMKbquTHVe6BJCoW32VpiMAZxDW2spjSEAE29N/jnlm8mBijiMWouFR+I+HuiB4Ex3cBPkwHQlRn1+uJ/XjWh1mG9J8M4IQxFfxFJhYNFRmiZFoW8KTUSQf9y5DLkAjQQoZYchEjFJG0um/bhjX4/Tsp5x9t3Cmf7uaPjYTOzbJ1tsG3msQN2xE5ZkZWYYPfskT2xZ+vBerFerbfvaMYazqyxP7DevwB2859u</latexit>

(�x. �y. (x2 � 2 · y + 5)) 2

<latexit sha1_base64="u0H7YUfFSOZPAcW+hbxe9GonyV0=">AAACHnicbVDLSgNBEJz1GeMr6tHLYBCi4rIbDHoMevEYwTwgiaF30tHB2QczvZIQkm/wE/wKr3ryJl714L+4iRF81amoqqa7y4uUNOQ4b9bU9Mzs3HxqIb24tLyymllbr5gw1gLLIlShrnlgUMkAyyRJYS3SCL6nsOpdn4z86g1qI8PgnHoRNn24DGRHCqBEamV2cw2VpNvAu/bwi/bsYa57kd/PN0Q7JN7bK+zsDPOtTNaxnTH4X+JOSJZNUGpl3hvtUMQ+BiQUGFN3nYiafdAkhcJBuhEbjEBcwyXWExqAj6bZH/804NuxAQp5hJpLxccifp/og29Mz/eSpA90ZX57I/E/rx5T56jZl0EUEwZitIikwvEiI7RMykLelhqJYHQ5chlwARqIUEsOQiRinLSXTvpwf3//l1TytntgF84OssXjSTMptsm2WI657JAV2SkrsTIT7Jbdswf2aN1ZT9az9fIZnbImMxvsB6zXD8pyoJc=</latexit>

�y. (22 � 2 · y + 5)

<latexit sha1_base64="F7u91orMV1AtLaBBMn/ZeKgnfw8=">AAACD3icbVDLTgJBEJzFF+IL9chlIjHBGMkugeiR6MUjJvJIAEnv0OCE2Udmek0IwcRP8Cu86smb8eonePBfXJCDgnWqVFWnu8sNlTRk259WYml5ZXUtuZ7a2Nza3knv7tVMEGmBVRGoQDdcMKikj1WSpLARagTPVVh3BxcTv36H2sjAv6ZhiG0P+r7sSQEUS510pqXicBf4MH+fK9wUTgot0Q2ID49LR5101s7bU/BF4sxIls1Q6aS/Wt1ARB76JBQY03TskNoj0CSFwnGqFRkMQQygj82Y+uChaY+mT4z5YWSAAh6i5lLxqYi/J0bgGTP03DjpAd2aeW8i/uc1I+qdtUfSDyNCX0wWkVQ4XWSElnE7yLtSIxFMLkcufS5AAxFqyUGIWIziulJxH87894ukVsg7xXzpqpgtn8+aSbIMO2A55rBTVmaXrMKqTLAH9sSe2Yv1aL1ab9b7TzRhzWb22R9YH9+s55q5</latexit>

⌘

<latexit sha1_base64="Ygll3yr7aqwHtytIhQZwDoOcdUo=">AAAB+HicbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeURNH5sglHzmdztxcpWPkHWqjoEC1/Q8G/YBsXkDDVaGZXOzt+JIVB1/10CkvLK6trxfXSxubW9k55d69pQqs5NHgoQ932mQEpFDRQoIR2pIEFvoSWP75K/dYEtBGhusVpBL2AjZQYCs4wkZpdeLBi0i9X3KqbgS4SLycVkqPeL391ByG3ASjkkhnT8dwIezHTKLiEWalrDUSMj9kIOglVLADTi7O0M3pkDcOQRqCpkDQT4fdGzAJjpoGfTAYM78y8l4r/eR2Lw4teLFRkERRPD6GQkB0yXIukBqADoQGRpcmBCkU50wwRtKCM80S0SS+lpA9v/vtF0jypeqfVs5vTSu0yb6ZIDsghOSYeOSc1ck3qpEE4uSdP5Jm8OI/Oq/PmvP+MFpx8Z5/8gfPxDXv0k8k=</latexit>

it is still a function!

1111

Example
a function

its application

its evaluation

�f. �x. (x2 + f 1)

<latexit sha1_base64="eEnyTfcPmXxCR4AmCIhdZ3YUZh4=">AAACFXicbVA9SwNBEN2LXzF+RS1tVoOgCMddiGgZtLFUMCokMcxtJrpk74PdOYkcpvUn+CtstbITW2sL/4t3MYImvurx3htm5nmRkoYc58PKTUxOTc/kZwtz8wuLS8XllTMTxlpgTYQq1BceGFQywBpJUngRaQTfU3judQ8z//wGtZFhcEq3ETZ9uApkRwqgVGoV1xsqDbeBd+z+D+3Z/a3eZZnv8E7f3W4VS47tDMDHiTskJTbEcav42WiHIvYxIKHAmLrrRNRMQJMUCu8KjdhgBKILV1hPaQA+mmYyeOWOb8YGKOQRai4VH4j4eyIB35hb30uTPtC1GfUy8T+vHlNnv5nIIIoJA5EtIqlwsMgILdOOkLelRiLILkcuAy5AAxFqyUGIVIzT0gppH+7o9+PkrGy7FXv3pFKqHgybybM1tsG2mMv2WJUdsWNWY4Lds0f2xJ6tB+vFerXevqM5azizyv7Aev8CdfGdSw==</latexit>

(�f. �x. (x2 + f 1)) (�y. (2 · y))

<latexit sha1_base64="+lgC4O1TH/PlhqFI9ndkfqmCnDU=">AAACMXicbVDLSgNBEJz1GddX1KOXwSAkCMtuiOhFCHrxqGBUSGLonXR0cPbBTK8YgvkZP8Gv8KonD4J49SecxCi+6lRUVdPdFaZKGvL9J2dsfGJyajo3487OzS8s5peWj02SaYE1kahEn4ZgUMkYayRJ4WmqEaJQ4Ul4uTfwT65QG5nER9RNsRnBeSw7UgBZqZXfKTaUTbeBd7z+J732+sXrszLf4J1+UCq5ffcr1bVWuSHaCfFuqdTKF3zPH4L/JcGIFNgIB638c6OdiCzCmIQCY+qBn1KzB5qkUHjjNjKDKYhLOMe6pTFEaJq94Zs3fD0zQAlPUXOp+FDE7xM9iIzpRqFNRkAX5rc3EP/z6hl1tps9GacZYSwGi0gqHC4yQkvbH/K21EgEg8uRy5gL0ECEWnIQwoqZLdS1fQS/v/9LjsteUPE2DyuF6u6omRxbZWusyAK2xapsnx2wGhPslt2zB/bo3DlPzovz+hEdc0YzK+wHnLd3IwWmuw==</latexit>

�x. (x2 + (�y. (2 · y)) 1)

<latexit sha1_base64="6SeWb62FgZueW/GGEOkkj0I6ysU=">AAACI3icbVDLTgJBEJz1ifhCPXqZSEwgJrhLMHokevGIiTwSQNI7tDpx9pGZXgMh8Bd+gl/hVU/ejBcP/Iu7iImKdapUVae7yw2VNGTbH9bc/MLi0nJqJb26tr6xmdnarpkg0gKrIlCBbrhgUEkfqyRJYSPUCJ6rsO7enSV+/R61kYF/Sf0Q2x7c+PJaCqBY6mQOWyoOd4H3CqNc76rID3juW+rHUrElugHxfj4/cvLpUbqTydoFewI+S5wpybIpKp3MuNUNROShT0KBMU3HDqk9AE1SKBymW5HBEMQd3GAzpj54aNqDyWNDvh8ZoICHqLlUfCLiz4kBeMb0PTdOekC35q+XiP95zYiuT9oD6YcRoS+SRSQVThYZoWXcGPKu1EgEyeXIpc8FaCBCLTkIEYtRXGHSh/P3+1lSKxacUuHoopQtn06bSbFdtsdyzGHHrMzOWYVVmWAP7Ik9sxfr0Xq13qz3r+icNZ3ZYb9gjT8B6IqhiQ==</latexit>

higher-order: functions as arguments/results

⌘

<latexit sha1_base64="Ygll3yr7aqwHtytIhQZwDoOcdUo=">AAAB+HicbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeURNH5sglHzmdztxcpWPkHWqjoEC1/Q8G/YBsXkDDVaGZXOzt+JIVB1/10CkvLK6trxfXSxubW9k55d69pQqs5NHgoQ932mQEpFDRQoIR2pIEFvoSWP75K/dYEtBGhusVpBL2AjZQYCs4wkZpdeLBi0i9X3KqbgS4SLycVkqPeL391ByG3ASjkkhnT8dwIezHTKLiEWalrDUSMj9kIOglVLADTi7O0M3pkDcOQRqCpkDQT4fdGzAJjpoGfTAYM78y8l4r/eR2Lw4teLFRkERRPD6GQkB0yXIukBqADoQGRpcmBCkU50wwRtKCM80S0SS+lpA9v/vtF0jypeqfVs5vTSu0yb6ZIDsghOSYeOSc1ck3qpEE4uSdP5Jm8OI/Oq/PmvP+MFpx8Z5/8gfPxDXv0k8k=</latexit>

(the argument is a function!)

1212

Example
a function

its application

its evaluation

�f. �x. (x2 + f 1)

<latexit sha1_base64="eEnyTfcPmXxCR4AmCIhdZ3YUZh4=">AAACFXicbVA9SwNBEN2LXzF+RS1tVoOgCMddiGgZtLFUMCokMcxtJrpk74PdOYkcpvUn+CtstbITW2sL/4t3MYImvurx3htm5nmRkoYc58PKTUxOTc/kZwtz8wuLS8XllTMTxlpgTYQq1BceGFQywBpJUngRaQTfU3judQ8z//wGtZFhcEq3ETZ9uApkRwqgVGoV1xsqDbeBd+z+D+3Z/a3eZZnv8E7f3W4VS47tDMDHiTskJTbEcav42WiHIvYxIKHAmLrrRNRMQJMUCu8KjdhgBKILV1hPaQA+mmYyeOWOb8YGKOQRai4VH4j4eyIB35hb30uTPtC1GfUy8T+vHlNnv5nIIIoJA5EtIqlwsMgILdOOkLelRiLILkcuAy5AAxFqyUGIVIzT0gppH+7o9+PkrGy7FXv3pFKqHgybybM1tsG2mMv2WJUdsWNWY4Lds0f2xJ6tB+vFerXevqM5azizyv7Aev8CdfGdSw==</latexit>

(�f. �x. (x2 + f 1)) (�y. (2 · y))

<latexit sha1_base64="+lgC4O1TH/PlhqFI9ndkfqmCnDU=">AAACMXicbVDLSgNBEJz1GddX1KOXwSAkCMtuiOhFCHrxqGBUSGLonXR0cPbBTK8YgvkZP8Gv8KonD4J49SecxCi+6lRUVdPdFaZKGvL9J2dsfGJyajo3487OzS8s5peWj02SaYE1kahEn4ZgUMkYayRJ4WmqEaJQ4Ul4uTfwT65QG5nER9RNsRnBeSw7UgBZqZXfKTaUTbeBd7z+J732+sXrszLf4J1+UCq5ffcr1bVWuSHaCfFuqdTKF3zPH4L/JcGIFNgIB638c6OdiCzCmIQCY+qBn1KzB5qkUHjjNjKDKYhLOMe6pTFEaJq94Zs3fD0zQAlPUXOp+FDE7xM9iIzpRqFNRkAX5rc3EP/z6hl1tps9GacZYSwGi0gqHC4yQkvbH/K21EgEg8uRy5gL0ECEWnIQwoqZLdS1fQS/v/9LjsteUPE2DyuF6u6omRxbZWusyAK2xapsnx2wGhPslt2zB/bo3DlPzovz+hEdc0YzK+wHnLd3IwWmuw==</latexit>

�x. (x2 + (�y. (2 · y)) 1)

<latexit sha1_base64="6SeWb62FgZueW/GGEOkkj0I6ysU=">AAACI3icbVDLTgJBEJz1ifhCPXqZSEwgJrhLMHokevGIiTwSQNI7tDpx9pGZXgMh8Bd+gl/hVU/ejBcP/Iu7iImKdapUVae7yw2VNGTbH9bc/MLi0nJqJb26tr6xmdnarpkg0gKrIlCBbrhgUEkfqyRJYSPUCJ6rsO7enSV+/R61kYF/Sf0Q2x7c+PJaCqBY6mQOWyoOd4H3CqNc76rID3juW+rHUrElugHxfj4/cvLpUbqTydoFewI+S5wpybIpKp3MuNUNROShT0KBMU3HDqk9AE1SKBymW5HBEMQd3GAzpj54aNqDyWNDvh8ZoICHqLlUfCLiz4kBeMb0PTdOekC35q+XiP95zYiuT9oD6YcRoS+SRSQVThYZoWXcGPKu1EgEyeXIpc8FaCBCLTkIEYtRXGHSh/P3+1lSKxacUuHoopQtn06bSbFdtsdyzGHHrMzOWYVVmWAP7Ik9sxfr0Xq13qz3r+icNZ3ZYb9gjT8B6IqhiQ==</latexit>

3

<latexit sha1_base64="EmpGcePd6828sx5iPG265+SCh/w=">AAAB83icbVC7TsNAEDzzDOEVoKQ5ESFRRTYEQRlBQ5lI5CElVnS+bMIp57N1t4cUWfkCWqjoEC0fRMG/YBsXkDDVaGZXOztBLIVB1/10VlbX1jc2S1vl7Z3dvf3KwWHHRFZzaPNIRroXMANSKGijQAm9WAMLAwndYHqb+d1H0EZE6h5nMfghmygxFpxhKrUuhpWqW3Nz0GXiFaRKCjSHla/BKOI2BIVcMmP6nhujnzCNgkuYlwfWQMz4lE2gn1LFQjB+kged01NrGEY0Bk2FpLkIvzcSFhozC4N0MmT4YBa9TPzP61scX/uJULFFUDw7hEJCfshwLdIGgI6EBkSWJQcqFOVMM0TQgjLOU9GmlZTTPrzF75dJ57zm1WuXrXq1cVM0UyLH5IScEY9ckQa5I03SJpwAeSLP5MWxzqvz5rz/jK44xc4R+QPn4xsdlpFE</latexit>

3

<latexit sha1_base64="EmpGcePd6828sx5iPG265+SCh/w=">AAAB83icbVC7TsNAEDzzDOEVoKQ5ESFRRTYEQRlBQ5lI5CElVnS+bMIp57N1t4cUWfkCWqjoEC0fRMG/YBsXkDDVaGZXOztBLIVB1/10VlbX1jc2S1vl7Z3dvf3KwWHHRFZzaPNIRroXMANSKGijQAm9WAMLAwndYHqb+d1H0EZE6h5nMfghmygxFpxhKrUuhpWqW3Nz0GXiFaRKCjSHla/BKOI2BIVcMmP6nhujnzCNgkuYlwfWQMz4lE2gn1LFQjB+kged01NrGEY0Bk2FpLkIvzcSFhozC4N0MmT4YBa9TPzP61scX/uJULFFUDw7hEJCfshwLdIGgI6EBkSWJQcqFOVMM0TQgjLOU9GmlZTTPrzF75dJ57zm1WuXrXq1cVM0UyLH5IScEY9ckQa5I03SJpwAeSLP5MWxzqvz5rz/jK44xc4R+QPn4xsdlpFE</latexit>

its application

32 + (�y. (2 · y)) 1

<latexit sha1_base64="+gcd9cqoUFxofOYGte89hDDBmR4=">AAACE3icbVDLTgJBEJzFF+IL9ejBicQEYkJ2EaNHohePmMgjASS9Q4MTZh+Z6TUhBG5+gl/hVU/ejFc/wIP/4oIcFK1Tpaor3V1uqKQh2/6wEguLS8srydXU2vrG5lZ6e6dqgkgLrIhABbrugkElfayQJIX1UCN4rsKa27+Y+LU71EYG/jUNQmx50PNlVwqgWGqn949vCvyIZ5sqznSAD/LjbKEpOgHxQS43dtrpjJ23p+B/iTMjGTZDuZ3+bHYCEXnok1BgTMOxQ2oNQZMUCkepZmQwBNGHHjZi6oOHpjWcPjLih5EBCniImkvFpyL+TAzBM2bgufGkB3Rr5r2J+J/XiKh71hpKP4wIfTFZRFLhdJERWsYNIe9IjUQwuRy59LkADUSoJQchYjGKK0vFfTjz3/8l1ULeKeZProqZ0vmsmSTbYwcsyxx2ykrskpVZhQl2zx7ZE3u2HqwX69V6+x5NWLPMLvsF6/0LraqbwA==</latexit>

its evaluation
its application

32 + 2 · 1 = 11

<latexit sha1_base64="wWN70W3yFXkQx5PUiTqAY1oAL48=">AAACB3icbVDLSsNAFJ3UV62vaJduBosgCCWpFd0IRTcuK9gHtLFMprd16OTBzI1QQj/Ar3CrK3fi1s9w4b+YxCy09awO59zLPfe4oRQaLevTKCwtr6yuFddLG5tb2zvm7l5bB5Hi0OKBDFTXZRqk8KGFAiV0QwXMcyV03MlV6nceQGkR+Lc4DcHx2NgXI8EZJtLALJ/c1egxrfX5MEBq0wtq2wOzYlWtDHSR2DmpkBzNgfnVHwY88sBHLpnWPdsK0YmZQsElzEr9SEPI+ISNoZdQn3mgnTgLP6OHkWYY0BAUFZJmIvzeiJmn9dRzk0mP4b2e91LxP68X4ejciYUfRgg+Tw+hkJAd0lyJpBWgQ6EAkaXJgQqfcqYYIihBGeeJGCU1lZI+7PnvF0m7VrXr1dObeqVxmTdTJPvkgBwRm5yRBrkmTdIinEzJE3kmL8aj8Wq8Ge8/owUj3ymTPzA+vgEyfJaM</latexit>

its evaluation
⌘

<latexit sha1_base64="Ygll3yr7aqwHtytIhQZwDoOcdUo=">AAAB+HicbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeURNH5sglHzmdztxcpWPkHWqjoEC1/Q8G/YBsXkDDVaGZXOzt+JIVB1/10CkvLK6trxfXSxubW9k55d69pQqs5NHgoQ932mQEpFDRQoIR2pIEFvoSWP75K/dYEtBGhusVpBL2AjZQYCs4wkZpdeLBi0i9X3KqbgS4SLycVkqPeL391ByG3ASjkkhnT8dwIezHTKLiEWalrDUSMj9kIOglVLADTi7O0M3pkDcOQRqCpkDQT4fdGzAJjpoGfTAYM78y8l4r/eR2Lw4teLFRkERRPD6GQkB0yXIukBqADoQGRpcmBCkU50wwRtKCM80S0SS+lpA9v/vtF0jypeqfVs5vTSu0yb6ZIDsghOSYeOSc1ck3qpEE4uSdP5Jm8OI/Oq/PmvP+MFpx8Z5/8gfPxDXv0k8k=</latexit>

⌘

<latexit sha1_base64="Ygll3yr7aqwHtytIhQZwDoOcdUo=">AAAB+HicbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeURNH5sglHzmdztxcpWPkHWqjoEC1/Q8G/YBsXkDDVaGZXOzt+JIVB1/10CkvLK6trxfXSxubW9k55d69pQqs5NHgoQ932mQEpFDRQoIR2pIEFvoSWP75K/dYEtBGhusVpBL2AjZQYCs4wkZpdeLBi0i9X3KqbgS4SLycVkqPeL391ByG3ASjkkhnT8dwIezHTKLiEWalrDUSMj9kIOglVLADTi7O0M3pkDcOQRqCpkDQT4fdGzAJjpoGfTAYM78y8l4r/eR2Lw4teLFRkERRPD6GQkB0yXIukBqADoQGRpcmBCkU50wwRtKCM80S0SS+lpA9v/vtF0jypeqfVs5vTSu0yb6ZIDsghOSYeOSc1ck3qpEE4uSdP5Jm8OI/Oq/PmvP+MFpx8Z5/8gfPxDXv0k8k=</latexit>

⌘

<latexit sha1_base64="Ygll3yr7aqwHtytIhQZwDoOcdUo=">AAAB+HicbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeURNH5sglHzmdztxcpWPkHWqjoEC1/Q8G/YBsXkDDVaGZXOzt+JIVB1/10CkvLK6trxfXSxubW9k55d69pQqs5NHgoQ932mQEpFDRQoIR2pIEFvoSWP75K/dYEtBGhusVpBL2AjZQYCs4wkZpdeLBi0i9X3KqbgS4SLycVkqPeL391ByG3ASjkkhnT8dwIezHTKLiEWalrDUSMj9kIOglVLADTi7O0M3pkDcOQRqCpkDQT4fdGzAJjpoGfTAYM78y8l4r/eR2Lw4teLFRkERRPD6GQkB0yXIukBqADoQGRpcmBCkU50wwRtKCM80S0SS+lpA9v/vtF0jypeqfVs5vTSu0yb6ZIDsghOSYeOSc1ck3qpEE4uSdP5Jm8OI/Oq/PmvP+MFpx8Z5/8gfPxDXv0k8k=</latexit>

1313

Conditional

<latexit sha1_base64="roI2QWWQWAki5NKr+0FKXb+9Re0=">AAACCXicbVDLSgNBEJyNrxhfUfHkZTAIHiTsBlGPQS8eI5gHJGHpnXSSIbMPZnqVsOQL/AqvevImXv0KD/6LmzUHTaxTUdVNV5cXKWnItj+t3NLyyupafr2wsbm1vVPc3WuYMNYC6yJUoW55YFDJAOskSWEr0gi+p7Dpja6nfvMetZFhcEfjCLs+DALZlwIoldziAfKOloMhgdbhA0fXOUW34hZLdtnOwBeJMyMlNkPNLX51eqGIfQxIKDCm7dgRdRPQJIXCSaETG4xAjGCA7ZQG4KPpJln8CT+ODVDII9RcKp6J+HsjAd+Yse+lkz7Q0Mx7U/E/rx1T/7KbyCCKCQMxPURSYXbICC3TXpD3pEYimCZHLgMuQAMRaslBiFSM06IKaR/O/PeLpFEpO+dl5/asVL2aNZNnh+yInTCHXbAqu2E1VmeCJeyJPbMX69F6td6s95/RnDXb2Wd/YH18A/nwmWk=</latexit>e ! e1, e2
<latexit sha1_base64="Y6lrI7N4HEz9wU68BmfbbkJCpWY=">AAACFnicbZC7TsNAEEXX4RXCy0BJs0qCRBXZKYAygoYySOQhJVG03kySVdZra3eMFFnp+QS+ghYqOkRLS8G/YBsXkDDV0b0zmpnrhVIYdJxPq7C2vrG5Vdwu7ezu7R/Yh0dtE0SaQ4sHMtBdjxmQQkELBUrohhqY70noeLPr1O/cgzYiUHc4D2Hgs4kSY8EZJtLQLsd9M6ZiTKtQpTgFlcDQrVKQBlKsVxdDu+LUnKzoKrg5VEhezaH91R8FPPJBIZfMmJ7rhDiImUbBJSxK/chAyPiMTaCXoGI+mEGc/bKgp5FhGNAQNBWSZiL8noiZb8zc95JOn+HULHup+J/Xi3B8OYiFCiMExdNFKCRkiwzXIgkJ6EhoQGTp5UCFopxphghaUMZ5IkZJaqUkD3f5+1Vo12vuec29rVcaV3kyRXJCyuSMuOSCNMgNaZIW4eSBPJFn8mI9Wq/Wm/X+01qw8plj8qesj2+x35zE</latexit>

if e then e1 else e2

<latexit sha1_base64="aiiwdgvALP/AD8cqci2w877boO0=">AAACyXicjVFNb9NAEN2Yr1K+UjhyWREhcUCWjarCoZUquCBxKRJpK2WjaLyepKvurt3dcRpjuRf+Br+GK/wB/g3rJEj048CcnmbmzZt5k5VaeUqS373o1u07d+9t3N988PDR4yf9raeHvqicxKEsdOGOM/ColcUhKdJ4XDoEk2k8yk4/dPWjOTqvCvuF6hLHBmZWTZUECqlJf0cYZbnIcYpnXOhAzIEv4ou/sI4v+GK35sKp2QmBc8U5X7yuJ/1BEifL4NdBugYDto6DyVavEXkhK4OWpAbvR2lS0rgBR0pqbDdF5bEEeQozHAVowaAfN8sDW/6y8kAFL9Fxpfkyif8yGjDe1yYLnQboxF+tdcmbaqOKpu/GjbJlRWhlJ0RK41LIS6eCc8hz5ZAIus2RB7MkOCBCpzhIGZJVsPKSoCcDrnZ5OMriuSyMAZs3K4/bRnRbONSNyCql84C4mAcbnAI7C9qiCKq82Wvbm/iVmv/3CLFqD3PCu9Krz7kODt/E6U6cft4e7L9fP26DPWcv2CuWsrdsn31kB2zIJPvOfrCf7Ff0KTqLFtHXVWvUW3OesUsRffsDIOnkHw==</latexit>

min
M
= �x. �y. x < y ! x, yexample

Denotational semantics of commands

14

15

From your forms

(over 14 answers)

Denotational semantics

21%

43%

14%

21%

5 stelle 4 stelle 3 stelle 2 stelle 1 stella

1616

Denotational semantics

134 6 Denotational Semantics of IMP

6.2 Denotational Semantics of IMP

As we said, we will use lambda notation as a meta-language; this means that we will
express the semantics of IMP by translating IMP syntax into lambda terms.

The denotational semantics of IMP consists of three separate interpretation func-
tions, one for each syntax category (Aexp,Bexp,Com):

Aexp: each arithmetic expression is mapped to a function from states to integers:

A : Aexp ! (S ! Z)

Bexp: each boolean expression is mapped to a function from states to booleans:

B : Bexp ! (S ! B)

Com: each command is mapped to a (partial) function from states to states:

C : Com ! (S * S)

6.2.1 Denotational Semantics of Arithmetic Expressions: The
Function A

We shall define A by structural recursion over the syntax of arithmetic expressions.
Let us fix some notation. We will rely on definitions of the form

A JnK def
= ls . n

with the following meaning:

• A : Aexp ! S ! Z is the interpretation function,
• n is an arithmetic expression (i.e., a term in Aexp). The surrounding brackets J

and K emphasise that it is a piece of syntax rather then part of the meta-language.
• the expression A JnK is a function whose type is S ! Z. Notice that also the right

part of the equation must be of the same type S ! Z.

We shall often define the interpretation function A by writing equalities such as

A JnKs def
= n

instead of

A JnK def
= ls . n

In this way, we simplify the notation in the right-hand side. Notice that both sides of
the equation (A JnKs and n) have type Z.

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The Function C

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com ! (S * S)

Since commands can diverge, the codomain of C is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can define an equivalent total function. So we define

C : Com ! (S ! S?)

This will simplify the notation.
Instead of presenting the whole, structurally recursive, definition of C and then

discussing its defining equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C JskipKs def
= s (6.1)

We see that C JskipK is the identity function: skip does not modify the memory.

C Jx := aKs def
= s [A JaKs /x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modifies the memory by assigning the corresponding value to the
location x.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we first interpret c0 in the starting memory and then c1 in the state produced
by c0. The problem is that from the first application of C Jc0K we obtain a value in
S?, not necessarily in S , so we cannot apply C Jc1K. To work this problem out we
introduce a lifting operator (·)⇤: it takes a function in S ! S? and returns a function
in S? ! S?, i.e., its type is (S ! S?) ! (S? ! S?).

Definition 6.9 (Lifting). Let f : S ! S?. We define a function f ⇤ : S? ! S? as
follows:

f ⇤(x) =

⇢
? if x = ?
f (x) otherwise

So the definition of the interpretation function for c0;c1 is

C Jc0;c1Ks def
= C Jc1K⇤ (C Jc0Ks) (6.3)

Note that we apply the lifted version C Jc1K⇤ of C Jc1K to the argument C Jc0Ks .

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The Function C

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com ! (S * S)

Since commands can diverge, the codomain of C is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can define an equivalent total function. So we define

C : Com ! (S ! S?)

This will simplify the notation.
Instead of presenting the whole, structurally recursive, definition of C and then

discussing its defining equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C JskipKs def
= s (6.1)

We see that C JskipK is the identity function: skip does not modify the memory.

C Jx := aKs def
= s [A JaKs /x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modifies the memory by assigning the corresponding value to the
location x.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we first interpret c0 in the starting memory and then c1 in the state produced
by c0. The problem is that from the first application of C Jc0K we obtain a value in
S?, not necessarily in S , so we cannot apply C Jc1K. To work this problem out we
introduce a lifting operator (·)⇤: it takes a function in S ! S? and returns a function
in S? ! S?, i.e., its type is (S ! S?) ! (S? ! S?).

Definition 6.9 (Lifting). Let f : S ! S?. We define a function f ⇤ : S? ! S? as
follows:

f ⇤(x) =

⇢
? if x = ?
f (x) otherwise

So the definition of the interpretation function for c0;c1 is

C Jc0;c1Ks def
= C Jc1K⇤ (C Jc0Ks) (6.3)

Note that we apply the lifted version C Jc1K⇤ of C Jc1K to the argument C Jc0Ks .

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The Function C

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com ! (S * S)

Since commands can diverge, the codomain of C is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can define an equivalent total function. So we define

C : Com ! (S ! S?)

This will simplify the notation.
Instead of presenting the whole, structurally recursive, definition of C and then

discussing its defining equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C JskipKs def
= s (6.1)

We see that C JskipK is the identity function: skip does not modify the memory.

C Jx := aKs def
= s [A JaKs /x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modifies the memory by assigning the corresponding value to the
location x.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we first interpret c0 in the starting memory and then c1 in the state produced
by c0. The problem is that from the first application of C Jc0K we obtain a value in
S?, not necessarily in S , so we cannot apply C Jc1K. To work this problem out we
introduce a lifting operator (·)⇤: it takes a function in S ! S? and returns a function
in S? ! S?, i.e., its type is (S ! S?) ! (S? ! S?).

Definition 6.9 (Lifting). Let f : S ! S?. We define a function f ⇤ : S? ! S? as
follows:

f ⇤(x) =

⇢
? if x = ?
f (x) otherwise

So the definition of the interpretation function for c0;c1 is

C Jc0;c1Ks def
= C Jc1K⇤ (C Jc0Ks) (6.3)

Note that we apply the lifted version C Jc1K⇤ of C Jc1K to the argument C Jc0Ks .

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The Function C

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com ! (S * S)

Since commands can diverge, the codomain of C is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can define an equivalent total function. So we define

C : Com ! (S ! S?)

This will simplify the notation.
Instead of presenting the whole, structurally recursive, definition of C and then

discussing its defining equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C JskipKs def
= s (6.1)

We see that C JskipK is the identity function: skip does not modify the memory.

C Jx := aKs def
= s [A JaKs /x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modifies the memory by assigning the corresponding value to the
location x.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we first interpret c0 in the starting memory and then c1 in the state produced
by c0. The problem is that from the first application of C Jc0K we obtain a value in
S?, not necessarily in S , so we cannot apply C Jc1K. To work this problem out we
introduce a lifting operator (·)⇤: it takes a function in S ! S? and returns a function
in S? ! S?, i.e., its type is (S ! S?) ! (S? ! S?).

Definition 6.9 (Lifting). Let f : S ! S?. We define a function f ⇤ : S? ! S? as
follows:

f ⇤(x) =

⇢
? if x = ?
f (x) otherwise

So the definition of the interpretation function for c0;c1 is

C Jc0;c1Ks def
= C Jc1K⇤ (C Jc0Ks) (6.3)

Note that we apply the lifted version C Jc1K⇤ of C Jc1K to the argument C Jc0Ks .

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The Function C

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com ! (S * S)

Since commands can diverge, the codomain of C is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can define an equivalent total function. So we define

C : Com ! (S ! S?)

This will simplify the notation.
Instead of presenting the whole, structurally recursive, definition of C and then

discussing its defining equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C JskipKs def
= s (6.1)

We see that C JskipK is the identity function: skip does not modify the memory.

C Jx := aKs def
= s [A JaKs /x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modifies the memory by assigning the corresponding value to the
location x.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we first interpret c0 in the starting memory and then c1 in the state produced
by c0. The problem is that from the first application of C Jc0K we obtain a value in
S?, not necessarily in S , so we cannot apply C Jc1K. To work this problem out we
introduce a lifting operator (·)⇤: it takes a function in S ! S? and returns a function
in S? ! S?, i.e., its type is (S ! S?) ! (S? ! S?).

Definition 6.9 (Lifting). Let f : S ! S?. We define a function f ⇤ : S? ! S? as
follows:

f ⇤(x) =

⇢
? if x = ?
f (x) otherwise

So the definition of the interpretation function for c0;c1 is

C Jc0;c1Ks def
= C Jc1K⇤ (C Jc0Ks) (6.3)

Note that we apply the lifted version C Jc1K⇤ of C Jc1K to the argument C Jc0Ks .

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The Function C

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com ! (S * S)

Since commands can diverge, the codomain of C is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can define an equivalent total function. So we define

C : Com ! (S ! S?)

This will simplify the notation.
Instead of presenting the whole, structurally recursive, definition of C and then

discussing its defining equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C JskipKs def
= s (6.1)

We see that C JskipK is the identity function: skip does not modify the memory.

C Jx := aKs def
= s [A JaKs /x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modifies the memory by assigning the corresponding value to the
location x.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we first interpret c0 in the starting memory and then c1 in the state produced
by c0. The problem is that from the first application of C Jc0K we obtain a value in
S?, not necessarily in S , so we cannot apply C Jc1K. To work this problem out we
introduce a lifting operator (·)⇤: it takes a function in S ! S? and returns a function
in S? ! S?, i.e., its type is (S ! S?) ! (S? ! S?).

Definition 6.9 (Lifting). Let f : S ! S?. We define a function f ⇤ : S? ! S? as
follows:

f ⇤(x) =

⇢
? if x = ?
f (x) otherwise

So the definition of the interpretation function for c0;c1 is

C Jc0;c1Ks def
= C Jc1K⇤ (C Jc0Ks) (6.3)

Note that we apply the lifted version C Jc1K⇤ of C Jc1K to the argument C Jc0Ks .

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The Function C

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com ! (S * S)

Since commands can diverge, the codomain of C is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can define an equivalent total function. So we define

C : Com ! (S ! S?)

This will simplify the notation.
Instead of presenting the whole, structurally recursive, definition of C and then

discussing its defining equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C JskipKs def
= s (6.1)

We see that C JskipK is the identity function: skip does not modify the memory.

C Jx := aKs def
= s [A JaKs /x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modifies the memory by assigning the corresponding value to the
location x.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we first interpret c0 in the starting memory and then c1 in the state produced
by c0. The problem is that from the first application of C Jc0K we obtain a value in
S?, not necessarily in S , so we cannot apply C Jc1K. To work this problem out we
introduce a lifting operator (·)⇤: it takes a function in S ! S? and returns a function
in S? ! S?, i.e., its type is (S ! S?) ! (S? ! S?).

Definition 6.9 (Lifting). Let f : S ! S?. We define a function f ⇤ : S? ! S? as
follows:

f ⇤(x) =

⇢
? if x = ?
f (x) otherwise

So the definition of the interpretation function for c0;c1 is

C Jc0;c1Ks def
= C Jc1K⇤ (C Jc0Ks) (6.3)

Note that we apply the lifted version C Jc1K⇤ of C Jc1K to the argument C Jc0Ks .

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The Function C

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com ! (S * S)

Since commands can diverge, the codomain of C is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can define an equivalent total function. So we define

C : Com ! (S ! S?)

This will simplify the notation.
Instead of presenting the whole, structurally recursive, definition of C and then

discussing its defining equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C JskipKs def
= s (6.1)

We see that C JskipK is the identity function: skip does not modify the memory.

C Jx := aKs def
= s [A JaKs /x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modifies the memory by assigning the corresponding value to the
location x.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we first interpret c0 in the starting memory and then c1 in the state produced
by c0. The problem is that from the first application of C Jc0K we obtain a value in
S?, not necessarily in S , so we cannot apply C Jc1K. To work this problem out we
introduce a lifting operator (·)⇤: it takes a function in S ! S? and returns a function
in S? ! S?, i.e., its type is (S ! S?) ! (S? ! S?).

Definition 6.9 (Lifting). Let f : S ! S?. We define a function f ⇤ : S? ! S? as
follows:

f ⇤(x) =

⇢
? if x = ?
f (x) otherwise

So the definition of the interpretation function for c0;c1 is

C Jc0;c1Ks def
= C Jc1K⇤ (C Jc0Ks) (6.3)

Note that we apply the lifted version C Jc1K⇤ of C Jc1K to the argument C Jc0Ks .

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The Function C

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com ! (S * S)

Since commands can diverge, the codomain of C is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can define an equivalent total function. So we define

C : Com ! (S ! S?)

This will simplify the notation.
Instead of presenting the whole, structurally recursive, definition of C and then

discussing its defining equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C JskipKs def
= s (6.1)

We see that C JskipK is the identity function: skip does not modify the memory.

C Jx := aKs def
= s [A JaKs /x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modifies the memory by assigning the corresponding value to the
location x.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we first interpret c0 in the starting memory and then c1 in the state produced
by c0. The problem is that from the first application of C Jc0K we obtain a value in
S?, not necessarily in S , so we cannot apply C Jc1K. To work this problem out we
introduce a lifting operator (·)⇤: it takes a function in S ! S? and returns a function
in S? ! S?, i.e., its type is (S ! S?) ! (S? ! S?).

Definition 6.9 (Lifting). Let f : S ! S?. We define a function f ⇤ : S? ! S? as
follows:

f ⇤(x) =

⇢
? if x = ?
f (x) otherwise

So the definition of the interpretation function for c0;c1 is

C Jc0;c1Ks def
= C Jc1K⇤ (C Jc0Ks) (6.3)

Note that we apply the lifted version C Jc1K⇤ of C Jc1K to the argument C Jc0Ks .

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK to be the
least one. Next we show that Gb,c is a monotone and continuous function, so that we
can prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).

Lifting
6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK to be the
least one. Next we show that Gb,c is a monotone and continuous function, so that we
can prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).

?

1717

Denotational sem. (ctd)

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK to be the
least one. Next we show that Gb,c is a monotone and continuous function, so that we
can prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK to be the
least one. Next we show that Gb,c is a monotone and continuous function, so that we
can prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK to be the
least one. Next we show that Gb,c is a monotone and continuous function, so that we
can prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).

p = f(p)

<latexit sha1_base64="sYnD/Usz65qKBdNebRnHGnrHk9M=">AAAB+HicbVC7TsNAEDyHVwivACXNiQgpNJGNgqBBiqChDBJ5SIkVnS+bcORsn+7WSMHKP9BCRYdo+RsK/gXbuICEqUYzu9rZ8ZQUBm370yosLa+srhXXSxubW9s75d29tgkjzaHFQxnqrscMSBFACwVK6CoNzPckdLzJVep3HkAbEQa3OFXg+mwciJHgDBOprS5GVXU8KFfsmp2BLhInJxWSozkof/WHIY98CJBLZkzPsRW6MdMouIRZqR8ZUIxP2Bh6CQ2YD8aNs7QzehQZhiFVoKmQNBPh90bMfGOmvpdM+gzvzLyXiv95vQhH524sAhUhBDw9hEJCdshwLZIagA6FBkSWJgcqAsqZZoigBWWcJ2KU9FJK+nDmv18k7ZOaU6+d3tQrjcu8mSI5IIekShxyRhrkmjRJi3ByT57IM3mxHq1X6816/xktWPnOPvkD6+MbZYeTFw==</latexit>

a fixpoint equation!

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK to be the
least one. Next we show that Gb,c is a monotone and continuous function, so that we
can prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK to be the
least one. Next we show that Gb,c is a monotone and continuous function, so that we
can prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK to be the
least one. Next we show that Gb,c is a monotone and continuous function, so that we
can prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK to be the
least one. Next we show that Gb,c is a monotone and continuous function, so that we
can prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK to be the
least one. Next we show that Gb,c is a monotone and continuous function, so that we
can prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).

(

<latexit sha1_base64="cXt9yYk6t5lHien1ajM0ew04qzw=">AAAB83icbVC7TsNAEDyHVwivACXNiQgpVWSjICgjaCgTiTykxIrOl0045Xy27vaQIitfQAsVHaLlgyj4F2zjAgJTjWZ2tbMTxFIYdN0Pp7S2vrG5Vd6u7Ozu7R9UD496JrKaQ5dHMtKDgBmQQkEXBUoYxBpYGEjoB/ObzO8/gDYiUne4iMEP2UyJqeAMU6lTH1drbsPNQf8SryA1UqA9rn6OJhG3ISjkkhkz9NwY/YRpFFzCsjKyBmLG52wGw5QqFoLxkzzokp5ZwzCiMWgqJM1F+LmRsNCYRRikkyHDe7PqZeJ/3tDi9MpPhIotguLZIRQS8kOGa5E2AHQiNCCyLDlQoShnmiGCFpRxnoo2raSS9uGtfv+X9M4bXrNx0WnWWtdFM2VyQk5JnXjkkrTILWmTLuEEyCN5Is+OdV6cV+fte7TkFDvH5Bec9y8McZE5</latexit>

)

<latexit sha1_base64="FoUsoJvOdMfLXMKAsqLfzCRchPY=">AAAB83icbVC7TsNAEDzzDOEVoKQ5ESFBE9koCMoIGspEIg8psaLzZRNOOZ+tuz2kyMoX0EJFh2j5IAr+Bdu4gISpRjO72tkJYikMuu6ns7K6tr6xWdoqb+/s7u1XDg47JrKaQ5tHMtK9gBmQQkEbBUroxRpYGEjoBtPbzO8+gjYiUvc4i8EP2USJseAMU6l1PqxU3Zqbgy4TryBVUqA5rHwNRhG3ISjkkhnT99wY/YRpFFzCvDywBmLGp2wC/ZQqFoLxkzzonJ5awzCiMWgqJM1F+L2RsNCYWRikkyHDB7PoZeJ/Xt/i+NpPhIotguLZIRQS8kOGa5E2AHQkNCCyLDlQoShnmiGCFpRxnoo2raSc9uEtfr9MOhc1r167bNWrjZuimRI5JifkjHjkijTIHWmSNuEEyBN5Ji+OdV6dN+f9Z3TFKXaOyB84H98OAJE6</latexit>

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK to be the
least one. Next we show that Gb,c is a monotone and continuous function, so that we
can prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).

⌘

<latexit sha1_base64="Ygll3yr7aqwHtytIhQZwDoOcdUo=">AAAB+HicbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeURNH5sglHzmdztxcpWPkHWqjoEC1/Q8G/YBsXkDDVaGZXOzt+JIVB1/10CkvLK6trxfXSxubW9k55d69pQqs5NHgoQ932mQEpFDRQoIR2pIEFvoSWP75K/dYEtBGhusVpBL2AjZQYCs4wkZpdeLBi0i9X3KqbgS4SLycVkqPeL391ByG3ASjkkhnT8dwIezHTKLiEWalrDUSMj9kIOglVLADTi7O0M3pkDcOQRqCpkDQT4fdGzAJjpoGfTAYM78y8l4r/eR2Lw4teLFRkERRPD6GQkB0yXIukBqADoQGRpcmBCkU50wwRtKCM80S0SS+lpA9v/vtF0jypeqfVs5vTSu0yb6ZIDsghOSYeOSc1ck3qpEE4uSdP5Jm8OI/Oq/PmvP+MFpx8Z5/8gfPxDXv0k8k=</latexit>

Denotational sem. (ctd)

1818

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK to be the
least one. Next we show that Gb,c is a monotone and continuous function, so that we
can prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK to be the
least one. Next we show that Gb,c is a monotone and continuous function, so that we
can prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK to be the
least one. Next we show that Gb,c is a monotone and continuous function, so that we
can prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).partial functions

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK to be the
least one. Next we show that Gb,c is a monotone and continuous function, so that we
can prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).

sets of pairs
(�,�0)

<latexit sha1_base64="NFvFBcdTUHb/DylJpfUauqhV/OQ=">AAACBHicbVC7TgJREL2LL8TXqqXNjcSIiSG7BqMl0cYSE3kkQMjsZcAb7j5y7ywJIbR+ha1WdsbW/7DwX1wWCgVPMyfnzGRmjhcpachxvqzMyura+kZ2M7e1vbO7Z+8f1EwYa4FVEapQNzwwqGSAVZKksBFpBN9TWPcGt1O/PkRtZBg80CjCtg/9QPakAEqkjm0XWkb2fTifldOzjp13ik4KvkzcOcmzOSod+7vVDUXsY0BCgTFN14moPQZNUiic5FqxwQjEAPrYTGgAPpr2OL18wk9iAxTyCDWXiqci/p4Yg2/MyPeSTh/o0Sx6U/E/rxlT77o9lkEUEwZiuoikwnSREVomkSDvSo1EML0cuQy4AA1EqCUHIRIxTjLKJXm4i98vk9pF0S0VL+9L+fLNPJksO2LHrMBcdsXK7I5VWJUJNmTP7IW9Wk/Wm/VufcxaM9Z85pD9gfX5AyzGl1Y=</latexit>

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK to be the
least one. Next we show that Gb,c is a monotone and continuous function, so that we
can prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK to be the
least one. Next we show that Gb,c is a monotone and continuous function, so that we
can prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK to be the
least one. Next we show that Gb,c is a monotone and continuous function, so that we
can prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK to be the
least one. Next we show that Gb,c is a monotone and continuous function, so that we
can prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK to be the
least one. Next we show that Gb,c is a monotone and continuous function, so that we
can prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK to be the
least one. Next we show that Gb,c is a monotone and continuous function, so that we
can prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The Function C

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com ! (S * S)

Since commands can diverge, the codomain of C is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can define an equivalent total function. So we define

C : Com ! (S ! S?)

This will simplify the notation.
Instead of presenting the whole, structurally recursive, definition of C and then

discussing its defining equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C JskipKs def
= s (6.1)

We see that C JskipK is the identity function: skip does not modify the memory.

C Jx := aKs def
= s [A JaKs /x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modifies the memory by assigning the corresponding value to the
location x.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we first interpret c0 in the starting memory and then c1 in the state produced
by c0. The problem is that from the first application of C Jc0K we obtain a value in
S?, not necessarily in S , so we cannot apply C Jc1K. To work this problem out we
introduce a lifting operator (·)⇤: it takes a function in S ! S? and returns a function
in S? ! S?, i.e., its type is (S ! S?) ! (S? ! S?).

Definition 6.9 (Lifting). Let f : S ! S?. We define a function f ⇤ : S? ! S? as
follows:

f ⇤(x) =

⇢
? if x = ?
f (x) otherwise

So the definition of the interpretation function for c0;c1 is

C Jc0;c1Ks def
= C Jc1K⇤ (C Jc0Ks) (6.3)

Note that we apply the lifted version C Jc1K⇤ of C Jc1K to the argument C Jc0Ks .

CPO?

<latexit sha1_base64="0eVAP1pPVndRR0pRSRwXSlriv/A=">AAAB/HicbVC7TsNAEDyHVwivACXNiQSJKrIRCMqINHQEiTxEYkXnyyaccj5bd2ukyApfQQsVHaLlXyj4F2zjAhKmGs3samfHC6UwaNufVmFpeWV1rbhe2tjc2t4p7+61TRBpDi0eyEB3PWZACgUtFCihG2pgvieh400aqd95AG1EoG5xGoLrs7ESI8EZJtJdo3ldHfS9AKuDcsWu2RnoInFyUiE5moPyV38Y8MgHhVwyY3qOHaIbM42CS5iV+pGBkPEJG0MvoYr5YNw4SzyjR5FhGNAQNBWSZiL83oiZb8zU95JJn+G9mfdS8T+vF+Howo2FCiMExdNDKCRkhwzXIqkC6FBoQGRpcqBCUc40QwQtKOM8EaOkm1LShzP//SJpn9Sc09rZzUmlfpk3UyQH5JAcE4eckzq5Ik3SIpwo8kSeyYv1aL1ab9b7z2jBynf2yR9YH98Wl5ST</latexit>

<latexit sha1_base64="6UB0uISmr+oB1nSWI8fPhnpL3Lw=">AAACknicjVFNTxRBEO0dURBRQb156bAx4bSZMUQICQnKxYMHSFwg2dmQmp7atUJ3z9BdvWQzmV/gVX+c/8aeZQ/ycbBOL68+3quqotbkOU3/9JInK0+fra49X3+x8fLV682tN2e+Ck7hUFW6chcFeNRkccjEGi9qh2AKjefF1XGXP5+h81TZ7zyvcWxgamlCCjhSpweXm/10kC5CPgTZEvTFMk4ut3pNXlYqGLSsNHg/ytKaxw04JqWxXc+DxxrUFUxxFKEFg37cLJy28kPwwJWs0UnSckHivx0NGO/npoiVBviHv5/ryMdyo8CT/XFDtg6MVnVCTBoXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5I+jZgJu7Mi5l8UZVxoAt4/o4weu2yTsXDnWTF4F0GZHMZ/EMjsBOo3ZeRVXZHLbtY/2BZv89Ir8tj3Piu7L7z3kIzj4Osk+D7HS3f/Rl+bg18V5six2RiT1xJL6KEzEUSqD4KX6J38m75CD5nBzflia9Zc9bcSeSb38BjCnOgw==</latexit>:

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The Function C

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com ! (S * S)

Since commands can diverge, the codomain of C is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can define an equivalent total function. So we define

C : Com ! (S ! S?)

This will simplify the notation.
Instead of presenting the whole, structurally recursive, definition of C and then

discussing its defining equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C JskipKs def
= s (6.1)

We see that C JskipK is the identity function: skip does not modify the memory.

C Jx := aKs def
= s [A JaKs /x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modifies the memory by assigning the corresponding value to the
location x.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we first interpret c0 in the starting memory and then c1 in the state produced
by c0. The problem is that from the first application of C Jc0K we obtain a value in
S?, not necessarily in S , so we cannot apply C Jc1K. To work this problem out we
introduce a lifting operator (·)⇤: it takes a function in S ! S? and returns a function
in S? ! S?, i.e., its type is (S ! S?) ! (S? ! S?).

Definition 6.9 (Lifting). Let f : S ! S?. We define a function f ⇤ : S? ! S? as
follows:

f ⇤(x) =

⇢
? if x = ?
f (x) otherwise

So the definition of the interpretation function for c0;c1 is

C Jc0;c1Ks def
= C Jc1K⇤ (C Jc0Ks) (6.3)

Note that we apply the lifted version C Jc1K⇤ of C Jc1K to the argument C Jc0Ks .

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The Function C

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com ! (S * S)

Since commands can diverge, the codomain of C is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can define an equivalent total function. So we define

C : Com ! (S ! S?)

This will simplify the notation.
Instead of presenting the whole, structurally recursive, definition of C and then

discussing its defining equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C JskipKs def
= s (6.1)

We see that C JskipK is the identity function: skip does not modify the memory.

C Jx := aKs def
= s [A JaKs /x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modifies the memory by assigning the corresponding value to the
location x.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we first interpret c0 in the starting memory and then c1 in the state produced
by c0. The problem is that from the first application of C Jc0K we obtain a value in
S?, not necessarily in S , so we cannot apply C Jc1K. To work this problem out we
introduce a lifting operator (·)⇤: it takes a function in S ! S? and returns a function
in S? ! S?, i.e., its type is (S ! S?) ! (S? ! S?).

Definition 6.9 (Lifting). Let f : S ! S?. We define a function f ⇤ : S? ! S? as
follows:

f ⇤(x) =

⇢
? if x = ?
f (x) otherwise

So the definition of the interpretation function for c0;c1 is

C Jc0;c1Ks def
= C Jc1K⇤ (C Jc0Ks) (6.3)

Note that we apply the lifted version C Jc1K⇤ of C Jc1K to the argument C Jc0Ks .

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK to be the
least one. Next we show that Gb,c is a monotone and continuous function, so that we
can prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).

<latexit sha1_base64="6UB0uISmr+oB1nSWI8fPhnpL3Lw=">AAACknicjVFNTxRBEO0dURBRQb156bAx4bSZMUQICQnKxYMHSFwg2dmQmp7atUJ3z9BdvWQzmV/gVX+c/8aeZQ/ycbBOL68+3quqotbkOU3/9JInK0+fra49X3+x8fLV682tN2e+Ck7hUFW6chcFeNRkccjEGi9qh2AKjefF1XGXP5+h81TZ7zyvcWxgamlCCjhSpweXm/10kC5CPgTZEvTFMk4ut3pNXlYqGLSsNHg/ytKaxw04JqWxXc+DxxrUFUxxFKEFg37cLJy28kPwwJWs0UnSckHivx0NGO/npoiVBviHv5/ryMdyo8CT/XFDtg6MVnVCTBoXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5I+jZgJu7Mi5l8UZVxoAt4/o4weu2yTsXDnWTF4F0GZHMZ/EMjsBOo3ZeRVXZHLbtY/2BZv89Ir8tj3Piu7L7z3kIzj4Osk+D7HS3f/Rl+bg18V5six2RiT1xJL6KEzEUSqD4KX6J38m75CD5nBzflia9Zc9bcSeSb38BjCnOgw==</latexit>:

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK to be the
least one. Next we show that Gb,c is a monotone and continuous function, so that we
can prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK to be the
least one. Next we show that Gb,c is a monotone and continuous function, so that we
can prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).

<latexit sha1_base64="6UB0uISmr+oB1nSWI8fPhnpL3Lw=">AAACknicjVFNTxRBEO0dURBRQb156bAx4bSZMUQICQnKxYMHSFwg2dmQmp7atUJ3z9BdvWQzmV/gVX+c/8aeZQ/ycbBOL68+3quqotbkOU3/9JInK0+fra49X3+x8fLV682tN2e+Ck7hUFW6chcFeNRkccjEGi9qh2AKjefF1XGXP5+h81TZ7zyvcWxgamlCCjhSpweXm/10kC5CPgTZEvTFMk4ut3pNXlYqGLSsNHg/ytKaxw04JqWxXc+DxxrUFUxxFKEFg37cLJy28kPwwJWs0UnSckHivx0NGO/npoiVBviHv5/ryMdyo8CT/XFDtg6MVnVCTBoXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5I+jZgJu7Mi5l8UZVxoAt4/o4weu2yTsXDnWTF4F0GZHMZ/EMjsBOo3ZeRVXZHLbtY/2BZv89Ir8tj3Piu7L7z3kIzj4Osk+D7HS3f/Rl+bg18V5six2RiT1xJL6KEzEUSqD4KX6J38m75CD5nBzflia9Zc9bcSeSb38BjCnOgw==</latexit>:

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The Function C

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com ! (S * S)

Since commands can diverge, the codomain of C is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can define an equivalent total function. So we define

C : Com ! (S ! S?)

This will simplify the notation.
Instead of presenting the whole, structurally recursive, definition of C and then

discussing its defining equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C JskipKs def
= s (6.1)

We see that C JskipK is the identity function: skip does not modify the memory.

C Jx := aKs def
= s [A JaKs /x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modifies the memory by assigning the corresponding value to the
location x.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we first interpret c0 in the starting memory and then c1 in the state produced
by c0. The problem is that from the first application of C Jc0K we obtain a value in
S?, not necessarily in S , so we cannot apply C Jc1K. To work this problem out we
introduce a lifting operator (·)⇤: it takes a function in S ! S? and returns a function
in S? ! S?, i.e., its type is (S ! S?) ! (S? ! S?).

Definition 6.9 (Lifting). Let f : S ! S?. We define a function f ⇤ : S? ! S? as
follows:

f ⇤(x) =

⇢
? if x = ?
f (x) otherwise

So the definition of the interpretation function for c0;c1 is

C Jc0;c1Ks def
= C Jc1K⇤ (C Jc0Ks) (6.3)

Note that we apply the lifted version C Jc1K⇤ of C Jc1K to the argument C Jc0Ks .

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK to be the
least one. Next we show that Gb,c is a monotone and continuous function, so that we
can prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).

<latexit sha1_base64="6UB0uISmr+oB1nSWI8fPhnpL3Lw=">AAACknicjVFNTxRBEO0dURBRQb156bAx4bSZMUQICQnKxYMHSFwg2dmQmp7atUJ3z9BdvWQzmV/gVX+c/8aeZQ/ycbBOL68+3quqotbkOU3/9JInK0+fra49X3+x8fLV682tN2e+Ck7hUFW6chcFeNRkccjEGi9qh2AKjefF1XGXP5+h81TZ7zyvcWxgamlCCjhSpweXm/10kC5CPgTZEvTFMk4ut3pNXlYqGLSsNHg/ytKaxw04JqWxXc+DxxrUFUxxFKEFg37cLJy28kPwwJWs0UnSckHivx0NGO/npoiVBviHv5/ryMdyo8CT/XFDtg6MVnVCTBoXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5I+jZgJu7Mi5l8UZVxoAt4/o4weu2yTsXDnWTF4F0GZHMZ/EMjsBOo3ZeRVXZHLbtY/2BZv89Ir8tj3Piu7L7z3kIzj4Osk+D7HS3f/Rl+bg18V5six2RiT1xJL6KEzEUSqD4KX6J38m75CD5nBzflia9Zc9bcSeSb38BjCnOgw==</latexit>:

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The Function C

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com ! (S * S)

Since commands can diverge, the codomain of C is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can define an equivalent total function. So we define

C : Com ! (S ! S?)

This will simplify the notation.
Instead of presenting the whole, structurally recursive, definition of C and then

discussing its defining equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C JskipKs def
= s (6.1)

We see that C JskipK is the identity function: skip does not modify the memory.

C Jx := aKs def
= s [A JaKs /x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modifies the memory by assigning the corresponding value to the
location x.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we first interpret c0 in the starting memory and then c1 in the state produced
by c0. The problem is that from the first application of C Jc0K we obtain a value in
S?, not necessarily in S , so we cannot apply C Jc1K. To work this problem out we
introduce a lifting operator (·)⇤: it takes a function in S ! S? and returns a function
in S? ! S?, i.e., its type is (S ! S?) ! (S? ! S?).

Definition 6.9 (Lifting). Let f : S ! S?. We define a function f ⇤ : S? ! S? as
follows:

f ⇤(x) =

⇢
? if x = ?
f (x) otherwise

So the definition of the interpretation function for c0;c1 is

C Jc0;c1Ks def
= C Jc1K⇤ (C Jc0Ks) (6.3)

Note that we apply the lifted version C Jc1K⇤ of C Jc1K to the argument C Jc0Ks .

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK to be the
least one. Next we show that Gb,c is a monotone and continuous function, so that we
can prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).

1919

Monotone and continuous

Take Rb,c =

⇢
(�00,�0)

(�,�0)
BJbK� ^ CJcK� = �00 ,

(�,�)
BJ¬bK�

�

<latexit sha1_base64="GOfPTVB1iLPQw0VZMgE0l8zValM=">AAADMHiclVJNb9NAEF2br2K+UjgioRUJapGiyEZFcEGq2gvHgkhbKRtF683EXXXXa+2OgWC5N34NNwT/BU6IKz+BE+vUQEl6YU5Pb97MvpmdtFDSYRx/DcILFy9dvrJ2Nbp2/cbNW5312/vOlFbAUBhl7GHKHSiZwxAlKjgsLHCdKjhIj3eb/MFrsE6a/BXOCxhrnuVyJgVHT03Wg3svJ1XaF3X0jDIFM2RVxGaWi2qTOZlpvrHRb8HD+jf3l2E6NW8rNjMGc4Pg5DugPaY5Hgmuqp2aKZX6ZseANGXWtvi0nLI3MM2A/pHvnpWLFbk32Drq1fSkf9L6XHb1X6ZYDtmqs14dMSuzI2T1pNONB/Ei6CpIWtAlbexNOj/Z1IhSQ45CcedGSVzguOIWpVDgG5cOCv8Wz2DkYc41uHG1+MiaPigdR0MLsFQquiDhbEXFtXNznXplM45bzjXkuTmHmtu5nZ6XHJU4ezquZF6UCLloXKBUsHDhhJX+fIBOpQVE3owFVOZUcMsRwUrKhfBk6e8p8stKllezCvYfDZKtweMXW93tnXZta+QuuU82SUKekG3ynOyRIRHB++BD8Cn4HH4Mv4Tfwu+n0jBoa+6QfyL88Qs3zgm0</latexit>

clearly bRb,c = �b,c

<latexit sha1_base64="PDdB3yUCpu0i+qJwty7/dIu38GI=">AAACMXicbVDLSgNBEJz1GeMr6tHLYBA8SNgVRS+C6EGPUcwDkhB6J51kyMzuMtOrhCVXv8ab6L/kJl79A09uHgcfqVN1VTdUlx8pacl1h87c/MLi0nJmJbu6tr6xmdvaLtswNgJLIlShqfpgUckASyRJYTUyCNpXWPF7VyO/8oDGyjC4p36EDQ2dQLalAEqlZo7XH2ULu0DJ3aCZ+IdiwM95/Rq0hsnYzOXdgjsG/0+8KcmzKYrN3Fe9FYpYY0BCgbU1z42okYAhKRQOsvXYYgSiBx2spTQAjbaRjD8Z8P3YAoU8QsOl4mMRf14koK3taz/d1EBd+9cbiTM9SxpM37RmmbWY2meNRAZRTBiIUQqSCscprDAy7Q95SxokgtFbyGXABRggQiM5CJGKcVpoNi3L+1vNf1I+KnjHhZPb4/zF5bS2DNtle+yAeeyUXbAbVmQlJtgTe2av7M15cYbOu/MxWZ1zpjc77Becz29gzapN</latexit>

when we see as operating over
partial functions

�b,c

<latexit sha1_base64="bw8BSunO9x83oIoVVoCg4Mb5LII=">AAACG3icbVA9SwNBFNyLXzF+RS1tFoNgIeFOIloGLbSMYD4gCeHd5iUu2b07dt8J4cjfsBP9L3Zia+FfsfIuptCYqYaZeTBv/EhJS6776eSWlldW1/LrhY3Nre2d4u5ew4axEVgXoQpNyweLSgZYJ0kKW5FB0L7Cpj+6yvzmAxorw+COxhF2NQwDOZACKJU6nWvQGnqJfyImvWLJLbtT8P/Em5ESm6HWK351+qGINQYkFFjb9tyIugkYkkLhpNCJLUYgRjDEdkoD0Gi7ybTzhB/FFijkERouFZ+K+PsiAW3tWPtpUgPd23kvExd6ljSYsekvMtsxDS66iQyimDAQWQuSCqctrDAyXQp5Xxokguwt5DLgAgwQoZEchEjFOJ2ukI7lzU/znzROy16lfHZbKVUvZ7Pl2QE7ZMfMY+esym5YjdWZYBF7ZM/sxXlyXp035/0nmnNmN/vsD5yPbxmjogM=</latexit>

bRb,c

<latexit sha1_base64="CtUkNUfEfCxUNCmQIASvbvFLiPo=">AAACInicbVDLTgJBEJz1ifha9OhlIjHxYMiuweiR6MUjGnkkQEjv0MCE2UdmeiVkw6d4M/ov3ownE7/EkwtyUKBOlarqpLq8SElDjvNprayurW9sZray2zu7e/t27qBqwlgLrIhQhbrugUElA6yQJIX1SCP4nsKaN7iZ+LVH1EaGwQONImz50AtkVwqgVGrbueZQdrAPlNyP24l3JsZtO+8UnCn4InFnJM9mKLft72YnFLGPAQkFxjRcJ6JWApqkUDjONmODEYgB9LCR0gB8NK1kWn3MT2IDFPIINZeKT0X8e5GAb8zI99KkD9Q3895EXOoZ8kGPdGeZ2Yipe9VKZBDFhIGYtCCpcNrCCC3TwZB3pEYimLyFXAZcgAYi1JKDEKkYpwtm07Hc+WkWSfW84BYLF3fFfOl6NluGHbFjdspcdslK7JaVWYUJNmRP7IW9Ws/Wm/VuffxGV6zZzSH7B+vrB0gIpLM=</latexit>

is (monotone and) continuous, and so is �b,c

<latexit sha1_base64="bw8BSunO9x83oIoVVoCg4Mb5LII=">AAACG3icbVA9SwNBFNyLXzF+RS1tFoNgIeFOIloGLbSMYD4gCeHd5iUu2b07dt8J4cjfsBP9L3Zia+FfsfIuptCYqYaZeTBv/EhJS6776eSWlldW1/LrhY3Nre2d4u5ew4axEVgXoQpNyweLSgZYJ0kKW5FB0L7Cpj+6yvzmAxorw+COxhF2NQwDOZACKJU6nWvQGnqJfyImvWLJLbtT8P/Em5ESm6HWK351+qGINQYkFFjb9tyIugkYkkLhpNCJLUYgRjDEdkoD0Gi7ybTzhB/FFijkERouFZ+K+PsiAW3tWPtpUgPd23kvExd6ljSYsekvMtsxDS66iQyimDAQWQuSCqctrDAyXQp5Xxokguwt5DLgAgwQoZEchEjFOJ2ukI7lzU/znzROy16lfHZbKVUvZ7Pl2QE7ZMfMY+esym5YjdWZYBF7ZM/sxXlyXp035/0nmnNmN/vsD5yPbxmjogM=</latexit>

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK to be the
least one. Next we show that Gb,c is a monotone and continuous function, so that we
can prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).

��. ?

<latexit sha1_base64="pCFfPUaXRY5pimIEJBwsY/iJ+0o=">AAACJXicbVDLTgJBEJzFF+ILHzcvE4mJJ7JrMHokevGIiTwSlpDeocEJM7ubmV4TJPgt3oz+izdj4sn/8OSCHBSoU6WqOqmuIFbSkut+Opml5ZXVtex6bmNza3snv7tXs1FiBFZFpCLTCMCikiFWSZLCRmwQdKCwHvSvxn79Ho2VUXhLgxhbGnqh7EoBlErt/IGv0nAHuG9lT0Px0Q8iaucLbtGdgM8Tb0oKbIpKO//tdyKRaAxJKLC26bkxtYZgSAqFo5yfWIxB9KGHzZSGoNG2hpP2I36cWKCIx2i4VHwi4t+LIWhrBzpIkxrozs56Y3GhZ0mDGZjOIrOZUPeiNZRhnBCGYtyCpMJJCyuMTDdD3pEGiWD8FnIZcgEGiNBIDkKkYpKOmEvH8manmSe106JXKp7dlArly+lsWXbIjtgJ89g5K7NrVmFVJtgDe2Iv7NV5dt6cd+fjN5pxpjf77B+crx8N2aWU</latexit>

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator; then we have immediately

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursion, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK to be the
least one. Next we show that Gb,c is a monotone and continuous function, so that we
can prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).

2020

Bottom
⌃?

<latexit sha1_base64="vL1LVjs3GsA/tIPxPxfLOnMTiRE=">AAACGnicbVA9TwJBFNzDL8Qv1NJmIzGxIncGoyXRxhKjfCQcIe+WB27YvbvsvjMhhJ9hZ/S/2BlbG/+KlQdeocBUk5l5ybwJYiUtue6Xk1tZXVvfyG8WtrZ3dveK+wcNGyVGYF1EKjKtACwqGWKdJClsxQZBBwqbwfB66jcf0VgZhfc0irGjYRDKvhRAqdT27+RAQ9cPIuoWS27ZnYEvEi8jJZah1i1++71IJBpDEgqsbXtuTJ0xGJJC4aTgJxZjEEMYYDulIWi0nfGs8oSfJBYo4jEaLhWfifj3Ygza2pEO0qQGerDz3lRc6lnSYEamt8xsJ9S/7IxlGCeEoZi2IKlw1sIKI9OhkPekQSKYvoVchlyAASI0koMQqZikyxXSsbz5aRZJ46zsVcrnt5VS9SqbLc+O2DE7ZR67YFV2w2qszgSL2BN7Ya/Os/PmvDsfv9Gck90csn9wPn8Aj9qhvw==</latexit>

has a bottom element: ?

<latexit sha1_base64="SzqewVUAX9H9AIF254+tQPbtWBE=">AAACE3icbVDLSgNBEJyNrxhfUY9eBoPgKexKRI9BLx4jmAckS+iddJIhsw9meoUQ8gveRP/Fm3j1A/wVT+6ue9AkdSqqqqG6vEhJQ7b9ZRXW1jc2t4rbpZ3dvf2D8uFRy4SxFtgUoQp1xwODSgbYJEkKO5FG8D2FbW9ym/rtR9RGhsEDTSN0fRgFcigFUCr1vJD65YpdtTPwZeLkpMJyNPrl794gFLGPAQkFxnQdOyJ3BpqkUDgv9WKDEYgJjLCb0AB8NO4s6zrnZ7EBCnmEmkvFMxH/XszAN2bqe0nSBxqbRS8VV3qGfNBTPVhldmMaXrszGUQxYSDSFiQVZi2M0DJZCPlAaiSC9C3kMuACNBChlhyESMQ4mayUjOUsTrNMWhdVp1a9vK9V6jf5bEV2wk7ZOXPYFauzO9ZgTSbYmD2xF/ZqPVtv1rv18RstWPnNMfsH6/MHAcyezQ==</latexit>

⌃ ! ⌃?

<latexit sha1_base64="7ihqAM+UCPN9a+9eD+gcE14dHOM=">AAACL3icbZA/SwNBEMX3/Bvjv1NLQRaDYBXuJKJl0MYyolEhF8LcZhIXd++O3TklhHR+GjvR7yI2YutXsPJyptAkr3r83gzMvDBR0pLnvTszs3PzC4uFpeLyyurauruxeWXj1Aisi1jF5iYEi0pGWCdJCm8Sg6BDhdfh3ekwv75HY2UcXVIvwaaGbiQ7UgBlqOXuBBeyq4EHRnZvCYyJH/gvagVhTC235JW9XHzS+CNTYiPVWu530I5FqjEiocDahu8l1OyDISkUDopBajEBcQddbGQ2Ao222c//GPC91ALFPEHDpeI5xL8bfdDW9nSYTWqgWzueDeHUzJIG0zPtaWEjpc5xsy+jJCWMxPAKkgrzK6wwMmsPeVsaJILhW8hlxAUYIEIjOQiRwTSrs5iV5Y9XM2muDsp+pXx4XilVT0a1Fdg222X7zGdHrMrOWI3VmWCP7Im9sFfn2XlzPpzP39EZZ7Szxf7J+foBaMyp4A==</latexit>

has a bottom element: ��. ?

<latexit sha1_base64="PIfS03tohZSaCEgXtunT9OcE1zY=">AAACJHicbVA9TwJBFNzDL8QvlNJmIzGxIndGoyXRxhIT+Ug4Qt4tD9ywe3fZfWdCCP4VO6P/xc5Y2PhDrDxOCgWmmszMS+ZNECtpyXU/ndzK6tr6Rn6zsLW9s7tX3D9o2CgxAusiUpFpBWBRyRDrJElhKzYIOlDYDIbXU7/5gMbKKLyjUYwdDYNQ9qUASqVuseSrNNwD38qBhsqjH0TULZbdipuBLxJvRspshlq3+O33IpFoDEkosLbtuTF1xmBICoWTgp9YjEEMYYDtlIag0XbGWfkJP04sUMRjNFwqnon492IM2tqRDtKkBrq3895UXOpZ0mBGprfMbCfUv+yMZRgnhKGYtiCpMGthhZHpZMh70iARTN9CLkMuwAARGslBiFRM0g0L6Vje/DSLpHFa8c4q57dn5erVbLY8O2RH7IR57IJV2Q2rsToTbMSe2At7dZ6dN+fd+fiN5pzZTYn9g/P1A66+pWo=</latexit>

to avoid ambiguities
we denote the bottom element of a domain byD

<latexit sha1_base64="pbGyk/2gIse1G5qVTaNUsM9A1Do=">AAACEHicbVDLSgNBEJyNrxhfUY9eBoPgKexKRI9BPXhMwDwgWULvpBOHzD6Y6RXCki/wJvov3sSrf+CveHKz7kFj6lRUVUN1eZGShmz70yqsrK6tbxQ3S1vbO7t75f2DtgljLbAlQhXqrgcGlQywRZIUdiON4HsKO97keu53HlAbGQZ3NI3Q9WEcyJEUQKnUvBmUK3bVzsD/EycnFZajMSh/9YehiH0MSCgwpufYEbkJaJJC4azUjw1GICYwxl5KA/DRuElWdMZPYgMU8gg1l4pnIv6+SMA3Zup7adIHujeL3lxc6hnyQU/1cJnZi2l06SYyiGLCQMxbkFSYtTBCy3Qe5EOpkQjmbyGXAReggQi15CBEKsbpXqV0LGdxmv+kfVZ1atXzZq1Sv8pnK7IjdsxOmcMuWJ3dsgZrMcGQPbJn9mI9Wa/Wm/X+Ey1Y+c0h+wPr4xtIsp1S</latexit>

?D

<latexit sha1_base64="N1haSX90uyPGOfauL6hJ8hFuBlo=">AAACFXicbVC7SgNBFJ2NrxhfUUubwSBYhV1RtAxqYRnBPCBZwt3JTRwz+2DmrhBC/sFO9F/sxNbaX7Fyd91Ck5zqcM65cO7xIiUN2faXVVhaXlldK66XNja3tnfKu3tNE8ZaYEOEKtRtDwwqGWCDJClsRxrB9xS2vNFV6rceURsZBnc0jtD1YRjIgRRAidTseiH1rnvlil21M/B54uSkwnLUe+Xvbj8UsY8BCQXGdBw7IncCmqRQOC11Y4MRiBEMsZPQAHw07iRrO+VHsQEKeYSaS8UzEf9eTMA3Zux7SdIHujezXiou9Az5oMe6v8jsxDS4cCcyiGLCQKQtSCrMWhihZbIR8r7USATpW8hlwAVoIEItOQiRiHEyWikZy5mdZp40T6rOafXs9rRSu8xnK7IDdsiOmcPOWY3dsDprMMEe2BN7Ya/Ws/VmvVsfv9GCld/ss3+wPn8AYCafhA==</latexit>

?⌃?

<latexit sha1_base64="4YILPuI43E/2TLSRW4Gp/KoegbA=">AAACI3icbVC7TsNAEDyHd3gFKGlOREhUkY2CoETQUIIgCVISWevLJpxyZ1t3a0Rk5VfoEPwLHaKh4EeosI0LXlPNzuxKsxPESlpy3TenMjM7N7+wuFRdXlldW69tbLZtlBiBLRGpyFwHYFHJEFskSeF1bBB0oLATjE9zv3OLxsoovKJJjH0No1AOpQDKJL+22Qsi8tPepRxp8PNh6tfqbsMtwP8SryR1VuLcr330BpFINIYkFFjb9dyY+ikYkkLhtNpLLMYgxjDCbkZD0Gj7aZF9yncTCxTxGA2Xihcifr9IQVs70UG2qYFu7G8vF//1LGkwEzP4z+wmNDzqpzKME8JQ5ClIKixSWGFk1hjygTRIBPlbyGXIBRggQiM5CJGJSVZhNSvL+13NX9Leb3jNxsFFs358Uta2yLbZDttjHjtkx+yMnbMWE+yO3bNH9uQ8OM/Oi/P6tVpxypst9gPO+ycv0KUu</latexit>

?⌃!⌃?

<latexit sha1_base64="zA6p+w0+zFo4Pl3/SJKYnGj9cJ8=">AAACNnicbZC7TsNAEEXXvAmvACXNigiJKrIRCMoIGkoQ5CHFkTXeDGHFrm3tjkGRlS/ga+gQfAkNHaKlpsJOUgDJra7OnZFmbpgoacl135yZ2bn5hcWl5dLK6tr6Rnlzq2Hj1Aisi1jFphWCRSUjrJMkha3EIOhQYTO8Oyvy5j0aK+PomvoJdjT0InkjBVCOgvKeH8YUZP6V7GngvpG9WwJj4gc+QkGRD4Jyxa26Q/FJ441NhY11EZS//W4sUo0RCQXWtj03oU4GhqRQOCj5qcUExB30sJ3bCDTaTjZ8Z8D3UgsU8wQNl4oPIf7eyEBb29dhPqmBbu3/rIBTM0saTN90p4XtlG5OOpmMkpQwEsUVJBUOr7DCyLxE5F1pkAiKt5DLiAswQIRGchAih2neaikvy/tfzaRpHFS9w+rR5WGldjqubYntsF22zzx2zGrsnF2wOhPskT2xF/bqPDvvzofzORqdccY72+yPnK8fw/+tHg==</latexit>

2121

Example

138 6 Denotational Semantics of IMP

Partial functions in S * S can be represented as sets of pairs (s ,s 0) that we write
as formulas s 7! s 0. Then the effect of Gb,c can be represented by the immediate
consequence operators for the following set of rules:

RGb,c
def
=

⇢
B JbKs C JcKs = s 00 s 00 7! s 0

s 7! s 0
,

¬B JbKs

s 7! s

�

Note that there are infinitely many instances of the rules, but each rule has only a
finite number of premises, and that

bRGb,c = Gb,c.

The only formulas appearing in the rules are s 00 7! s 0 (as a premise of the first rule),
s 7! s 0 and s 7! s (as conclusions); the other formulas express side conditions:
B JbKs ^ C JcKs = s 00 for the first rule and ¬B JbKs for the second rule. An
instance of the first rule schema is obtained by picking two memories s and s 00

such that B JbKs is true and C JcKs = s 00. Then for every s 0 such that s 00 7! s 0

we can derive s 7! s 0. The second rule schema is an axiom expressing that s 7! s
whenever ¬B JbKs .

Since all the rules obtained in this way have a finite number of premises (actually
one or none), we can apply Theorem 5.8, which ensures the continuity of bRGb,c . Now
by using Theorem 5.10 we have

fix Gb,c = fix bRGb,c = IRGb,c

Let us conclude this section with three examples which explain how to use the
definitions we have given.

Example 6.6. Let us consider the command

w = while true do skip

Now we will see how to calculate its semantics. We have C JwK def
= fix Gtrue,skip where

Gtrue,skipjs = B JtrueKs ! j⇤ (C JskipKs) ,s
= true ! j⇤ (C JskipKs) ,s
= j⇤ (C JskipKs)

= j⇤s
= js

So we have Gtrue,skipj = j , that is Gtrue,skip is the identity function. Then each
function j is a fixpoint of Gtrue,skip, but we are looking for the least fixpoint. This
means that the sought solution is the least function in the CPO? of functions S ! S?.
Then we have

fix Gtrue,skip = ls . ?S?

138 6 Denotational Semantics of IMP

Partial functions in S * S can be represented as sets of pairs (s ,s 0) that we write
as formulas s 7! s 0. Then the effect of Gb,c can be represented by the immediate
consequence operators for the following set of rules:

RGb,c
def
=

⇢
B JbKs C JcKs = s 00 s 00 7! s 0

s 7! s 0
,

¬B JbKs

s 7! s

�

Note that there are infinitely many instances of the rules, but each rule has only a
finite number of premises, and that

bRGb,c = Gb,c.

The only formulas appearing in the rules are s 00 7! s 0 (as a premise of the first rule),
s 7! s 0 and s 7! s (as conclusions); the other formulas express side conditions:
B JbKs ^ C JcKs = s 00 for the first rule and ¬B JbKs for the second rule. An
instance of the first rule schema is obtained by picking two memories s and s 00

such that B JbKs is true and C JcKs = s 00. Then for every s 0 such that s 00 7! s 0

we can derive s 7! s 0. The second rule schema is an axiom expressing that s 7! s
whenever ¬B JbKs .

Since all the rules obtained in this way have a finite number of premises (actually
one or none), we can apply Theorem 5.8, which ensures the continuity of bRGb,c . Now
by using Theorem 5.10 we have

fix Gb,c = fix bRGb,c = IRGb,c

Let us conclude this section with three examples which explain how to use the
definitions we have given.

Example 6.6. Let us consider the command

w = while true do skip

Now we will see how to calculate its semantics. We have C JwK def
= fix Gtrue,skip where

Gtrue,skipjs = B JtrueKs ! j⇤ (C JskipKs) ,s
= true ! j⇤ (C JskipKs) ,s
= j⇤ (C JskipKs)

= j⇤s
= js

So we have Gtrue,skipj = j , that is Gtrue,skip is the identity function. Then each
function j is a fixpoint of Gtrue,skip, but we are looking for the least fixpoint. This
means that the sought solution is the least function in the CPO? of functions S ! S?.
Then we have

fix Gtrue,skip = ls . ?S?

138 6 Denotational Semantics of IMP

Partial functions in S * S can be represented as sets of pairs (s ,s 0) that we write
as formulas s 7! s 0. Then the effect of Gb,c can be represented by the immediate
consequence operators for the following set of rules:

RGb,c
def
=

⇢
B JbKs C JcKs = s 00 s 00 7! s 0

s 7! s 0
,

¬B JbKs

s 7! s

�

Note that there are infinitely many instances of the rules, but each rule has only a
finite number of premises, and that

bRGb,c = Gb,c.

The only formulas appearing in the rules are s 00 7! s 0 (as a premise of the first rule),
s 7! s 0 and s 7! s (as conclusions); the other formulas express side conditions:
B JbKs ^ C JcKs = s 00 for the first rule and ¬B JbKs for the second rule. An
instance of the first rule schema is obtained by picking two memories s and s 00

such that B JbKs is true and C JcKs = s 00. Then for every s 0 such that s 00 7! s 0

we can derive s 7! s 0. The second rule schema is an axiom expressing that s 7! s
whenever ¬B JbKs .

Since all the rules obtained in this way have a finite number of premises (actually
one or none), we can apply Theorem 5.8, which ensures the continuity of bRGb,c . Now
by using Theorem 5.10 we have

fix Gb,c = fix bRGb,c = IRGb,c

Let us conclude this section with three examples which explain how to use the
definitions we have given.

Example 6.6. Let us consider the command

w = while true do skip

Now we will see how to calculate its semantics. We have C JwK def
= fix Gtrue,skip where

Gtrue,skipjs = B JtrueKs ! j⇤ (C JskipKs) ,s
= true ! j⇤ (C JskipKs) ,s
= j⇤ (C JskipKs)

= j⇤s
= js

So we have Gtrue,skipj = j , that is Gtrue,skip is the identity function. Then each
function j is a fixpoint of Gtrue,skip, but we are looking for the least fixpoint. This
means that the sought solution is the least function in the CPO? of functions S ! S?.
Then we have

fix Gtrue,skip = ls . ?S?

138 6 Denotational Semantics of IMP

Partial functions in S * S can be represented as sets of pairs (s ,s 0) that we write
as formulas s 7! s 0. Then the effect of Gb,c can be represented by the immediate
consequence operators for the following set of rules:

RGb,c
def
=

⇢
B JbKs C JcKs = s 00 s 00 7! s 0

s 7! s 0
,

¬B JbKs

s 7! s

�

Note that there are infinitely many instances of the rules, but each rule has only a
finite number of premises, and that

bRGb,c = Gb,c.

The only formulas appearing in the rules are s 00 7! s 0 (as a premise of the first rule),
s 7! s 0 and s 7! s (as conclusions); the other formulas express side conditions:
B JbKs ^ C JcKs = s 00 for the first rule and ¬B JbKs for the second rule. An
instance of the first rule schema is obtained by picking two memories s and s 00

such that B JbKs is true and C JcKs = s 00. Then for every s 0 such that s 00 7! s 0

we can derive s 7! s 0. The second rule schema is an axiom expressing that s 7! s
whenever ¬B JbKs .

Since all the rules obtained in this way have a finite number of premises (actually
one or none), we can apply Theorem 5.8, which ensures the continuity of bRGb,c . Now
by using Theorem 5.10 we have

fix Gb,c = fix bRGb,c = IRGb,c

Let us conclude this section with three examples which explain how to use the
definitions we have given.

Example 6.6. Let us consider the command

w = while true do skip

Now we will see how to calculate its semantics. We have C JwK def
= fix Gtrue,skip where

Gtrue,skipjs = B JtrueKs ! j⇤ (C JskipKs) ,s
= true ! j⇤ (C JskipKs) ,s
= j⇤ (C JskipKs)

= j⇤s
= js

So we have Gtrue,skipj = j , that is Gtrue,skip is the identity function. Then each
function j is a fixpoint of Gtrue,skip, but we are looking for the least fixpoint. This
means that the sought solution is the least function in the CPO? of functions S ! S?.
Then we have

fix Gtrue,skip = ls . ?S?

138 6 Denotational Semantics of IMP

Partial functions in S * S can be represented as sets of pairs (s ,s 0) that we write
as formulas s 7! s 0. Then the effect of Gb,c can be represented by the immediate
consequence operators for the following set of rules:

RGb,c
def
=

⇢
B JbKs C JcKs = s 00 s 00 7! s 0

s 7! s 0
,

¬B JbKs

s 7! s

�

Note that there are infinitely many instances of the rules, but each rule has only a
finite number of premises, and that

bRGb,c = Gb,c.

The only formulas appearing in the rules are s 00 7! s 0 (as a premise of the first rule),
s 7! s 0 and s 7! s (as conclusions); the other formulas express side conditions:
B JbKs ^ C JcKs = s 00 for the first rule and ¬B JbKs for the second rule. An
instance of the first rule schema is obtained by picking two memories s and s 00

such that B JbKs is true and C JcKs = s 00. Then for every s 0 such that s 00 7! s 0

we can derive s 7! s 0. The second rule schema is an axiom expressing that s 7! s
whenever ¬B JbKs .

Since all the rules obtained in this way have a finite number of premises (actually
one or none), we can apply Theorem 5.8, which ensures the continuity of bRGb,c . Now
by using Theorem 5.10 we have

fix Gb,c = fix bRGb,c = IRGb,c

Let us conclude this section with three examples which explain how to use the
definitions we have given.

Example 6.6. Let us consider the command

w = while true do skip

Now we will see how to calculate its semantics. We have C JwK def
= fix Gtrue,skip where

Gtrue,skipjs = B JtrueKs ! j⇤ (C JskipKs) ,s
= true ! j⇤ (C JskipKs) ,s
= j⇤ (C JskipKs)

= j⇤s
= js

So we have Gtrue,skipj = j , that is Gtrue,skip is the identity function. Then each
function j is a fixpoint of Gtrue,skip, but we are looking for the least fixpoint. This
means that the sought solution is the least function in the CPO? of functions S ! S?.
Then we have

fix Gtrue,skip = ls . ?S?

is the identity function

138 6 Denotational Semantics of IMP

Partial functions in S * S can be represented as sets of pairs (s ,s 0) that we write
as formulas s 7! s 0. Then the effect of Gb,c can be represented by the immediate
consequence operators for the following set of rules:

RGb,c
def
=

⇢
B JbKs C JcKs = s 00 s 00 7! s 0

s 7! s 0
,

¬B JbKs

s 7! s

�

Note that there are infinitely many instances of the rules, but each rule has only a
finite number of premises, and that

bRGb,c = Gb,c.

The only formulas appearing in the rules are s 00 7! s 0 (as a premise of the first rule),
s 7! s 0 and s 7! s (as conclusions); the other formulas express side conditions:
B JbKs ^ C JcKs = s 00 for the first rule and ¬B JbKs for the second rule. An
instance of the first rule schema is obtained by picking two memories s and s 00

such that B JbKs is true and C JcKs = s 00. Then for every s 0 such that s 00 7! s 0

we can derive s 7! s 0. The second rule schema is an axiom expressing that s 7! s
whenever ¬B JbKs .

Since all the rules obtained in this way have a finite number of premises (actually
one or none), we can apply Theorem 5.8, which ensures the continuity of bRGb,c . Now
by using Theorem 5.10 we have

fix Gb,c = fix bRGb,c = IRGb,c

Let us conclude this section with three examples which explain how to use the
definitions we have given.

Example 6.6. Let us consider the command

w = while true do skip

Now we will see how to calculate its semantics. We have C JwK def
= fix Gtrue,skip where

Gtrue,skipjs = B JtrueKs ! j⇤ (C JskipKs) ,s
= true ! j⇤ (C JskipKs) ,s
= j⇤ (C JskipKs)

= j⇤s
= js

So we have Gtrue,skipj = j , that is Gtrue,skip is the identity function. Then each
function j is a fixpoint of Gtrue,skip, but we are looking for the least fixpoint. This
means that the sought solution is the least function in the CPO? of functions S ! S?.
Then we have

fix Gtrue,skip = ls . ?S?

138 6 Denotational Semantics of IMP

Partial functions in S * S can be represented as sets of pairs (s ,s 0) that we write
as formulas s 7! s 0. Then the effect of Gb,c can be represented by the immediate
consequence operators for the following set of rules:

RGb,c
def
=

⇢
B JbKs C JcKs = s 00 s 00 7! s 0

s 7! s 0
,

¬B JbKs

s 7! s

�

Note that there are infinitely many instances of the rules, but each rule has only a
finite number of premises, and that

bRGb,c = Gb,c.

The only formulas appearing in the rules are s 00 7! s 0 (as a premise of the first rule),
s 7! s 0 and s 7! s (as conclusions); the other formulas express side conditions:
B JbKs ^ C JcKs = s 00 for the first rule and ¬B JbKs for the second rule. An
instance of the first rule schema is obtained by picking two memories s and s 00

such that B JbKs is true and C JcKs = s 00. Then for every s 0 such that s 00 7! s 0

we can derive s 7! s 0. The second rule schema is an axiom expressing that s 7! s
whenever ¬B JbKs .

Since all the rules obtained in this way have a finite number of premises (actually
one or none), we can apply Theorem 5.8, which ensures the continuity of bRGb,c . Now
by using Theorem 5.10 we have

fix Gb,c = fix bRGb,c = IRGb,c

Let us conclude this section with three examples which explain how to use the
definitions we have given.

Example 6.6. Let us consider the command

w = while true do skip

Now we will see how to calculate its semantics. We have C JwK def
= fix Gtrue,skip where

Gtrue,skipjs = B JtrueKs ! j⇤ (C JskipKs) ,s
= true ! j⇤ (C JskipKs) ,s
= j⇤ (C JskipKs)

= j⇤s
= js

So we have Gtrue,skipj = j , that is Gtrue,skip is the identity function. Then each
function j is a fixpoint of Gtrue,skip, but we are looking for the least fixpoint. This
means that the sought solution is the least function in the CPO? of functions S ! S?.
Then we have

fix Gtrue,skip = ls . ?S?

138 6 Denotational Semantics of IMP

Partial functions in S * S can be represented as sets of pairs (s ,s 0) that we write
as formulas s 7! s 0. Then the effect of Gb,c can be represented by the immediate
consequence operators for the following set of rules:

RGb,c
def
=

⇢
B JbKs C JcKs = s 00 s 00 7! s 0

s 7! s 0
,

¬B JbKs

s 7! s

�

Note that there are infinitely many instances of the rules, but each rule has only a
finite number of premises, and that

bRGb,c = Gb,c.

The only formulas appearing in the rules are s 00 7! s 0 (as a premise of the first rule),
s 7! s 0 and s 7! s (as conclusions); the other formulas express side conditions:
B JbKs ^ C JcKs = s 00 for the first rule and ¬B JbKs for the second rule. An
instance of the first rule schema is obtained by picking two memories s and s 00

such that B JbKs is true and C JcKs = s 00. Then for every s 0 such that s 00 7! s 0

we can derive s 7! s 0. The second rule schema is an axiom expressing that s 7! s
whenever ¬B JbKs .

Since all the rules obtained in this way have a finite number of premises (actually
one or none), we can apply Theorem 5.8, which ensures the continuity of bRGb,c . Now
by using Theorem 5.10 we have

fix Gb,c = fix bRGb,c = IRGb,c

Let us conclude this section with three examples which explain how to use the
definitions we have given.

Example 6.6. Let us consider the command

w = while true do skip

Now we will see how to calculate its semantics. We have C JwK def
= fix Gtrue,skip where

Gtrue,skipjs = B JtrueKs ! j⇤ (C JskipKs) ,s
= true ! j⇤ (C JskipKs) ,s
= j⇤ (C JskipKs)

= j⇤s
= js

So we have Gtrue,skipj = j , that is Gtrue,skip is the identity function. Then each
function j is a fixpoint of Gtrue,skip, but we are looking for the least fixpoint. This
means that the sought solution is the least function in the CPO? of functions S ! S?.
Then we have

fix Gtrue,skip = ls . ?S?

every element is a
fixpoint

2222

Example
<latexit sha1_base64="Gs47zDpHcFyzgby3j0cyMK3WMIo=">AAACw3icjVHbihNBEO2Mt3W9ZfXRl8Yg+GKYkUVFWFkUwccVzO5COoSankq2SXfP2F2TbGjmN/waX/Uf/Bt7JkHcy4P1dDh1OVWn8korT2n6u5fcuHnr9p2du7v37j94+Ki/9/jYl7WTOJKlLt1pDh61sjgiRRpPK4dgco0n+eJjmz9ZovOqtF9pXeHEwNyqmZJAkZr205UocIbfuDBAZ/ksrM6Uxkbw8/eZ+EsWZcu8Ozh/mU37g3SYdsGvgmwLBmwbR9O9XhBFKWuDlqQG78dZWtEkgCMlo9SuqD1WIBcwx3GEFgz6SehOa/jz2gOVvELHleYdif92BDDer00eK9td/eVcS16XG9c0ezsJylY1oZWtEMXDOyEvnYqeIS+UQyJoN0euLJfggAid4iBlJOto4gVBTwbc2hXxKIsrWRoDtggbh5vQuelQB5HXShcRcbGMNjgFdh61RRlVeThomuv6a7X87xFiUx7nxHdll59zFRy/Gmavh9mX/cHhh+3jdthT9oy9YBl7ww7ZZ3bERkyy7+wH+8l+JZ+SReIS2pQmvW3PE3YhkuYPg0Lh4A==</latexit>

w
M
= while x > 1 do x := x� 1

<latexit sha1_base64="6ZworQdspaTVGtqDCAmPZQL4iRE=">AAADK3icjVHLbhMxFPUMrzI8msKSjUVAKqiNZhAChBRUtQtYFom0leIQ3XFuEqu2Z7A9aaPR/Ac/wdewArHlNxDOZECk6YK7Or6Pc3zvSXMprIvjb0F45eq16zc2bka3bt+5u9naundks8Jw7PFMZuYkBYtSaOw54SSe5AZBpRKP09ODRf14hsaKTH9w8xwHCiZajAUH51PD1mf2FpSCYZnu8IpRNgOTT4UHVkwURF0aMQVuykGW+xWTMjXAT9HR8zcJM+bPq+lmRkymDozJzqKG6ePT7b8EBysEr7vnu+scT3aiJRi22nEnroOug6QBbdLE4XArKNko44VC7bgEa/tJnLtBCcYJLrGKWGEx91owwb6HGhTaQVmfsKKPCwsuozkaKiStk/jvRAnK2rlKfediHXuxtkheVusXbvxqUAqdFw41Xwg5IbEWstwI7w3SkTDoHCx+jlRoysGAc2gEBc59svBmrQhap8DMzcgvpfGMZ95BPfLr4xg/VWV9cIOyZGkh5Mij2ldnBOiJ12aZV6Vlt6oumy/E7L8p2LLd83i7kovmrIOjZ53kRSd5/7y9t98Yt0EekIdkmyTkJdkj78gh6RFOfgWPgt2gE34Jv4bfwx/L1jBoZu6TlQh//gZUAgkP</latexit>

�b,c ' � = BJx > 1K� ! '⇤(CJx := x� 1K�),�
<latexit sha1_base64="CWNGl5at1/lcyL35ubjunBOZqgY=">AAAC3nicjVHLbtNAFJ2YVzGvFJZsRkRICYLURgjYFFWwQWJTJNJWit1wPblxRp0Zm5lx2mjkLTvElt/gaxA7+BPGiYXoY8FdHZ177j33kZWCGxtFPzvBpctXrl7buB7euHnr9p3u5t09U1Sa4YgVotAHGRgUXOHIcivwoNQIMhO4nx29afL7C9SGF+qDXZaYSsgVn3EG1lOT7rttGvYTw3MJ/ZPBq3gQJprncwtaF8dhsgBdzvnho1YyPnR/tU/iemviTup08Dhck5NuLxpGq6DnQdyCHmljd7LZccm0YJVEZZkAY8ZxVNrUgbacCazDpDJYAjuCHMceKpBoUrfauqYPKwO2oCVqygVdkfhvhQNpzFJmXinBzs3ZXENelBtXdvYydVyVlUXFGiPLBa6MDNPcnxPplGu0FprJkXJFGWiwFjWnwJgnK3/fU4bGStBLPfVLKTxmhZSgpn59nOGn2iXNFBqFS7KKi6lHtLm91RxU7r2TwrtSt13XF9VXfPHfLZK13Pfx74rPPuc82Hs6jJ8P4/fPejuv28dtkPvkAemTmLwgO+Qt2SUjwsh38oP8Ir+Dj8Hn4EvwdS0NOm3NPXIqgm9/AMgk6uM=</latexit>

= (�(x) > 1) ! '⇤(�[�(x)�1/x]),�

<latexit sha1_base64="4Lnz/PEzNWlp75AB7SD6w6qNIOI=">AAACq3icjVHJjhMxEHWabQhbBi5IXCwiJA4QdY8QcEEawYXjsGRmRBxF1e5Kxhrb3djljCKr+Rqu8D/8De4kB2Y5UKenV8urelU2WnnK8z+97Nr1Gzdv7dzu37l77/6Dwe7DQ18HJ3Esa1274xI8amVxTIo0HjcOwZQaj8rTD13+aInOq9p+pVWDUwMLq+ZKAiVqNngszlSFJ0DxczuL5QvZigrn+L0/GwzzUb4OfhkUWzBk2z iY7faiqGoZDFqSGryfFHlD0wiOlNTY9kXw2IA8hQVOErRg0E/j+oSWPwseqOYNOq40X5P4b0cE4/3KlKnSAJ34i7mOvCo3CTR/O43KNoHQyk6IlMa1kJdOJW+QV8ohEXSbI1eWS3BAhE5xkDKRIZl1TtCTAbdyVTrK4pmsjQFbxY1zbRTdFg51FGVQukqIi2WywSmwi6Qt6qTK47u2vao/qOV/jxCb8jQnvau4+JzL4HBvVLweFZ9eDfffbx+3w56wp+w5K9gbts8+sgM2ZpL9YD/ZL/Y7e5l9yb5lYlOa9bY9j9i5yPAvlMfYnw==</latexit>

bRb,c
M
=

<latexit sha1_base64="bewEr+WxPnh+rOgJjxzijJLJOO8=">AAAC03icjVHLblMxEHUur1JeKSzZWKRIqVRFuRUCNkgRbFgWibSV4iia60yCVT9u7bmhwbobxJbf4GvYgsTf4JtkQR8LZuOjc2bmeGaKUqtA/f6fVnbj5q3bd7bubt+7/+Dho/bO46PgKi9xKJ12/qSAgFpZHJIijSelRzCFxuPi9F2jHy/QB+XsR1qWODYwt2qmJFCiJu2BmHmQsY5dEdTcwP762avFvjCFO49i5hxZRxjUF+S7a7l7vic0nvF8t560O/1efxX8Ksg3oMM2cTjZaUUxdbIyaElqCGGU90saR/CkpMZ6W1QBS5CnMMdRghYMhnFcjVrz51UAcrxEz5XmKxL/rYhgQliaImUaoE/hstaQ12mjimavx1HZsiK0sjEipXFlFKRXaYfIp8ojETQ/R64sl+CBCL3iIGUiq7TUC4aBDPiln6ahLH6Wzhiw0zQ+zvCsjqL5hUcdRVEpPU2Ii0Vag1dg58lbuOTK45u6vq6+Uov/biHW6alPOld++ThXwdFBL3/Zyz+86Azebg63xZ6yZ6zLcvaKDdh7dsiGTLIf7Cf7xX5nwyxmX7Nv69Sstal5wi5E9v0vDAno0w==</latexit>

(�,�)
�(x) 1

<latexit sha1_base64="7OYsuvxuWT8ymJ7MIxvjo78qDrU=">AAADDnicjVHJbhNBEO0ZloSw2XDk0sJBcaRgPAgBl6AILhyDhJNIbmPV9JRNK70M3T2OTWv+ga/hhrjyCxz5E9pLgCwH6vT0XlW9WvJSCue73Z9JeuXqtetr6zc2bt66feduo3nvwJnKcuxxI409ysGhFBp7XniJR6VFULnEw/z4zVw/nKB1wuj3flbiQMFYi5Hg4CM1bAQ2ssBDmzkxVrC1tbMC2/Up95dhO0zlZhpLjPHaeHTiM9LNpd6ebr+iGTvBYoz0tNvuEvQ/hD9Jj7P6yTBM68FmPWy0up3uIuhFkK1Ai6xif9hMAisMrxRqzyU418+6pR8EsF5wifUGqxyWwI9hjP0INSh0g7C4Uk0fVQ68oSVaKiRdkPhvRQDl3EzlMVOB/+jOa3PyMq1f+dHLQRC6rDxqPjfyQuLCyHEr4vmRFsKi9zCfHKnQlIMF79EKCpxHsor/OGPovAI7s0VcSuMJN0qBLuL6OMJPdWDzKSzKwPJKyCIiyibxDFaAHkdvZqIrDbt1fVl9JSb/3YIt02Of+K7s/HMugoOnnex5J3v3rLX3evW4dfKAPCRtkpEXZI+8JfukRzj5lawljaSZfkm/pt/S78vUNFnV3CdnIv3xG8NJ/EQ=</latexit>

(�00,�0)

(�,�0)
�(x) > 1 ^ �00 = �[�(x)�1/x]

<latexit sha1_base64="p+ta1xV6ua9Cx2gdmpuc5ziWtAc=">AAACSnicbVBNT9tAEF2nKR8phaQcuawaVeoBRXZBwAUJ0UuPIBGIFEdovJ6kK3bXZnccFFn+BVzhX/EH+jd6Q1xYhxwKdE5P783ovXlJrqSjMPwTND40Py4tr6y2Pq19Xt9od76cu6ywAvsiU5kdJOBQSYN9kqRwkFsEnSi8SK5+1vrFFK2TmTmjWY4jDRMjx1IAeep0+7LdDXvhfPh7EC1Aly3m5LIT7MRpJgqNhoQC54ZRmNOoBEtSKKxaceEwB3EFExx6aECjG5XzpBX/VjigjOdouVR8TuK/FyVo52Y68Zsa6Ld7q9Xk/7RhQeODUSlNXhAaURuRVDg3csJKXwHyVFokgjo5cmm4AAtEaCUHITxZ+E5eGTrSYGc29U8ZvBGZ1mDSMk5xjNdVGdcpLKoyTgqpUo94PPU1WAlm4r3jzLvy8rCqqpavOXpb6ntw/qMX7fWi093u0fGi8BW2xb6y7yxi++yI/WInrM8EQ3bL7th98BD8DR6Dp5fVRrC42WSvptF8BjsIs6w=</latexit>,

<latexit sha1_base64="4Lnz/PEzNWlp75AB7SD6w6qNIOI=">AAACq3icjVHJjhMxEHWabQhbBi5IXCwiJA4QdY8QcEEawYXjsGRmRBxF1e5Kxhrb3djljCKr+Rqu8D/8De4kB2Y5UKenV8urelU2WnnK8z+97Nr1Gzdv7dzu37l77/6Dwe7DQ18HJ3Esa1274xI8amVxTIo0HjcOwZQaj8rTD13+aInOq9p+pVWDUwMLq+ZKAiVqNngszlSFJ0DxczuL5QvZigrn+L0/GwzzUb4OfhkUWzBk2z iY7faiqGoZDFqSGryfFHlD0wiOlNTY9kXw2IA8hQVOErRg0E/j+oSWPwseqOYNOq40X5P4b0cE4/3KlKnSAJ34i7mOvCo3CTR/O43KNoHQyk6IlMa1kJdOJW+QV8ohEXSbI1eWS3BAhE5xkDKRIZl1TtCTAbdyVTrK4pmsjQFbxY1zbRTdFg51FGVQukqIi2WywSmwi6Qt6qTK47u2vao/qOV/jxCb8jQnvau4+JzL4HBvVLweFZ9eDfffbx+3w56wp+w5K9gbts8+sgM2ZpL9YD/ZL/Y7e5l9yb5lYlOa9bY9j9i5yPAvlMfYnw==</latexit>

bRb,c
M
=

<latexit sha1_base64="bewEr+WxPnh+rOgJjxzijJLJOO8=">AAAC03icjVHLblMxEHUur1JeKSzZWKRIqVRFuRUCNkgRbFgWibSV4iia60yCVT9u7bmhwbobxJbf4GvYgsTf4JtkQR8LZuOjc2bmeGaKUqtA/f6fVnbj5q3bd7bubt+7/+Dho/bO46PgKi9xKJ12/qSAgFpZHJIijSelRzCFxuPi9F2jHy/QB+XsR1qWODYwt2qmJFCiJu2BmHmQsY5dEdTcwP762avFvjCFO49i5hxZRxjUF+S7a7l7vic0nvF8t560O/1efxX8Ksg3oMM2cTjZaUUxdbIyaElqCGGU90saR/CkpMZ6W1QBS5CnMMdRghYMhnFcjVrz51UAcrxEz5XmKxL/rYhgQliaImUaoE/hstaQ12mjimavx1HZsiK0sjEipXFlFKRXaYfIp8ojETQ/R64sl+CBCL3iIGUiq7TUC4aBDPiln6ahLH6Wzhiw0zQ+zvCsjqL5hUcdRVEpPU2Ii0Vag1dg58lbuOTK45u6vq6+Uov/biHW6alPOld++ThXwdFBL3/Zyz+86Azebg63xZ6yZ6zLcvaKDdh7dsiGTLIf7Cf7xX5nwyxmX7Nv69Sstal5wi5E9v0vDAno0w==</latexit>

(�,�)
�(x) 1 <latexit sha1_base64="p+ta1xV6ua9Cx2gdmpuc5ziWtAc=">AAACSnicbVBNT9tAEF2nKR8phaQcuawaVeoBRXZBwAUJ0UuPIBGIFEdovJ6kK3bXZnccFFn+BVzhX/EH+jd6Q1xYhxwKdE5P783ovXlJrqSjMPwTND40Py4tr6y2Pq19Xt9od76cu6ywAvsiU5kdJOBQSYN9kqRwkFsEnSi8SK5+1vrFFK2TmTmjWY4jDRMjx1IAeep0+7LdDXvhfPh7EC1Aly3m5LIT7MRpJgqNhoQC54ZRmNOoBEtSKKxaceEwB3EFExx6aECjG5XzpBX/VjigjOdouVR8TuK/FyVo52Y68Zsa6Ld7q9Xk/7RhQeODUSlNXhAaURuRVDg3csJKXwHyVFokgjo5cmm4AAtEaCUHITxZ+E5eGTrSYGc29U8ZvBGZ1mDSMk5xjNdVGdcpLKoyTgqpUo94PPU1WAlm4r3jzLvy8rCqqpavOXpb6ntw/qMX7fWi093u0fGi8BW2xb6y7yxi++yI/WInrM8EQ3bL7th98BD8DR6Dp5fVRrC42WSvptF8BjsIs6w=</latexit>,

<latexit sha1_base64="tv+NZpMxF/ILlMjZL7KKl93/uB0=">AAAC9nicjVHJbhNBEG0PWwibA0cuLRyEIwUzgxBwAUVw4RgknERyG6umXeO00svQ3WNsWvMr3BBXfoNP4Cu4wo0e2yxZDtTp6dWrerXkpRTOp+m3VnLu/IWLl9Yur1+5eu36jfbGzT1nKsuxz4009iAHh1Jo7HvhJR6UFkHlEvfzo5dNfn+K1gmj3/h5iUMFEy0KwcFHatTmrLDAQ5c5MVEweBuWoDvbup/VD0ZhVg+3l9S9rfq37C/DtpnKzSywwhivjUcnPiDd/NPkOc0261G7k/bSRdDTIFuBDlnF7mijFdjY8Eqh9lyCc4MsLf0wgPWCS6zXWeWwBH4EExxEqEGhG4bFNWp6t3LgDS3RUiHpgsR/KwIo5+Yqj0oF/tCdzDXkWblB5YunwyB0WXnUvDHyQuLCyHEr4pmRjoVF76GZHKnQlIMF79EKCpxHsop3P2bovAI7t+O4lMb33CgFehzXxwLf1YE1U1iUgeWVkOOIKJvGM1gBehK9mYmuNDyr67PqKzH97xZsKY994ruyk885DfYe9rLHvez1o87Oi9Xj1shtcod0SUaekB3yiuySPuHkK/lOfpCfySz5mHxKPi+lSWtVc4sci+TLLynm9hY=</latexit>

(�[�(x)�1/x],�0)

(�,�0)
�(x) > 1

<latexit sha1_base64="gtmZw8KwENVgKc0XjoOY+tpAjCw=">AAACknicjVHJbhNBEG0PAUJYsnHj0oqFxMmaQYggJKQslxxySCScRPJYUU1P2ZTS3TN0VxtZo/kCruHj+Jv0OD6Q5UCdnl4t71VVUWvynKZ/e8mTlafPnq++WHv56vWb9Y3NrTNfBadwqCpduYsCPGqyOGRijRe1QzCFxvPi6rDLn8/Qearsd57XODYwtTQhBRyp0+Jyo58O0kXIhyBbgr5YxsnlZq/Jy0oFg5aVBu9HWVrzuAHHpDS2a3nwWIO6gimOIrRg0I+bhdNWvg8euJI1OklaLkj8t6MB4/3cFLHSAP/w93Md+VhuFHjyZdyQrQOjVZ0Qk8aFkFeO4glQluSQGTrnKMlKBQ6Y0ZEEpSIZ4k3uCHo24OaujEtZ/KUqY8CWcX2c4M+2yTsXDnWTF4F0GZHMZ/EMjsBOo3ZeRVXZfGvbx/oDzf57RH5bHufEd2X3n/MQnH0cZJ8H2emn/t7B8nGr4p3YER9EJnbFnjgSJ2IolEDxW1yLP8nb5Guynxzelia9Zc+2uBPJ8Q3jWc6r</latexit>

b
<latexit sha1_base64="9XpwHpxyxtGGsOYM7plyVqvTPtU=">AAACknicjVHJbhNBEG0PAUJYsnHj0oqFxMmaQYggJKQslxxySCScRPJYUU1P2ZTS3TN0VxtZo/kCruHj+Jv0OD6Q5UCdnl4t71VVUWvynKZ/e8mTlafPnq++WHv56vWb9Y3NrTNfBadwqCpduYsCPGqyOGRijRe1QzCFxvPi6rDLn8/Qearsd57XODYwtTQhBRypU3W50U8H6SLkQ5AtQV8s4+Rys9fkZaWCQctKg/ejLK153IBjUhrbtTx4rEFdwRRHEVow6MfNwmkr3wcPXMkanSQtFyT+29GA8X5uilhpgH/4+7mOfCw3Cjz5Mm7I1oHRqk6ISeNCyCtH8QQoS3LIDJ1zlGSlAgfM6EiCUpEM8SZ3BD0bcHNXxqUs/lKVMWDLuD5O8Gfb5J0Lh7rJi0C6jEjms3gGR2CnUTuvoqpsvrXtY/2BZv89Ir8tj3Piu7L7z3kIzj4Oss+D7PRTf+9g+bhV8U7siA8iE7tiTxyJEzEUSqD4La7Fn+Rt8jXZTw5vS5Pesmdb3Ink+Ablh86s</latexit>c

2323

Example
<latexit sha1_base64="Gs47zDpHcFyzgby3j0cyMK3WMIo=">AAACw3icjVHbihNBEO2Mt3W9ZfXRl8Yg+GKYkUVFWFkUwccVzO5COoSankq2SXfP2F2TbGjmN/waX/Uf/Bt7JkHcy4P1dDh1OVWn8korT2n6u5fcuHnr9p2du7v37j94+Ki/9/jYl7WTOJKlLt1pDh61sjgiRRpPK4dgco0n+eJjmz9ZovOqtF9pXeHEwNyqmZJAkZr205UocIbfuDBAZ/ksrM6Uxkbw8/eZ+EsWZcu8Ozh/mU37g3SYdsGvgmwLBmwbR9O9XhBFKWuDlqQG78dZWtEkgCMlo9SuqD1WIBcwx3GEFgz6SehOa/jz2gOVvELHleYdif92BDDer00eK9td/eVcS16XG9c0ezsJylY1oZWtEMXDOyEvnYqeIS+UQyJoN0euLJfggAid4iBlJOto4gVBTwbc2hXxKIsrWRoDtggbh5vQuelQB5HXShcRcbGMNjgFdh61RRlVeThomuv6a7X87xFiUx7nxHdll59zFRy/Gmavh9mX/cHhh+3jdthT9oy9YBl7ww7ZZ3bERkyy7+wH+8l+JZ+SReIS2pQmvW3PE3YhkuYPg0Lh4A==</latexit>

w
M
= while x > 1 do x := x� 1

<latexit sha1_base64="4Lnz/PEzNWlp75AB7SD6w6qNIOI=">AAACq3icjVHJjhMxEHWabQhbBi5IXCwiJA4QdY8QcEEawYXjsGRmRBxF1e5Kxhrb3djljCKr+Rqu8D/8De4kB2Y5UKenV8urelU2WnnK8z+97Nr1Gzdv7dzu37l77/6Dwe7DQ18HJ3Esa1274xI8amVxTIo0HjcOwZQaj8rTD13+aInOq9p+pVWDUwMLq+ZKAiVqNngszlSFJ0DxczuL5QvZigrn+L0/GwzzUb4OfhkUWzBk2ziY7faiqGoZDFqSGryfFHlD0wiOlNTY9kXw2IA8hQVOErRg0E/j+oSWPwseqOYNOq40X5P4b0cE4/3KlKnSAJ34i7mOvCo3CTR/O43KNoHQyk6IlMa1kJdOJW+QV8ohEXSbI1eWS3BAhE5xkDKRIZl1TtCTAbdyVTrK4pmsjQFbxY1zbRTdFg51FGVQukqIi2WywSmwi6Qt6qTK47u2vao/qOV/jxCb8jQnvau4+JzL4HBvVLweFZ9eDfffbx+3w56wp+w5K9gbts8+sgM2ZpL9YD/ZL/Y7e5l9yb5lYlOa9bY9j9i5yPAvlMfYnw==</latexit>

bRb,c
M
=

<latexit sha1_base64="bewEr+WxPnh+rOgJjxzijJLJOO8=">AAAC03icjVHLblMxEHUur1JeKSzZWKRIqVRFuRUCNkgRbFgWibSV4iia60yCVT9u7bmhwbobxJbf4GvYgsTf4JtkQR8LZuOjc2bmeGaKUqtA/f6fVnbj5q3bd7bubt+7/+Dho/bO46PgKi9xKJ12/qSAgFpZHJIijSelRzCFxuPi9F2jHy/QB+XsR1qWODYwt2qmJFCiJu2BmHmQsY5dEdTcwP762avFvjCFO49i5hxZRxjUF+S7a7l7vic0nvF8t560O/1efxX8Ksg3oMM2cTjZaUUxdbIyaElqCGGU90saR/CkpMZ6W1QBS5CnMMdRghYMhnFcjVrz51UAcrxEz5XmKxL/rYhgQliaImUaoE/hstaQ12mjimavx1HZsiK0sjEipXFlFKRXaYfIp8ojETQ/R64sl+CBCL3iIGUiq7TUC4aBDPiln6ahLH6Wzhiw0zQ+zvCsjqL5hUcdRVEpPU2Ii0Vag1dg58lbuOTK45u6vq6+Uov/biHW6alPOld++ThXwdFBL3/Zyz+86Azebg63xZ6yZ6zLcvaKDdh7dsiGTLIf7Cf7xX5nwyxmX7Nv69Sstal5wi5E9v0vDAno0w==</latexit>

(�,�)
�(x) 1 <latexit sha1_base64="p+ta1xV6ua9Cx2gdmpuc5ziWtAc=">AAACSnicbVBNT9tAEF2nKR8phaQcuawaVeoBRXZBwAUJ0UuPIBGIFEdovJ6kK3bXZnccFFn+BVzhX/EH+jd6Q1xYhxwKdE5P783ovXlJrqSjMPwTND40Py4tr6y2Pq19Xt9od76cu6ywAvsiU5kdJOBQSYN9kqRwkFsEnSi8SK5+1vrFFK2TmTmjWY4jDRMjx1IAeep0+7LdDXvhfPh7EC1Aly3m5LIT7MRpJgqNhoQC54ZRmNOoBEtSKKxaceEwB3EFExx6aECjG5XzpBX/VjigjOdouVR8TuK/FyVo52Y68Zsa6Ld7q9Xk/7RhQeODUSlNXhAaURuRVDg3csJKXwHyVFokgjo5cmm4AAtEaCUHITxZ+E5eGTrSYGc29U8ZvBGZ1mDSMk5xjNdVGdcpLKoyTgqpUo94PPU1WAlm4r3jzLvy8rCqqpavOXpb6ntw/qMX7fWi093u0fGi8BW2xb6y7yxi++yI/WInrM8EQ3bL7th98BD8DR6Dp5fVRrC42WSvptF8BjsIs6w=</latexit>,

<latexit sha1_base64="tv+NZpMxF/ILlMjZL7KKl93/uB0=">AAAC9nicjVHJbhNBEG0PWwibA0cuLRyEIwUzgxBwAUVw4RgknERyG6umXeO00svQ3WNsWvMr3BBXfoNP4Cu4wo0e2yxZDtTp6dWrerXkpRTOp+m3VnLu/IWLl9Yur1+5eu36jfbGzT1nKsuxz4009iAHh1Jo7HvhJR6UFkHlEvfzo5dNfn+K1gmj3/h5iUMFEy0KwcFHatTmrLDAQ5c5MVEweBuWoDvbup/VD0ZhVg+3l9S9rfq37C/DtpnKzSywwhivjUcnPiDd/NPkOc0261G7k/bSRdDTIFuBDlnF7mijFdjY8Eqh9lyCc4MsLf0wgPWCS6zXWeWwBH4EExxEqEGhG4bFNWp6t3LgDS3RUiHpgsR/KwIo5+Yqj0oF/tCdzDXkWblB5YunwyB0WXnUvDHyQuLCyHEr4pmRjoVF76GZHKnQlIMF79EKCpxHsop3P2bovAI7t+O4lMb33CgFehzXxwLf1YE1U1iUgeWVkOOIKJvGM1gBehK9mYmuNDyr67PqKzH97xZsKY994ruyk885DfYe9rLHvez1o87Oi9Xj1shtcod0SUaekB3yiuySPuHkK/lOfpCfySz5mHxKPi+lSWtVc4sci+TLLynm9hY=</latexit>

(�[�(x)�1/x],�0)

(�,�0)
�(x) > 1

<latexit sha1_base64="ZCtIW1slrqSfWsL7db4onHtbVnw=">AAAC3nicjVHLbhMxFHWGVymvFJZsLCKkRKqiTIWATaUKNkhsCiJtpTiEO57bxKrtmdp3UiJrtuwQW36Dr0Hs4E/wJFnQx4K78dG5j3OvT1Zq5Wkw+NVKrl2/cfPWxu3NO3fv3X/Q3np44IvKSRzKQhfuKAOPWlkckiKNR6VDMJnGw+zkdZM/nKPzqrAfaFHi2MDUqmMlgSI1ab8VZyrHGVB4X09Cti3rj2lXzMHZgmbKTnt8l4vAu8KrqYHt1dMTRuV8hbufe0LjKU9FPWl3Bv3BMvhlkK5Bh61jf7LVCiIvZGXQktTg/SgdlDQO4EhJjfWmqDyWIE9giqMILRj047C8uuZPKw9U8BIdV5ovSfy3I4DxfmGyWGmAZv5iriGvyo0qOn45DsqWFaGVjRApjUshL52K34k8Vw6JoNkcubJcggMidIqDlJGs4v+eE/RkwC1cHo+yeCYLY8Dm8Xw8xtM6iGYLhzqIrFI6j4g3JpBTYKdRWxRRlYfdur6qv1Lz/x4hVuVxTrQrvWjOZXCw00+f99N3zzp7r9bGbbDH7AnrspS9YHvsDdtnQybZD/aT/WZ/kk/Jl+Rr8m1VmrTWPY/YuUi+/wX/iewt</latexit>

bR1
b,c(?) = {(�,�) | �(x) 1}

<latexit sha1_base64="GR4Dk6/zgXNfROsJ1E9m+0gGXkg=">AAACwXicjVHJbhNBEG0PWwibA0cuLSykICFrJkLAJVJELhwDwkkkj7Fqesp2Kd09Q3eNI6s1f8HXcIWf4G/ocXzIdqBOr14tr5ai1uQ5Tf/2kjt3791/sPVw+9HjJ0+f9XeeH/uqcQpHqtKVOy3AoyaLIybWeFo7BFNoPCnODrv4yRKdp8p+41WNEwNzSzNSwJGa9of5OZW4AA5f22ko3qr2e7qbL8HZihdk52/kvrzkTvuDdJiuTd4E2QYMxMaOpju9kJeVagxaVhq8H2dpzZMAjklpbLfzxmMN6gzmOI7QgkE/CevFWvm68cCVrNFJ0nJN4uWKAMb7lSlipgFe+OuxjrwtNm549nESyNYNo1WdEJPGtZBXjuLFUJbkkBm6yVGSlQocMKMjCUpFsoknvCLo2YBbuTIuZfFcVcaALeP6OMMfbci7KRzqkBcN6TKi9WHZEdh51M6rqCrDftveVt/Q8r9b5BfpsU98V3b9OTfB8d4wez/MvrwbHHzaPG5LvBSvxK7IxAdxID6LIzESSvwUv8Rv8Sc5TCipE3eRmvQ2NS/EFUvCP76m4aQ=</latexit>

bR0
b,c(?) = ?

<latexit sha1_base64="UBUVgNNbsa4DYeb1uc0sUKf/BHg=">AAADEnicjVHNbhMxEPYuf6XlJ+XnxMUiQkqkKmQRAg5UquDCsSDSVopDNOudbKza3q3tTRtZK16Cp+GGuPICPADvgTfJgSY9MBd/mplvvhl/aSmFdf3+7yi+dv3GzVtbt7d37ty9d7+1++DIFpXhOOCFLMxJChal0Dhwwkk8KQ2CSiUep6fvm/rxDI0Vhf7s5iWOFORaTAQHF1Lj1ld2LjKcgvOf6rFP93j9RXfYDIwu3FTovEv3KfMdZkWuYG/5dJkSGV3izkWXSTyjCasp41W50TxMnl+Mlozk7RpJs3rcavd7/UXQTZCsQJus4nC8G3mWFbxSqB2XYO0w6Zdu5ME4wSXW26yyWAI/hRyHAWpQaEd+8VM1fVZZcAUt0VAh6SKJ/zI8KGvnKg2dCtzUrtea5FW1YeUmb0Ze6LJyqHkj5ITEhZDlRgQLkGbCoHPQbI5UaMrBgHNoBAXOQ7IKnlwStE6BmZssHKXxnBdKgc7C+TjBs9qzZguD0rO0EjILiDbGOSNA50GbFUGV+v26vopfidl/j2DL9jAn2JWsm7MJjl70kle95OPL9sG7lXFb5Al5SjokIa/JAflADsmAcPIn2okeRY/jb/H3+Ef8c9kaRyvOQ3Ip4l9/AXaS/XU=</latexit>

bRn
b,c(?) = {(�,�) | �(x) 1} [{(�,�[1/x]) | 1 < �(x) n}

<latexit sha1_base64="O+b4gFwP+1woOdanC5AwKjbMpU4=">AAADBHicjVFNbxMxEPUu0Jby0RSOXCwipESqQjZCwCVSBReOBZG2UhyiWe8ksWp7t7Y3bWTtlV/DDXHlbyB+DBLeJAfS9MBc/PTmzTzbLy2ksK7b/R3Fd+7e29ndu7//4OGjxweNwyenNi8NxwHPZW7OU7AohcaBE07ieWEQVCrxLL14X/fP5misyPVntyhwpGCqxURwcIEaNy7ZlchwBs5/qsY+PeLVl16LzcHo3M2EnrZpn25Lkk0J42VBmW8xK6YKjlbHMHl5PWozJTK6IlrX7X6PVeNGs9vpLotug2QNmmRdJ+PDyLMs56VC7bgEa4dJt3AjD8YJLrHaZ6XFAvgFTHEYoAaFduSXf1PRF6UFl9MCDRWSLkn8d8KDsnah0qBU4Gb2Zq8mb+sNSzd5O/JCF6VDzWsjJyQujSw3Inw60kwYdA7qmyMVmnIw4BwaQYHzQJYhhQ1D6xSYhcnCozRe8Vwp0Fl4Pk7wsvKsvoVB6VlaCpkFROscnBGgp8Gb5cGV+n5V3TZfivl/r2AredgT4kpuhrMNTnud5HUn+fiqefxuHdweeUaekxZJyBtyTD6QEzIgnPwif6KdaDf+Gn+Lv8c/VtI4Ws88JRsV//wLaor50A==</latexit>

bR2
b,c(?) = bR1

b,c(?) [{(�,�[1/x]) | �(x) = 2}
<latexit sha1_base64="yyN1hoN28ST4uuemGy+Sr3jOyTU=">AAADBHicjVFNbxMxEPUu0Jby0RSOXCwipESqQrZFwCVSBReOBZG2UhyiWe8ksWp7t7Y3bWTtlV/DDXHlbyB+DBLeJAfS9MBc/PTmzTzbLy2ksK7b/R3Fd+7e29reub/74OGjx3uN/SenNi8Nxz7PZW7OU7Aohca+E07ieWEQVCrxLL14X/fPZmisyPVnNy9wqGCixVhwcIEaNS7ZlchwCs5/qkY+PeDVl6MWm4HRuZsKPWnTHt2UHK5LGC8LynyLWTFRcLA8BsnL62GbKZHRJdG6bveOWDVqNLud7qLoJkhWoElWdTLajzzLcl4q1I5LsHaQdAs39GCc4BKrXVZaLIBfwAQHAWpQaId+8TcVfVFacDkt0FAh6YLEfyc8KGvnKg1KBW5qb/Zq8rbeoHTjt0MvdFE61Lw2ckLiwshyI8KnI82EQeegvjlSoSkHA86hERQ4D2QZUlgztE6BmZssPErjFc+VAp2F5+MYLyvP6lsYlJ6lpZBZQLTOwRkBehK8WR5cqe9V1W3zpZj99wq2lIc9Ia7kZjib4PSwk7zuJB9fNY/frYLbIc/Ic9IiCXlDjskHckL6hJNf5E+0FW3HX+Nv8ff4x1IaR6uZp2St4p9/AXGv+dM=</latexit>

bR3
b,c(?) = bR2

b,c(?) [{(�,�[1/x]) | �(x) = 3}

<latexit sha1_base64="Fnu5+VYofTSJ8+iYnuXfr46v1is=">AAACl3icjVHJbhNBEG0PWwhbAifEpYWFxMmaQQhyQUQgoRwTCTuRPFZU01M2RXqZdFcbWaP5B67wZ/wNPY4PZDlQp6dXy3tVVTWaAuf5n0F26/adu/e27m8/ePjo8ZOd3aeT4KJXOFZOO39SQUBNFsdMrPGk8Qim0nhcnX3u88dL9IGc/cqrBmcGFpbmpIATNSlV7Tic7gzzUb4OeR0UGzAUmzg83R20Ze1UNGhZaQhhWuQNz1rwTEpjt13GgA2oM1jgNEELBsOsXdvt5KsYgJ1s0EvSck3ivx0tmBBWpkqVBvhbuJrryZty08jzvVlLtomMVvVCTBrXQkF5SndAWZNHZuidoyQrFXhgRk8SlEpkTIe5JBjYgF/5Oi1l8YdyxoCt0/o4x/OuLXsXHnVbVpF0nZAsl+kMnsAuknbpkqpsP3TdTf2Rlv89orwoT3PSu4qrz7kOJm9GxbtRcfR2uP9p87gt8UK8FK9FId6LfXEgDsVYKPFd/BS/xO/sefYx+5IdXJRmg03PM3EpsqO/M4XQ9A==</latexit>· · ·

<latexit sha1_base64="Fnu5+VYofTSJ8+iYnuXfr46v1is=">AAACl3icjVHJbhNBEG0PWwhbAifEpYWFxMmaQQhyQUQgoRwTCTuRPFZU01M2RXqZdFcbWaP5B67wZ/wNPY4PZDlQp6dXy3tVVTWaAuf5n0F26/adu/e27m8/ePjo8ZOd3aeT4KJXOFZOO39SQUBNFsdMrPGk8Qim0nhcnX3u88dL9IGc/cqrBmcGFpbmpIATNSlV7Tic7gzzUb4OeR0UGzAUmzg83R20Ze1UNGhZaQhhWuQNz1rwTEpjt13GgA2oM1jgNEELBsOsXdvt5KsYgJ1s0EvSck3ivx0tmBBWpkqVBvhbuJrryZty08jzvVlLtomMVvVCTBrXQkF5SndAWZNHZuidoyQrFXhgRk8SlEpkTIe5JBjYgF/5Oi1l8YdyxoCt0/o4x/OuLXsXHnVbVpF0nZAsl+kMnsAuknbpkqpsP3TdTf2Rlv89orwoT3PSu4qrz7kOJm9GxbtRcfR2uP9p87gt8UK8FK9FId6LfXEgDsVYKPFd/BS/xO/sefYx+5IdXJRmg03PM3EpsqO/M4XQ9A==</latexit>· · ·

<latexit sha1_base64="h3WpXNmvJJPYiJ/YQGKOhOEr1ew=">AAADM3icjVFNbxMxEPUuUEr4SuHIxSJCSqQoZCsoHKhU0QvHguiHFEeR1ztJR7W9W9ubD1n7X/gT/BjEDXHlP+BsgqBND8zFzzPveTzz0kKidf3+tyi+dfvO1t3te437Dx4+etzceXJi89IIOBa5zM1Zyi1I1HDs0Ek4KwxwlUo4TS8Ol/XTKRiLuf7sFgUMFZ9oHKPgLqRGzS9McXcuuPSHFZMyNVxcgKMzyoz5c9mnNQmdH+O8arMZZnDOnf9UjXzaFVUnMGiD+TazOFG8uzo6TGFGV7g97zAJlzRhVYOJsthkD5KX8+FKkrz7K6oao2ar3+vXQTdBsgYtso6j0U7kWZaLUoF2QnJrB0m/cEPPjUMhIXygtFCEyfgEBgFqrsAOfb3Kir4oLXc5LcBQlLROwr8Kz5W1C5UG5nIn9nptmbypNijd+O3Qoy5KB1osGzmUUDeywmDwCGiGBpzjy58DRU0FN9w5MEi5ECFZBtOuNLROcbMwWRhKw0zkSnGdhfFhDJeVr10zID1LS5RZQJRNwxoMcj0JvVkeulK/X1U36Uuc/vcTbEWvaruS6+ZsgpPdXrLXSz6+ah28Xxu3TZ6R56RNEvKGHJAP5IgcExFtRd3odbQXf42/xz/inytqHK01T8mViH/9ButgCTY=</latexit>

CJwK = fix (bRb,c) = {(�,�) | �(x) 1} [{(�,�[1/x]) | 1 < �(x)}

