

PSC 2020/21 (375AA, 9CFU)

Principles for Software Composition

Roberto Bruni http://www.di.unipi.it/~bruni/

http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/

### 10 - Consistency and congruence

#### Operational equivalence

## Operational equivalence

$$a_1 \sim_{\text{op}} a_2$$
 iff  $\forall \sigma, n. \ (\langle a_1, \sigma \rangle \to n \Leftrightarrow \langle a_2, \sigma \rangle \to n)$   
 $b_1 \sim_{\text{op}} b_2$  iff  $\forall \sigma, v. \ (\langle b_1, \sigma \rangle \to v \Leftrightarrow \langle b_2, \sigma \rangle \to v)$   
 $c_1 \sim_{\text{op}} c_2$  iff  $\forall \sigma, \sigma'. \ (\langle c_1, \sigma \rangle \to \sigma' \Leftrightarrow \langle c_2, \sigma \rangle \to \sigma')$ 

termination and determinacy does not matter: operational equivalence is always well-defined

## Congruence

$$a_1 \sim_{\text{op}} a_2$$
 iff  $\forall \sigma, n. (\langle a_1, \sigma \rangle \to n \Leftrightarrow \langle a_2, \sigma \rangle \to n)$ 

take any context  $A[\cdot]$ 

e.g. 
$$2 \times ([\cdot] + 5)$$

is it the case that  $a_1 \sim_{\text{op}} a_2 \Rightarrow \mathbb{A}[a_1] \sim_{\text{op}} \mathbb{A}[a_2]$  ?

that is: can we replace a subexpressions with any equivalent one without changing the outcome?

### Contexts

what are the possible contexts for arithmetic expressions?

$$[\cdot] + 5$$

$$2 \times ([\cdot] + 5)$$

$$2 \times ([\cdot] + 5) \le 50$$

$$(2 \times ([\cdot] + 5) \le 50) \land x = y$$

$$x := 2 \times ([\cdot] + 5)$$
while  $x \le 100$  do  $x := 2 \times ([\cdot] + 5)$ 

### Contexts

what are the possible contexts for arithmetic expressions?

## Proof obligations

many proof obligations to deal with:

$$\forall a, a_1, a_2. \ (a_1 \sim_{\text{op}} a_2 \Rightarrow a_1 \text{ op } a \sim_{\text{op}} a_2 \text{ op } a)$$
 $\forall a, a_1, a_2. \ (a_1 \sim_{\text{op}} a_2 \Rightarrow a \text{ op } a_1 \sim_{\text{op}} a \text{ op } a_2)$ 
 $\forall a, a_1, a_2. \ (a_1 \sim_{\text{op}} a_2 \Rightarrow a \text{ cmp } a_1 \sim_{\text{op}} a \text{ cmp } a_2)$ 
 $\forall a, a_1, a_2. \ (a_1 \sim_{\text{op}} a_2 \Rightarrow a_1 \text{ cmp } a \sim_{\text{op}} a_2 \text{ cmp } a)$ 
 $\forall x, a_1, a_2. \ (a_1 \sim_{\text{op}} a_2 \Rightarrow x := a_1 \sim_{\text{op}} x := a_2)$ 

similarly for boolean expressions and commands

#### Denotational equivalence

## Denotational equivalence

$$a_1 \sim_{\text{den}} a_2$$
 iff  $\mathcal{A}[a_1] = \mathcal{A}[a_2]$ 
 $b_1 \sim_{\text{den}} b_2$  iff  $\mathcal{B}[b_1] = \mathcal{B}[b_2]$ 
 $c_1 \sim_{\text{den}} c_2$  iff  $\mathcal{C}[c_1] = \mathcal{C}[c_2]$ 

(two functions are the same if they coincide on all arguments)

# Compositionality principle

$$a_1 \sim_{\operatorname{den}} a_2$$
 iff  $\mathcal{A}[a_1] = \mathcal{A}[a_2]$ 

take any context  $A[\cdot]$ 

is it the case that  $a_1 \sim_{\text{den}} a_2 \Rightarrow \mathbb{A}[a_1] \sim_{\text{den}} \mathbb{A}[a_2]$ ?

YES! it is guaranteed by the compositionally principle of denotational semantics:

the meaning of a compound expression is solely determined by the meaning of its constituents

## Consistency

if we guarantee the consistency between the operational semantics and the denotational semantics then the congruence property is guaranteed for the operational semantics too

$$\forall a_1, a_2. \ (a_1 \sim_{\text{op}} a_2 \stackrel{?}{\Leftrightarrow} a_1 \sim_{\text{den}} a_2)$$

$$\forall b_1, b_2. \ (b_1 \sim_{\text{op}} b_2 \stackrel{?}{\Leftrightarrow} b_1 \sim_{\text{den}} b_2)$$

$$\forall c_1, c_2. \ (c_1 \sim_{\text{op}} c_2 \stackrel{?}{\Leftrightarrow} c_1 \sim_{\text{den}} c_2)$$

# Consistency: expressions

$$\forall a \in Aexp \ \forall \sigma \in \Sigma. \ \langle a, \sigma \rangle \rightarrow \mathscr{A} \llbracket a \rrbracket \sigma$$

$$P(a) \stackrel{\text{def}}{=} \forall \sigma \in \Sigma. \langle a, \sigma \rangle \rightarrow \mathscr{A} \llbracket a \rrbracket \sigma$$

by structural induction

$$\forall b \in Bexp \ \forall \sigma \in \Sigma. \ \langle b, \sigma \rangle \to \mathscr{B} \llbracket b \rrbracket \sigma$$

$$P(b) \stackrel{\text{def}}{=} \forall \sigma \in \Sigma. \langle b, \sigma \rangle \to \mathscr{B} \llbracket b \rrbracket \sigma$$

by structural induction

## Consistency: commands

$$\forall c \in Com. \ \forall \sigma, \sigma' \in \Sigma.$$

$$\forall c \in Com. \ \forall \sigma, \sigma' \in \Sigma. \quad \langle c, \sigma \rangle \rightarrow \sigma' \quad \Leftrightarrow \quad \mathscr{C}\llbracket c \rrbracket \sigma = \sigma'$$

can we write it as

$$\forall c \in Com. \ \forall \sigma \in \Sigma. \quad \langle c, \sigma \rangle \to \mathscr{C}[\![c]\!] \sigma$$
?

no, because there is no such formula as

$$\langle c, \boldsymbol{\sigma} \rangle \rightarrow \bot$$

# Consistency: commands

$$\forall c \in Com. \ \forall \sigma, \sigma' \in \Sigma. \quad \langle c, \sigma \rangle \to \sigma' \quad \Leftrightarrow \quad \mathscr{C}\llbracket c \rrbracket \sigma = \sigma'$$

$$\langle c, \sigma \rangle \rightarrow \sigma'$$

$$\Leftrightarrow$$

$$\mathscr{C}\llbracket c 
rbracket oldsymbol{\sigma} = oldsymbol{\sigma}'$$

$$\forall c \in Com. \ \forall \sigma, \sigma' \in \Sigma.$$

#### Correctness

$$P(\langle c,\sigma \rangle o \sigma') \stackrel{\mathrm{def}}{=} \mathscr{C} \llbracket c \rrbracket \, \sigma = \sigma'$$
 by rule induction

 $\forall c \in Com.$ 

#### Completeness

$$P(c) \stackrel{\mathrm{def}}{=} \forall \sigma, \sigma' \in \Sigma. \quad \mathscr{C}\llbracket c \rrbracket \sigma = \sigma' \quad \Rightarrow \quad \langle c, \sigma \rangle \to \sigma'$$

$$\mathscr{C}\llbracket c \rrbracket \boldsymbol{\sigma} = \boldsymbol{\sigma}$$

$$\Rightarrow$$

$$\langle c, oldsymbol{\sigma} 
angle o oldsymbol{\sigma}'$$

by structural induction

#### Correctness

$$\forall c \in Com, \ \forall \sigma, \sigma' \in \Sigma$$

$$P(\langle c, \sigma \rangle \to \sigma') \stackrel{\text{def}}{=} \mathscr{C} \llbracket c \rrbracket \sigma = \sigma'$$

by rule induction

$$\langle skip,\sigma\rangle \to \sigma$$

We want to prove

$$P(\langle \mathbf{skip}, \sigma \rangle \to \sigma) \stackrel{\text{def}}{=} \mathscr{C} \llbracket \mathbf{skip} \rrbracket \sigma = \sigma$$

Obviously the proposition is true by the definition of the denotational semantics.

$$\frac{\langle a, \sigma \rangle \to m}{\langle x := a, \sigma \rangle \to \sigma \left[ \frac{m}{x} \right]}$$

We assume  $\langle a, \sigma \rangle \to m$  and hence  $\mathscr{A} \llbracket a \rrbracket \sigma = m$  by the equivalence of the operational and denotational semantics of arithmetic expressions. We want to prove

$$P(\langle x := a, \sigma \rangle \to \sigma [^m/_x]) \stackrel{\text{def}}{=} \mathscr{C} [x := a] \sigma = \sigma [^m/_x]$$

By the definition of the denotational semantics

$$\mathscr{C}[x := a] \sigma = \sigma[\mathscr{A}[a]\sigma/x] = \sigma[m/x]$$

$$\frac{\langle c_0, \sigma \rangle \to \sigma'' \quad \langle c_1, \sigma'' \rangle \to \sigma'}{\langle c_0; c_1, \sigma \rangle \to \sigma'}$$

We assume

$$P(\langle c_0, \sigma \rangle \to \sigma'') \stackrel{\text{def}}{=} \mathscr{C} \llbracket c_0 \rrbracket \sigma = \sigma''$$

$$P(\langle c_1, \sigma'' \rangle \to \sigma') \stackrel{\text{def}}{=} \mathscr{C} \llbracket c_1 \rrbracket \sigma'' = \sigma'$$

We want to prove

$$P(\langle c_0; c_1, \sigma \rangle \to \sigma') \stackrel{\text{def}}{=} \mathscr{C} \llbracket c_0; c_1 \rrbracket \sigma = \sigma'$$

By the denotational semantics definition and the inductive hypotheses

$$\mathscr{C} \llbracket c_0; c_1 \rrbracket \boldsymbol{\sigma} = \mathscr{C} \llbracket c_1 \rrbracket^* (\mathscr{C} \llbracket c_0 \rrbracket \boldsymbol{\sigma}) = \mathscr{C} \llbracket c_1 \rrbracket^* \boldsymbol{\sigma}'' = \mathscr{C} \llbracket c_1 \rrbracket \boldsymbol{\sigma}'' = \boldsymbol{\sigma}'$$

Note that the lifting operator can be removed because  $\sigma'' \neq \bot$  by the inductive hypothesis.

$$\frac{\langle b, \sigma \rangle \to \mathbf{true} \quad \langle c_0, \sigma \rangle \to \sigma'}{\langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, \sigma \rangle \to \sigma'}$$

#### We assume

- $\langle b, \sigma \rangle \to \mathbf{true}$  and therefore  $\mathscr{B}[\![b]\!] \sigma = \mathbf{true}$  by the correspondence between the operational and denotational semantics for boolean expressions;
- $P(\langle c_0, \sigma \rangle \to \sigma') \stackrel{\text{def}}{=} \mathscr{C} \llbracket c_0 \rrbracket \sigma = \sigma'$ We want to prove

$$P(\langle \mathbf{if}\ b\ \mathbf{then}\ c_0\ \mathbf{else}\ c_1, \sigma \rangle \to \sigma') \stackrel{\mathrm{def}}{=} \mathscr{C}[\![\mathbf{if}\ b\ \mathbf{then}\ c_0\ \mathbf{else}\ c_1]\!]\sigma = \sigma'$$

In fact, we have

$$\mathscr{C}\llbracket \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1 \rrbracket \sigma = \mathscr{B}\llbracket b \rrbracket \sigma \to \mathscr{C}\llbracket c_0 \rrbracket \sigma, \mathscr{C}\llbracket c_1 \rrbracket \sigma = \mathbf{true} \to \sigma', \mathscr{C}\llbracket c_1 \rrbracket \sigma = \sigma'$$

$$\frac{\langle b,\sigma
angle
ightarrow\mathbf{false}}{\langle\mathbf{while}\,\,b\,\,\mathbf{do}\,\,c,\sigma
angle
ightarrow\sigma}$$

We assume  $\langle b, \sigma \rangle \to \mathbf{false}$  and therefore  $\mathscr{B}[\![b]\!] \sigma = \mathbf{false}$ . We want to prove

$$P(\langle \mathbf{while}\ b\ \mathbf{do}\ c, \sigma \rangle \to \sigma) \stackrel{\text{def}}{=} \mathscr{C} \llbracket \mathbf{while}\ b\ \mathbf{do}\ c \rrbracket \sigma = \sigma$$

By the fixpoint property of the denotational semantics

$$\frac{\langle b,\sigma\rangle \to \mathsf{true} \quad \langle c,\sigma\rangle \to \sigma'' \quad \left\langle \mathsf{while} \ b \ \mathsf{do} \ c,\sigma''\right\rangle \to \sigma'}{\left\langle \mathsf{while} \ b \ \mathsf{do} \ c,\sigma\right\rangle \to \sigma'}$$

We assume

- $\langle b, \sigma \rangle \rightarrow \text{true}$  and therefore  $\mathscr{B}[\![b]\!] \sigma = \text{true}$
- $P(\langle c, \sigma \rangle \to \sigma'') \stackrel{\text{def}}{=} \mathscr{C} \llbracket c \rrbracket \sigma = \sigma''$
- $P(\langle \mathbf{while}\ b\ \mathbf{do}\ c, \sigma'' \rangle \to \sigma') \stackrel{\mathrm{def}}{=} \mathscr{C} [\![\mathbf{while}\ b\ \mathbf{do}\ c]\!] \sigma'' = \sigma'$

We want to prove

$$P(\langle \mathbf{while}\ b\ \mathbf{do}\ c, \sigma \rangle \to \sigma') \stackrel{\text{def}}{=} \mathscr{C} \llbracket \mathbf{while}\ b\ \mathbf{do}\ c \rrbracket \sigma = \sigma'$$

By the definition of the denotational semantics and the inductive hypotheses

Note that the lifting operator can be removed since  $\sigma'' \neq \bot$ .

#### Completeness

$$\forall c \in Com$$

$$P(c) \stackrel{\text{def}}{=} \forall \sigma, \sigma' \in \Sigma. \quad \mathscr{C}\llbracket c \rrbracket \sigma = \sigma' \quad \Rightarrow \quad \langle c, \sigma \rangle \to \sigma'$$

by structural induction

#### We prove $P(\text{skip}) \stackrel{\text{def}}{=} \forall \sigma, \sigma'. \mathscr{C} \llbracket \text{skip} \rrbracket \sigma = \sigma' \Rightarrow \langle \text{skip}, \sigma \rangle \rightarrow \sigma'$

Assume  $\mathscr{C}[\![\mathbf{skip}]\!] \sigma = \sigma'$ 

Then  $\sigma' = \sigma$ 

By rule (skip)  $\langle \mathbf{skip}, \sigma \rangle \rightarrow \sigma = \sigma'$ 

We prove 
$$P(x := a) \stackrel{\text{def}}{=} \forall \sigma, \sigma'. \mathscr{C}[x := a] \sigma = \sigma' \Rightarrow \langle x := a, \sigma \rangle \to \sigma'$$

Assume 
$$\mathscr{C}[x := a] \sigma = \sigma'$$

Then 
$$\sigma' = \sigma[\mathscr{A}[a]\sigma/x]$$

By consistency for expressions  $\langle a, \sigma \rangle \rightarrow \mathscr{A} \llbracket a \rrbracket \sigma$ 

By rule (asgn) 
$$\langle x := a, \sigma \rangle \to \sigma[^{\mathscr{A}[a]\sigma}/_x] = \sigma'$$

$$P(c_0) \stackrel{\text{def}}{=} \forall \sigma, \sigma''. \mathscr{C} \llbracket c_0 \rrbracket \sigma = \sigma'' \Rightarrow \langle c_0, \sigma \rangle \to \sigma''$$

$$P(c_1) \stackrel{\text{def}}{=} \forall \sigma'', \sigma'. \mathscr{C} \llbracket c_1 \rrbracket \sigma'' = \sigma' \Rightarrow \langle c_1, \sigma'' \rangle \to \sigma'$$

We want to prove  $P(c_0; c_1) \stackrel{\text{def}}{=} \forall \sigma, \sigma'. \mathscr{C}[\![c_0; c_1]\!] \sigma = \sigma' \Rightarrow \langle c_0; c_1, \sigma \rangle \rightarrow \sigma'$ 

Assume 
$$\mathscr{C}\llbracket c_0;c_1 \rrbracket \sigma = \sigma'$$

we have 
$$\mathscr{C}\llbracket c_0; c_1 \rrbracket \sigma = \mathscr{C}\llbracket c_1 \rrbracket^* (\mathscr{C}\llbracket c_0 \rrbracket \sigma) = \sigma' \neq \bot$$

thus 
$$\mathscr{C}\llbracket c_0 \rrbracket \sigma = \sigma''$$
 for some  $\sigma'' \neq \bot$ 

and 
$$\mathscr{C}\llbracket c_1 \rrbracket \sigma'' = \sigma'$$

by inductive hypotheses 
$$\langle c_0, \sigma \rangle \to \sigma''$$
  $\langle c_1, \sigma'' \rangle \to \sigma'$ 

By rule (seq) 
$$\langle c_0; c_1, \sigma \rangle \rightarrow \sigma'$$

Assume 
$$P(c_0) \stackrel{\text{def}}{=} \forall \sigma, \sigma'. \ \mathscr{C} \llbracket c_0 \rrbracket \ \sigma = \sigma' \Rightarrow \langle c_0, \sigma \rangle \to \sigma'$$
$$P(c_1) \stackrel{\text{def}}{=} \forall \sigma, \sigma'. \ \mathscr{C} \llbracket c_1 \rrbracket \ \sigma = \sigma' \Rightarrow \langle c_1, \sigma \rangle \to \sigma'$$

We prove  $P(\text{if } b \text{ then } c_0 \text{ else } c_1) \stackrel{\text{def}}{=} \forall \sigma, \sigma'. \mathscr{C}[\text{if } b \text{ then } c_0 \text{ else } c_1]] \sigma = \sigma'$  $\Rightarrow \langle \text{if } b \text{ then } c_0 \text{ else } c_1, \sigma \rangle \rightarrow \sigma'$ 

Assume  $\mathscr{C}\llbracket \text{if } b \text{ then } c_0 \text{ else } c_1 \rrbracket \sigma = \sigma'$  we have  $\mathscr{C}\llbracket \text{if } b \text{ then } c_0 \text{ else } c_1 \rrbracket \sigma = \mathscr{B}\llbracket b \rrbracket \sigma \to \mathscr{C}\llbracket c_0 \rrbracket \sigma, \mathscr{C}\llbracket c_1 \rrbracket \sigma = \sigma'$  either  $\mathscr{B}\llbracket b \rrbracket \sigma = \text{false}$  or  $\mathscr{B}\llbracket b \rrbracket \sigma = \text{true}$ 

if  $\mathscr{B}\llbracket b \rrbracket \sigma = \text{false}$   $\mathscr{C}\llbracket \text{if } b \text{ then } c_0 \text{ else } c_1 \rrbracket \sigma = \mathscr{C}\llbracket c_1 \rrbracket \sigma = \sigma'$   $\langle b, \sigma \rangle \to \text{false}$  by inductive hypotheses  $\langle c_1, \sigma \rangle \to \sigma'$  By rule (ifff)  $\langle \text{if } b \text{ then } c_0 \text{ else } c_1, \sigma \rangle \to \sigma'$ 

if  $\mathscr{B}\llbracket b \rrbracket \sigma = \mathbf{true}$   $\mathscr{C}\llbracket \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1 \rrbracket \sigma = \mathscr{C}\llbracket c_0 \rrbracket \sigma = \sigma'$   $\langle b, \sigma \rangle \to \mathbf{true}$  by inductive hypotheses  $\langle c_0, \sigma \rangle \to \sigma'$  By rule (iftt)  $\langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, \sigma \rangle \to \sigma'$ 

Assume 
$$P(c) \stackrel{\text{def}}{=} \forall \sigma, \sigma''. \mathscr{C} \llbracket c \rrbracket \sigma = \sigma'' \Rightarrow \langle c, \sigma \rangle \to \sigma''$$

We prove  $P(\text{while } b \text{ do } c) \stackrel{\text{def}}{=} \forall \sigma, \sigma'. \mathscr{C}[\text{while } b \text{ do } c] \sigma = \sigma' \Rightarrow \langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow \sigma'$ 

we have 
$$\mathscr{C}[\![\mathbf{while}\ b\ \mathbf{do}\ c]\!] \sigma = \operatorname{fix}\ \Gamma_{b,c}\,\sigma = \left(\bigsqcup_{n\in\mathbb{N}}\Gamma_{b,c}^{n}\bot\right)\sigma$$

$$\mathscr{C}[\![\mathbf{while}\ b\ \mathbf{do}\ c]\!] \sigma = \sigma' \Rightarrow \langle \mathbf{while}\ b\ \mathbf{do}\ c,\sigma\rangle \to \sigma'$$
iff 
$$\left(\bigsqcup_{n\in\mathbb{N}}\Gamma_{b,c}^{n}\bot\right)\sigma = \sigma' \Rightarrow \langle \mathbf{while}\ b\ \mathbf{do}\ c,\sigma\rangle \to \sigma'$$
iff 
$$\left(\exists n\in\mathbb{N}.\ (\Gamma_{b,c}^{n}\bot)\sigma = \sigma'\right) \Rightarrow \langle \mathbf{while}\ b\ \mathbf{do}\ c,\sigma\rangle \to \sigma'$$
iff 
$$\forall n\in\mathbb{N}.\ \left(\Gamma_{b,c}^{n}\bot\sigma = \sigma'\Rightarrow \langle \mathbf{while}\ b\ \mathbf{do}\ c,\sigma\rangle \to \sigma'\right)$$
let 
$$A(n) \stackrel{\mathrm{def}}{=} \forall \sigma,\sigma'.\ \Gamma_{b,c}^{n}\bot\sigma = \sigma' \Rightarrow \langle \mathbf{while}\ b\ \mathbf{do}\ c,\sigma\rangle \to \sigma'$$

we prove  $\forall n \in \mathbb{N}. A(n)$  by mathematical induction

Assume 
$$P(c) \stackrel{\text{def}}{=} \forall \sigma, \sigma''. \mathscr{C}[\![c]\!] \sigma = \sigma'' \Rightarrow \langle c, \sigma \rangle \rightarrow \sigma''$$

we prove  $\forall n \in \mathbb{N}. A(n) \stackrel{\text{def}}{=} \forall \sigma, \sigma'. \Gamma_{b,c}^n \bot \sigma = \sigma' \Rightarrow \langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow \sigma'$ 

$$A(0) \stackrel{\text{def}}{=} \forall \sigma, \sigma'. \Gamma_{b,c}^0 \bot \sigma = \sigma' \Rightarrow \langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow \sigma'$$

$$\Gamma_{b,c}^{0}ot\sigma=ot\sigma=ot$$
 the premise  $\Gamma_{b,c}^{0}ot\sigma=\sigma'$  is false  $\sigma'
eq ot$  A(0) is true

Assume 
$$P(c) \stackrel{\text{def}}{=} \forall \sigma, \sigma''. \mathscr{C}[\![c]\!] \sigma = \sigma'' \Rightarrow \langle c, \sigma \rangle \rightarrow \sigma''$$

we prove  $\forall n \in \mathbb{N}. A(n) \stackrel{\text{def}}{=} \forall \sigma, \sigma'. \Gamma_{b,c}^n \bot \sigma = \sigma' \Rightarrow \langle \text{while } b \text{ do } c, \sigma \rangle \to \sigma'$ 

assume 
$$A(n) \stackrel{\text{def}}{=} \forall \sigma, \sigma'. \Gamma_{b,c}^n \perp \sigma = \sigma' \Rightarrow \langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow \sigma'$$
 we prove  $A(n+1) \stackrel{\text{def}}{=} \forall \sigma, \sigma'. \Gamma_{b,c}^{n+1} \perp \sigma = \sigma' \Rightarrow \langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow \sigma'$ 

$$\Gamma_{b,c}^{n+1}oldsymbol{\perp}oldsymbol{\sigma}=\Gamma_{b,c}\left(\Gamma_{b,c}^{n}oldsymbol{\perp}
ight)oldsymbol{\sigma}=oldsymbol{\sigma}'
eqoldsymbol{\perp}$$

by def 
$$\mathscr{B}\llbracket b \rrbracket \sigma \to \left( \Gamma_{b,c}^n \bot \right)^* (\mathscr{C}\llbracket c \rrbracket \sigma), \sigma = \sigma'$$

if 
$$\mathscr{B}[\![b]\!]\sigma = \mathbf{false}$$

$$\langle b, \boldsymbol{\sigma} \rangle \rightarrow \mathbf{false}$$

$$\sigma = \sigma'$$

by rule (whff)

$$\text{if } \mathscr{B}\llbracket b\rrbracket \sigma = \text{false} \quad \langle b, \sigma \rangle \to \text{false} \qquad \sigma = \sigma' \qquad \langle \text{while } b \text{ do } c, \sigma \rangle \to \sigma$$

if 
$$\mathscr{B}\llbracket b \rrbracket \sigma = \text{true}$$

$$\langle b, \sigma 
angle 
ightarrow {
m true}$$

$$\mathsf{if} \ \mathscr{B}\llbracket b \rrbracket \, \sigma = \mathsf{true} \quad \langle b, \sigma \rangle \to \mathsf{true} \quad \left( \varGamma_{b,c}^n \bot \right)^* (\mathscr{C}\llbracket c \rrbracket \, \sigma) = \sigma' \neq \bot$$

$$\left( \Gamma_{b,c}^{n}ot
ight) oldsymbol{\sigma}^{\prime\prime}=oldsymbol{\sigma}^{\prime}$$

$$\langle$$
 while  $b$  do  $c, \sigma'' \rangle \rightarrow \sigma'$ 

thus 
$$\mathscr{C}\llbracket c \rrbracket \sigma = \sigma''$$
 for some  $\sigma'' \neq \bot$   $\langle c, \sigma \rangle \to \sigma''$ 

By rule (whtt)

(while b do  $c, \sigma$ )  $\rightarrow \sigma'$ 

### Final remarks

#### Commands

Big-step operational semantics Denotational semantics

**Termination** 



(partial functions)

Determinacy



Operational equivalence

Denotational equivalence is a congruence

Consistency (correctness + completeness)

Operational equivalence = Denotational equivalence they are congruences

Well-founded induction

Kleene's fixpoint theorem