

http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/start

PSC 2024/25 (375AA, 9CFU)

Principles for Software Composition

Roberto Bruni http://www.di.unipi.it/~bruni/

05c - Rule Induction

Induction on derivations

Derivations

Given a logical system R, a derivation in R, is written

 $d \Vdash_R y$

where

- either $d = (\frac{1}{y}) \in R$ is an axiom of R;
- or $d=\left(\frac{d_1,...,d_n}{y}\right)$ for some derivations $d_1\Vdash_R x_1,...,d_n\Vdash_R x_n$ such that $\left(\frac{x_1,...,x_n}{y}\right)\in R$ is an inference rule of R.

$$D_R \stackrel{\triangle}{=} \{d \mid d \Vdash_R y\}$$

Immediate subderivation

Take
$$A = D_R$$

$$= \left\{ \left. \left(d_i, \frac{d_1, ..., d_n}{y} \right) \, \middle| \, d_1 \Vdash_R x_1, ..., d_n \Vdash_R x_n, \left(\frac{x_1, ..., x_n}{y} \right) \in R \right. \right\}$$

(immediate subderivation relation)

Example

$$R = \left\{ \frac{\mathsf{E}_0 \longrightarrow n_0 \quad \mathsf{E}_1 \longrightarrow n_1}{\mathsf{E}_0 \oplus \mathsf{E}_1 \longrightarrow n_0 + n_1}, \frac{\mathsf{E}_0 \longrightarrow n_0 \quad \mathsf{E}_1 \longrightarrow n_1}{\mathsf{E}_0 \otimes \mathsf{E}_1 \longrightarrow n_0 \cdot n_1} \right\}$$

$$\frac{1 \longrightarrow 1}{2 \longrightarrow 2} \stackrel{}{\longrightarrow} \frac{1 \longrightarrow 1}{(1 \oplus 2) \longrightarrow 3} \stackrel{}{\longrightarrow} \frac{1 \longrightarrow 1}{(1 \oplus 2) \longrightarrow 3} \stackrel{}{\longrightarrow} \frac{3 \longrightarrow 3}{(3 \oplus 4) \longrightarrow 7}$$

$$(1 \oplus 2) \otimes (3 \oplus 4) \longrightarrow 21$$

Lemma

 $D_R, \prec \text{ is w.f.}$

Let $height: D_R \to \mathbb{N}$ defined as:

$$\begin{aligned} height\left(\frac{-}{y}\right) & \stackrel{\triangle}{=} & 1 & \text{if } \left(\frac{-}{y}\right) \in R \\ height\left(\frac{d_1,...,d_n}{y}\right) & \stackrel{\triangle}{=} & 1 + \max_{i \in [1,n]} height(d_i) & \text{if } d_1 \Vdash_R x_1,...,d_n \Vdash_R x_n, \left(\frac{x_1,...,x_n}{y}\right) \in R \end{aligned}$$

By definition, if $d \prec d'$ then height(d) < height(d')

Any descending chain in \prec induces a descending chain in <

Since < is w.f., so is \prec

Induction on derivation principle

$$\frac{\forall \frac{x_1, \dots, x_n}{y} \in R. \ \forall d_1 \Vdash_R x_1, \dots, d_1 \Vdash_R x_n. \ (P(d_1) \land \dots \land P(d_n)) \Rightarrow P(\frac{d_1, \dots, d_n}{y})}{\forall d. \ P(d)}$$

Corollary

$$D_R, \prec^+$$
 is w.f.

Because \prec^+ is the transitive closure of a w.f. relation

Example

$$R = \left\{ \frac{1}{\mathsf{N} \longrightarrow n}, \frac{\mathsf{E}_0 \longrightarrow n_0}{\mathsf{E}_0 \oplus \mathsf{E}_1 \longrightarrow n_0 + n_1}, \frac{\mathsf{E}_0 \longrightarrow n_0}{\mathsf{E}_0 \otimes \mathsf{E}_1 \longrightarrow n_0 \cdot n_1} \right\}$$

$$\frac{1}{2 \longrightarrow 2} \longrightarrow \frac{1}{2 \longrightarrow 2} \xrightarrow{(1 \oplus 2) \longrightarrow 3} \frac{3 \longrightarrow 3}{(3 \oplus 4) \longrightarrow 7}$$

Rule induction

Typical properties

It is very often the case that the property of a derivation is only concerned with the conclusion of the derivation

$$d \Vdash_R y \Rightarrow P(d) \Leftrightarrow Q(y)$$

$$P\left(\frac{d_1, ..., d_n}{y}\right) \stackrel{\triangle}{=} Q(y)$$

in such cases we can avoid to mention derivations at all

Rule induction principle

we assume derivations exist and that we can build a larger one but don't need to mention this fact

$$\frac{\forall \frac{x_1, \dots, x_n}{y} \in R. \ (\{x_1, \dots, x_n\} \subseteq I_R \land P(x_1) \land \dots \land P(x_n)) \Rightarrow P(y)}{\forall x \in I_R. \ P(x)}$$

$$I_R \stackrel{\diamond}{=} \{y \mid \Vdash_R y\}$$

Rule induction simplified

assuming that premises are theorems may be not even necessary

$$\frac{\forall \frac{x_1, \dots, x_n}{y} \in R. \ (P(x_1) \land \dots \land P(x_n)) \Rightarrow P(y)}{\forall x \in I_R. \ P(x)}$$

Induction schemes

properties of numbers P(n) mathematical induction

two proof obligations: P(0) and $P(n) \Rightarrow P(n+1)$

properties of terms

P(t) structural induction

one proof obligation for each function symbol

properties of formulas P(F) rule induction

one proof obligation for each inference rule

Determinacy: two views

properties of terms P(t) structural induction

$$P(c) \stackrel{\triangle}{=} \forall \sigma, \sigma_1, \sigma_2. \ \langle c, \sigma \rangle \longrightarrow \sigma_1 \land \langle c, \sigma \rangle \longrightarrow \sigma_2 \Rightarrow \sigma_1 = \sigma_2$$

properties of formulas P(F) rule induction

$$P(\langle c, \sigma \rangle \longrightarrow \sigma_1) \stackrel{\triangle}{=} \forall \sigma_2. \ \langle c, \sigma \rangle \longrightarrow \sigma_2 \Rightarrow \sigma_1 = \sigma_2$$

Determinacy of commands

 $c := \mathbf{skip} \mid x := a \mid c; c \mid \mathbf{if} \ b \ \mathbf{then} \ c \ \mathbf{else} \ c \mid \mathbf{while} \ b \ \mathbf{do} \ c$

$$\frac{\langle a, \sigma \rangle \longrightarrow n}{\langle \mathbf{skip}, \sigma \rangle \longrightarrow \sigma} \quad \frac{\langle a, \sigma \rangle \longrightarrow n}{\langle x := a, \sigma \rangle \longrightarrow \sigma[n/x]} \quad \frac{\langle c_0, \sigma \rangle \longrightarrow \sigma'' \quad \langle c_1, \sigma'' \rangle \longrightarrow \sigma'}{\langle c_0; c_1, \sigma \rangle \longrightarrow \sigma'}$$

$$\frac{\langle b, \sigma \rangle \longrightarrow \mathbf{ff} \quad \langle c_1, \sigma \rangle \longrightarrow \sigma'}{\langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, \sigma \rangle \longrightarrow \sigma'} \quad \frac{\langle b, \sigma \rangle \longrightarrow \mathbf{tt} \quad \langle c_0, \sigma \rangle \longrightarrow \sigma'}{\langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, \sigma \rangle \longrightarrow \sigma'}$$

$$\frac{\langle b, \sigma \rangle \longrightarrow \mathbf{ff}}{\langle \mathbf{while} \ b \ \mathbf{do} \ c, \sigma \rangle \longrightarrow \sigma} \qquad \frac{\langle b, \sigma \rangle \longrightarrow \mathbf{tt} \quad \langle c, \sigma \rangle \longrightarrow \sigma' \quad \langle \mathbf{while} \ b \ \mathbf{do} \ c, \sigma'' \rangle \longrightarrow \sigma'}{\langle \mathbf{while} \ b \ \mathbf{do} \ c, \sigma \rangle \longrightarrow \sigma'}$$

$$P(\langle c, \sigma \rangle \longrightarrow \sigma_1) \stackrel{\triangle}{=} \forall \sigma_2. \ \langle c, \sigma \rangle \longrightarrow \sigma_2 \Rightarrow \sigma_1 = \sigma_2 \quad \forall c, \sigma, \sigma_1. \ P(\langle c, \sigma \rangle \longrightarrow \sigma_1) ?$$

Base case

$$\overline{\langle \mathbf{skip}, \sigma \rangle \longrightarrow \sigma}$$

We want to prove

$$P(\langle \mathbf{skip}, \sigma \rangle \longrightarrow \sigma) \stackrel{\triangle}{=} \forall \sigma_2. \langle \mathbf{skip}, \sigma \rangle \longrightarrow \sigma_2 \Rightarrow \sigma = \sigma_2$$

Take σ_2 s.t. $\langle \mathbf{skip}, \sigma \rangle \longrightarrow \sigma_2$

We want to prove $\sigma = \sigma_2$

Consider the goal $\langle \mathbf{skip}, \sigma \rangle \longrightarrow \sigma_2$

Only the rule $\frac{}{\langle \mathbf{skip}, \sigma \rangle \longrightarrow \sigma}$ is applicable, hence $\sigma_2 = \sigma$

Base case

$$\frac{\langle a,\sigma\rangle\longrightarrow n}{\langle x:=a,\sigma\rangle\longrightarrow \sigma[n/x]}$$
 We assume $\langle a,\sigma\rangle\longrightarrow n$

We want to prove

$$P(\langle x := a, \sigma \rangle \longrightarrow \sigma[\mathbf{n}/x]) \stackrel{\triangle}{=} \forall \sigma_2. \ \langle x := a, \sigma \rangle \longrightarrow \sigma_2 \Rightarrow \sigma[\mathbf{n}/x] = \sigma_2$$

Take
$$\sigma_2$$
 s.t. $\langle x := a, \sigma \rangle \longrightarrow \sigma_2$

We want to prove $\sigma[n/x] = \sigma_2$

Consider the goal $\langle x := a, \sigma \rangle \longrightarrow \sigma_2$

Only the rule $\frac{\langle a,\sigma\rangle \longrightarrow n}{\langle x:=a,\sigma\rangle \longrightarrow \sigma[n/x]}$ is applicable, hence $\sigma_2=\sigma[m/x]$ with $\langle a, \sigma \rangle \longrightarrow m$

since we assumed $\langle a, \sigma \rangle \longrightarrow n$

by determinacy of Aexp we have n=m and thus $\sigma_2=\sigma[m/x]=\sigma[n/x]$

Inductive case

$$\frac{\langle c_0, \sigma \rangle \longrightarrow \sigma'' \quad \langle c_1, \sigma'' \rangle \longrightarrow \sigma'}{\langle c_0; c_1, \sigma \rangle \longrightarrow \sigma'}$$

We assume

(inductive hypotheses)

$$P(\langle c_0, \sigma \rangle \longrightarrow \sigma'') \stackrel{\triangle}{=} \forall \sigma_2''. \langle c_0, \sigma \rangle \longrightarrow \sigma_2'' \Rightarrow \sigma'' = \sigma_2''$$
$$P(\langle c_1, \sigma'' \rangle \longrightarrow \sigma') \stackrel{\triangle}{=} \forall \sigma_2'. \langle c_1, \sigma'' \rangle \longrightarrow \sigma_2' \Rightarrow \sigma' = \sigma_2'$$

We want to prove

$$P(\langle c_0; c_1, \sigma \rangle \longrightarrow \sigma') \stackrel{\triangle}{=} \forall \sigma_2. \langle c_0; c_1, \sigma \rangle \longrightarrow \sigma_2 \Rightarrow \sigma' = \sigma_2$$

Take σ_2 such that $\langle c_0; c_1, \sigma \rangle \longrightarrow \sigma_2$

We want to prove $\sigma' = \sigma_2$

Inductive case (ctd)

$$P(\langle c_0, \sigma \rangle \longrightarrow \sigma'') \stackrel{\triangle}{=} \forall \sigma''_2. \ \langle c_0, \sigma \rangle \longrightarrow \sigma''_2 \Rightarrow \sigma'' = \sigma''_2$$
$$P(\langle c_1, \sigma'' \rangle \longrightarrow \sigma') \stackrel{\triangle}{=} \forall \sigma'_2. \ \langle c_1, \sigma'' \rangle \longrightarrow \sigma'_2 \Rightarrow \sigma' = \sigma'_2$$

Consider the goal $\langle c_0; c_1, \sigma \rangle \longrightarrow \sigma_2$

Only the rule $\frac{\langle c_0, \sigma \rangle \longrightarrow \sigma'' \quad \langle c_1, \sigma'' \rangle \longrightarrow \sigma'}{\langle c_0; c_1, \sigma \rangle \longrightarrow \sigma'}$ is applicable

hence $\sigma_2 = \sigma_2'$ with $\langle c_0, \sigma \rangle \longrightarrow \sigma_2''$ and $\langle c_1, \sigma_2'' \rangle \longrightarrow \sigma_2'$

By inductive hypothesis $P(\langle c_0, \sigma \rangle \longrightarrow \sigma'')$, we have $\sigma'' = \sigma_2''$

and thus $\langle c_1, \sigma'' \rangle \longrightarrow \sigma'_2$

By inductive hypothesis $P(\langle c_1, \sigma'' \rangle \longrightarrow \sigma')$, we then have $\sigma' = \sigma'_2$

Inductive case

$$\frac{\langle b, \sigma \rangle \longrightarrow \mathbf{ff} \quad \langle c_1, \sigma \rangle \longrightarrow \sigma'}{\langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, \sigma \rangle \longrightarrow \sigma'}$$

We assume

$$\langle b, \sigma \rangle \longrightarrow \mathbf{ff}$$

(inductive hypothesis)

$$P(\langle c_1, \sigma \rangle \longrightarrow \sigma') \stackrel{\triangle}{=} \forall \sigma_2. \langle c_1, \sigma \rangle \longrightarrow \sigma_2 \Rightarrow \sigma' = \sigma_2$$

We want to prove

$$P(\langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, \sigma \rangle \longrightarrow \sigma') \stackrel{\triangle}{=} \forall \sigma_2. \ \langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, \sigma \rangle \longrightarrow \sigma_2 \Rightarrow \sigma' = \sigma_2$$

Take
$$\sigma_2$$
 such that $\langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, \sigma \rangle \longrightarrow \sigma_2$

We want to prove
$$\sigma' = \sigma_2$$

Inductive case (ctd)

$$\langle b, \sigma \rangle \longrightarrow \mathbf{ff}$$

$$P(\langle c_1, \sigma \rangle \longrightarrow \sigma') \stackrel{\triangle}{=} \forall \sigma_2. \langle c_1, \sigma \rangle \longrightarrow \sigma_2 \Rightarrow \sigma' = \sigma_2$$

Consider the goal (if b then c_0 else c_1, σ) $\longrightarrow \sigma_2$

By determinacy of Bexp

only the rule
$$\frac{\langle b, \sigma \rangle \longrightarrow \mathbf{ff} \quad \langle c_1, \sigma \rangle \longrightarrow \sigma'}{\langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, \sigma \rangle \longrightarrow \sigma'}$$
 is applicable

hence
$$\sigma_2 = \sigma_2'$$
 with $\langle c_1, \sigma \rangle \longrightarrow \sigma_2'$

By inductive hypothesis $P(\langle c_1, \sigma \rangle \longrightarrow \sigma')$, we then have $\sigma' = \sigma'_2 = \sigma_2$

Inductive case

$$\frac{\langle b, \sigma \rangle \longrightarrow \mathbf{tt} \quad \langle c_0, \sigma \rangle \longrightarrow \sigma'}{\langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, \sigma \rangle \longrightarrow \sigma'}$$

Analogous to the previous case and thus omitted

Base case

$$\frac{\langle b,\sigma\rangle \longrightarrow \mathbf{ff}}{\langle \mathbf{while}\ b\ \mathbf{do}\ c,\sigma\rangle \longrightarrow \sigma}$$

We assume

$$\langle b, \sigma \rangle \longrightarrow \mathbf{ff}$$

We want to prove

$$P(\langle \mathbf{while} \ b \ \mathbf{do} \ c, \sigma \rangle \longrightarrow \sigma) \stackrel{\triangle}{=} \forall \sigma_2. \ \langle \mathbf{while} \ b \ \mathbf{do} \ c, \sigma \rangle \longrightarrow \sigma_2 \Rightarrow \sigma = \sigma_2$$

Take σ_2 such that $\langle \mathbf{while} \ b \ \mathbf{do} \ c, \sigma \rangle \longrightarrow \sigma_2$

We want to prove $\sigma = \sigma_2$

Inductive case (ctd)

$$\langle b, \sigma \rangle \longrightarrow \mathbf{ff}$$

Consider the goal (while b do c, σ) $\longrightarrow \sigma_2$

By determinacy of Bexp

Only the rule $\frac{\langle b, \sigma \rangle \longrightarrow \mathbf{ff}}{\langle \mathbf{while} \ b \ \mathbf{do} \ c, \sigma \rangle \longrightarrow \sigma}$ is applicable hence $\sigma_2 = \sigma$

Inductive case

$$\frac{\langle b, \sigma \rangle \longrightarrow \mathbf{tt} \quad \langle c, \sigma \rangle \longrightarrow \sigma'' \quad \langle \mathbf{while} \ b \ \mathbf{do} \ c, \sigma'' \rangle \longrightarrow \sigma'}{\langle \mathbf{while} \ b \ \mathbf{do} \ c, \sigma \rangle \longrightarrow \sigma'}$$

We assume

$$\langle b, \sigma \rangle \longrightarrow \mathbf{tt}$$

(inductive hypotheses)

$$P(\langle c, \sigma \rangle \longrightarrow \sigma'') \stackrel{\triangle}{=} \forall \sigma''_2. \langle c, \sigma \rangle \longrightarrow \sigma''_2 \Rightarrow \sigma'' = \sigma''_2$$

$$P(\langle \mathbf{while} \ b \ \mathbf{do} \ c, \sigma'' \rangle \longrightarrow \sigma') \stackrel{\triangle}{=} \forall \sigma'_2. \ \langle \mathbf{while} \ b \ \mathbf{do} \ c, \sigma'' \rangle \longrightarrow \sigma'_2 \Rightarrow \sigma' = \sigma'_2$$

We want to prove

$$P(\langle \mathbf{while} \ b \ \mathbf{do} \ c, \sigma \rangle \longrightarrow \sigma') \stackrel{\triangle}{=} \forall \sigma_2. \ \langle \mathbf{while} \ b \ \mathbf{do} \ c, \sigma \rangle \longrightarrow \sigma_2 \Rightarrow \sigma' = \sigma_2$$

Take
$$\sigma_2$$
 such that $\langle \mathbf{while} \ b \ \mathbf{do} \ c, \sigma \rangle \longrightarrow \sigma_2$

We want to prove
$$\sigma' = \sigma_2$$

Inductive case (ctd)

```
\langle b, \sigma \rangle \longrightarrow \mathbf{tt}
P(\langle c, \sigma \rangle \longrightarrow \sigma'') \stackrel{\triangle}{=} \forall \sigma''_2. \ \langle c, \sigma \rangle \longrightarrow \sigma''_2 \Rightarrow \sigma'' = \sigma''_2
P(\langle \mathbf{while} \ b \ \mathbf{do} \ c, \sigma'' \rangle \longrightarrow \sigma') \stackrel{\triangle}{=} \forall \sigma'_2. \ \langle \mathbf{while} \ b \ \mathbf{do} \ c, \sigma'' \rangle \longrightarrow \sigma'_2 \Rightarrow \sigma' = \sigma'_2
```

Consider the goal (while b do c, σ) $\longrightarrow \sigma_2$ By determinacy of Bexp only the rule $\frac{\langle b, \sigma \rangle \longrightarrow \mathbf{tt} \quad \langle c, \sigma \rangle \longrightarrow \sigma'' \quad \langle \mathbf{while} \ b \ \mathbf{do} \ c, \sigma'' \rangle \longrightarrow \sigma'}{\langle \mathbf{while} \ b \ \mathbf{do} \ c, \sigma \rangle \longrightarrow \sigma'}$ is applicable hence $\sigma_2 = \sigma_2'$ with $\langle c, \sigma \rangle \longrightarrow \sigma_2''$ and $\langle \mathbf{while} \ b \ \mathbf{do} \ c, \sigma_2'' \rangle \longrightarrow \sigma_2'$ By inductive hypothesis $P(\langle c, \sigma \rangle \longrightarrow \sigma'')$, we have $\sigma'' = \sigma''_2$ thus $\langle \mathbf{while} \ b \ \mathbf{do} \ c, \sigma'' \rangle \longrightarrow \sigma_2'$ By inductive hypothesis $P(\langle \mathbf{while} \ b \ \mathbf{do} \ c, \sigma'' \rangle \longrightarrow \sigma')$ we conclude $\sigma' = \sigma_2' = \sigma_2$

Determinacy of commands

$$\forall c, \sigma, \sigma_1. \ P(\langle c, \sigma \rangle \longrightarrow \sigma_1)$$

$$P(\langle c, \sigma \rangle \longrightarrow \sigma_1) \stackrel{\triangle}{=} \forall \sigma_2. \ \langle c, \sigma \rangle \longrightarrow \sigma_2 \Rightarrow \sigma_1 = \sigma_2$$

Badge exercise

Suppose we extend the syntax of arithmetic expression's

$$a := x \mid n \mid a \text{ op } a \mid x++$$

where x++ evaluates to the current value of x but then increment x as a side-effect

- 1. Redefine the operational semantics of Aexp, Bexp and Com to take side-effects into account and discuss all problematic issues and the subsequent design choices
- 2. Find two arithmetic expressions a_0 and a_1 such that the evaluation of $a_0 + a_1$ differs from that of $a_1 + a_0$, if possible