
Principles for software composition 2018/19
Exam – June 19, 2019

[Ex. 1] (1st mid-term / regular exam)
Suppose one wants to insert some measure of efficiency in the operational
semantics of IMP.

1. Redefine the operational semantics of IMP commands in such a way
that the transition predicate takes the form

〈c, σ〉 n−→ σ′

with the meaning that “the command c, when executed in the state σ
converges to the state σ′ by evaluating exactly n boolean guards.”

2. Prove by rule induction that for all c, σ, σ′:

〈c, σ〉 → σ′ ⇒ ∃n ∈ N. 〈c, σ〉 n−→ σ′.

[Ex. 2] (1st mid-term / regular exam)
Consider the CPO⊥ (℘(N),⊆) and the function f : ℘(N)→ ℘(N) defined by:

f(X)
def
= {y ∈ N | ∃a, b ∈ X. a ≤ y ≤ b}

1. Prove that f is monotone.

2. Prove that f is continuous.

[Ex. 3] (1st mid-term)
Let us call a repetition any list where the same value occurs in all positions of
the list. Write a Haskell function decompose that takes a list xs and returns
the list of repetitions in xs. For example, decompose [1,1,1,2,2,2,1,1,3]

must return the list [[1,1,1],[2,2,2],[1,1],[3]].

[Ex. 4] (1st mid-term)
Consider the HOFL terms

t
def
= rec f. λx. if x then (x− 1, f (x− 1)) else (x+ 1, f (x+ 1))

s
def
= rec g. λy. if y then g (y − 1) else (y + 1, fst(g (y + 1)))

1. Find the principal type of t, if it exists.

2. Find the principal type of s, if it exists.


