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Fig. 4.31 A walking trajectory with double support periods. The CoM trajectories
while double support phase are indicated by gray lines. The same parameters as were
used in Fig. 4.29 are used. zc = 0.8, Tsup = 0.7, Tdbl = 0.1,weights a = 10, b = 1.

It should be noted that while longer period of double support results
smoother support exchange, it also requires undesirable quicker swing leg
motion. Therefore we have a trade-off in determining Tdbl.

4.3.5 From Linear Inverted Pendulum to Multi-body

Model

The easiest way to generate a walking pattern by using the linear inverted
pendulum is to let the pelvis link follow the CoMmotion of LIP. First, the real
position of the CoM is calculated using a multi-body model and its position
with respect to the pelvis frame is determined. After that, the position of the
pelvis link is directly determined from the liner inverted pendulum assuming
that the relative position of the CoM is kept constant with respect to the
pelvis. In addition, we must calculate the swing foot trajectory so that it
arrives the desired foot place at the specified time of touchdown.

Once we determine the trajectories for the pelvis and the both feet,
the leg joint angles can be obtained by inverse kinematics as explained in
Chapter 2.

This method is based on an assumption that the multi-body dynamics
of the robot can be approximated by a simple inverted pendulum and its
validity can be confirmed by using ZMP described in the former chapter. By
calculating ZMP using multi-body model, we can evaluate the effects of swing
leg reaction and errors in CoM position which were neglected in a linear
inverted pendulum. Figure 4.32 shows two ZMPs, one based on the linear
inverted pendulum, and one based on multi-body dynamics and the proposed
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Fig. 4.32 Comparison of ZMP trajectory (a) ZMP calculated from 3D linear in-
verted pendulummodel (b) ZMP calculated from multi-body dynamics whose pelvis
link moves as 3D-LIP
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Fig. 4.33 Biped robot HRP-2L
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pattern generation. Both of ZMPs are sufficiently close, hence we can conclude
a multi-body dynamics can be simplified as a simple inverted pendulum in
this case.

4.3.6 Implementation Example

Let us see an implementation of the proposed walking pattern generation.
Figure 4.33 shows a biped robot HRP-2L which was developed in “Humanoid
Robotics Project”(HRP). This robot was built to evaluate the leg part of
HRP-2, the humanoid robot which was the final goal of the project. Each
leg has six degrees of freedom and the robot is equipped with a Pentium II

1st step 4th step

8th step 12th step

15th step 19th step

Fig. 4.34 Snapshots of real-time walking control
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933MHz based on-board computer on its body part. The total weight is
58.2 [kg] including batteries of 11.4 [kg] and dummy weights of 22.6 [kg]
which emulates upper body.

The algorithm of Fig. 4.25 can generate a walking pattern where at least
two future steps were given. So we could build a walking control system which
allows real-time step modification by specifying the walk parameter of two
steps in future (sx, sy, sθ) with a joystick. Figure 4.34 shows snapshots of our
experiment of real-time walking control.

4.4 ZMP Based Walking Pattern Generation

4.4.1 Cart-Table Model

Let us think about a new model illustrated in Fig. 4.35. Here, a cart with
mass M runs on a table whose mass is negligibly small. Although the table
foot is too small to keep balance having a cart on the edge of the table, it can
still keep an instantaneous balance if the cart runs with certain acceleration.
We call this a cart-table model.

Since a cart-table model corresponds the case of a single mass at constant
height in section 3.5.2, the ZMP is given as

p = x−
zc
g
ẍ. (4.64)

We call this equation a ZMP equation.

M

cz

p

x

O

0ZMPτ =

xɺɺ

Fig. 4.35 Cart-table model: Dynamics of walking robot is approximated as a cart
running on a massless table. The state of the running cart determines the center of
pressure which acts from the floor, in other words, the cart changes ZMP.
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On the other hand, the equation of linear inverted pendulum was given as
following (Fig. 4.24).

ẍ =
g

zc
(x− p). (4.65)

By regarding p as ZMP and not a foot place point as we did previously, we
can treat a robot applying ankle torque and a robot in double support phase
in a unified manner [134]. Moreover, we can see that (4.64) and (4.65) are
the same equations with different outlooks.

A linear inverted pendulum model and a cart-table model are compared in
Fig. 4.36. In a linear inverted pendulum model, the CoM motion is generated
by the ZMP (Fig. 4.36(a)), and in a cart-table model, the ZMP is generated
by the CoM motion (Fig. 4.36(b)). Therefore, these two models have opposite
input-output causality.
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Fig. 4.36 Comparison of two models for relationship between ZMP and CoM
(a) A linear inverted pendulum model inputs ZMP and outputs CoM motion. (b)
A cart-table model inputs CoM motion and outputs ZMP.

As we described in the former section, a method based on a linear inverted
pendulum assumes input-output relationship of Fig. 4.36(a) and the walking
pattern is calculated in the following process.

(Specify target CoM motion) ⇒ (Calculate appropriate ZMP)

In this case, it is difficult to plan ZMP as expected. Indeed, we have modified
the ZMP (support foot placement) in the method of the previous section.
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Now, let us consider a walking pattern generation based on a cart-table
model. In this case, assuming the causal relationship of Fig. 4.36(b), we cal-
culate a walking pattern by the following manner12.

(Specify target ZMP trajectory) ⇒ (Calculate appropriate CoM motion)

As the result, we can obtain a walking pattern which realizes the speci-
fied ZMP trajectory. Let us call such a method ZMP based walking pattern

generation.

4.4.2 Off-Line Walking Pattern Generation

ZMP based walking pattern generation was first proposed by Vukobratović
and Stepanenko in their paper published in 1972 [90], but their algorithm
takes considerable computation time. Then, Takanishi et al. proposed a prac-
tical method which transforms the target ZMP pattern into a Fourier series
by using FFT, solve the ZMP equation (4.64) in the frequency domain and
obtains the CoM trajectory by using inverse FFT [11]13. A pattern generator
based on this method played a particularly important role in the early stage
of the Humanoid Robotics Project.

In this section, we introduce a fast and efficient algorithm that was recently
proposed by Nishiwaki et al. [114]14 Let us discretize the ZMP equation with
a sampling time ∆t. For this purpose, the acceleration ẍ is approximated as

ẍi =
xi−1 − 2xi + xi+1

∆t2
, (4.66)

where xi ≡ x(i∆t). Using this approximation, the discretized ZMP equation
is

pi = axi−1 + bxi + cxi+1, (4.67)

ai ≡ −zc/(g∆t2),

bi ≡ 2zc/(g∆t2) + 1,

ci ≡ −zc/(g∆t2).

Putting the equations (4.67) in a column for the period of the specified
(1 . . .N), and representing them as a single matrix equation gives

12 There exist an infinite numbers of possible CoM motions which realize the given
ZMP trajectory, however, almost all of them suffer divergence. Fig. 4.36(b) can
be regarded as a mechanism which guarantees an executable solution.

13 Later, Takanishi’s method was extended to handle real-time pattern generation
[40].

14 Another fast and efficient method was proposed by Nagasaka [93].
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where p′1, p
′

N are specified by using initial and terminal velocities v1, vN as

p′1 = p1 + a1v1∆t, p′N = pN − cNvN∆t.

Rewriting (4.68) as
p = Ax

gives the representation of the solution by

x = A−1p. (4.69)

Although A is a huge square matrix with several thousands columns and
several thousands lows, there exists an efficient algorithm to compute the
inverse [136] since it is a tridiagonal matrix whose elements are all zeros
except its main diagonal, the adjacent diagonals above and below it.

From this CoM trajectory, we can generate a walking pattern for a multi-
body model by using the method of Section 4.3.5. Then we can calculate the
ZMP trajectory for the multi-body model.

p∗ = RealZMP (x). (4.70)

The function RealZMP () calculates ZMP based on a multi-body model and
p∗ is the obtained ZMP. The ZMP error p∗

− pd contains information about
the difference between the cart-table model and the multi-body model. Again
using (4.69), we can calculate the CoM variation to compensate the ZMP
error

∆x = A−1(p∗
− pd).

The CoM trajectory is updated by

x := x−∆x.

Going back to (4.70), we can repeat the same process until the ZMP error
becomes sufficiently small.

This is a very efficient algorithm. According to Nishiwaki et al. [73] it takes
only 140 [ms] in generating a walking pattern for three steps (3.2 s) of the
humanoid robot H7 [113] which have 32 DOF using dual Pentium II 750MHz.
They have realized joystick controlled real-time walking by generating three
future steps at every step cycle and by properly connecting them.


