
Tecniche di Progettazione:

Design Patterns

Design principles

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.1

Plan of the lecture

� Your state of the art

� SOLID

� Grasp (to be continued next week)

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.2

Short summary of what you must know

� Few things on design principles you surely already learned
(at least in the IS course)

� Encapsulation (Accessors & Mutators)

� Cohesion

� Decoupling

� Separation of concerns

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.3

General design principle: Encapsulation

� Aka Information Hiding

� While encapsulation is a fundamental attribute of the
Object- Oriented paradigm, it also describes a
fundamental principle of good class design; namely,
hide all implementation details from the user of the class.

� The reason for doing this is so that you can change
the underlying implementation without requiring user
changes.

� A class that makes internal representations visible is
usually poorly designed.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.4

Accessors & Mutators

(aka getters and setters)

� The usual way of accessing the properties (attributes) of a
class.

� Good encapsulation will hide the data representation.

� The user of a class should be unaware of whether there is an
actual field in the object for a property or if the property is
calculated. The accessors and mutators are the interfaces to
the properties.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.5

Accessors

� Accessors retrieve the property.

� An accessor should not have any side effects. This means that
an accessor should not change the state of the property's
object.

� Further, it is not good practice to return a property as a value
that, if you change it, will be reflected in the original object.

� For example, assume object A has a Vector, v, that it uses to store
some set of items and provides an accessor method, getV(). Now, if
getV() returns the reference to the actual vector v, the caller to getV()
can modify the contents of the vector.

� Unless there is a critical need to allow such modifications, you
should return a clone of the vector.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.6

Mutators

� Mutators (or setters) are methods that allow (controlled)
modification of properties. In effect, the mutators change
the state of the object.

� Mutators should also be very specific in their effect. They
should only modify the property specified and cause no
other side effects to the state of the object.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.7

Discussion

� Most editors let you automatically generate accessor and
mutator methods (getters and setters) for the fields that
exist in your classes.

� Should you provide accessors and mutators for every
property?

� There are several disadvantages in doing so.

� First of all, you may not need them. Whenever you provide an
accessor or mutator to a property, you are telling other
programmers that they are free to use them. You have to
maintain these methods from that point on.

� Second, you may not want a property to change. If so, don't
provide a mutator.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.8

General design principle: Cohesion

� Cohesion examines how the activities within a
module are related to one another. The cohesion of a
module may determine how tightly it will be coupled
to other modules.

� The objective of designers is to create highly cohesive
modules where all the elements of a module are closely
related.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.9

Example of «pattern» to enhance

cohesion (from IS: component structure)

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.10

General design principle: Decoupling

� Aka uncoupling, aka coupling

� The elements of one module should not be closely
related to the elements of another module.

� Such a relationship leads to tight coupling between
modules.

� Ensuring high cohesion within modules is one way of
reducing tight coupling between modules.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.11

Separation of concerns

� Term probably coined by Edsger W. Dijkstra in 1974

� Quality of the process more than quality of the product
� Let me try to explain to you, what to my taste is characteristic for all intelligent

thinking. It is, that one is willing to study in depth an aspect of one's subject
matter in isolation for the sake of its own consistency, all the time knowing that
one is occupying oneself only with one of the aspects. We know that a program
must be correct and we can study it from that viewpoint only; we also know that
it should be efficient and we can study its efficiency on another day, so to speak.
In another mood we may ask ourselves whether, and if so: why, the program is
desirable. But nothing is gained —on the contrary!— by tackling these various
aspects simultaneously. It is what I sometimes have called "the separation of
concerns", which, even if not perfectly possible, is yet the only available technique
for effective ordering of one's thoughts, that I know of. This is what I mean by
"focusing one's attention upon some aspect": it does not mean ignoring the
other aspects, it is just doing justice to the fact that from this aspect's point of
view, the other is irrelevant. It is being one- and multiple-track minded
simultaneously.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.12

SOLID

� Robert C. Martin.

� Aka uncle Bob

� Five basic principles of object-oriented programming and
design.

� Early 2000s.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.13

SOLID

� Single Responsibility Principle

� A class (or method) should only have one reason to change.

� Open Closed Principle

� Extending a class shouldn't require any modification of existing classes.

� Liskov Substitution Principle

� Derived classes must be substitutable for their base classes.

� Interface Segregation Principle

� Make fine grained interfaces that are client specific.

� Dependency Inversion Principle

� Program to the interface, not the implementation.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.14

SOLID 1: Single Responsibility Principle

� A class (or method) should only have one reason to
change.

� In this context a responsibility is considered to be one reason
to change. This principle states that if we have 2 reasons to
change for a class, we have to split the functionality in two
classes. Each class will handle only one responsibility and on
future if we need to make one change we are going to make it
in the class which handle it. When we need to make a change in
a class having more responsibilities the change might affect the
other functionality of the classes.

� Single Responsibility Principle was introduced by Tom DeMarco
in his book Structured Analysis and Systems Specification, 1979.
Robert Martin reinterpreted the concept and defined the
responsibility as a reason to change.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.15

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.16

SOLID 1: Single Responsibility Principle

� Question:

� Does this concept reminds you of something ?

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.17

SOLID 2: Open Closed Principle

� Software entities like classes, modules and functions
should be open for extension but closed for
modifications.

� Robert Martin paraphrasing Bertrand Meyer, from “The
Principles of OOD”

� Extending a class shouldn't require any modification of
existing classes.

� OPC is a generic principle. You can consider it when writing
your classes to make sure that when you need to extend their
behavior you don’t have to change the class but to extend it.
The same principle can be applied for modules, packages,
libraries.

� OPC can be ensured by use of Abstract Classes and concrete
classes for implementing their behaviorDesign patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.18

SOLID 2: Open Closed Principle: ad ex.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.19

SOLID 2: Open Closed Principle: bad ex.
class GraphicEditor {

public void drawShape(Shape s) {

if (s.m_type==1) drawRectangle(s);

else if (s.m_type==2) drawCircle(s);

}

public void drawCircle(Circle r) {....}

public void drawRectangle(Rectangle r) {....}

}

class Shape {int m_type; }

class Rectangle extends Shape {

Rectangle() {super.m_type=1;}

}

class Circle extends Shape {

Circle() {super.m_type=2; }

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.20

SOLID 2: Open Closed Principe

� Rely on abstractions

� Interfaces

� Abstract classes

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.21

SOLID 2: Open Closed Principle applied

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.22

SOLID 2: Open Closed Principle applied
class GraphicEditor {

public void drawShape(Shape s) {

s.draw();

}

}

class Shape {

abstract void draw();

}

class Rectangle extends Shape {

public void draw() {

// draw the rectangle

}

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.23

SOLID 3: Liskov Substitution Principle

� The Liskov Substitution Principle was described by
Barbara Liskov at MIT. Basically, the LSP says:

If for each object o1 of type S there is an object o2 of type T
such that for all programs P defined in terms of T, the
behaviour of P is unchanged when o1 is substituted for o2
then S is a subtype of T.

� Derived classes must be substitutable for their base
classes.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.24

SOLID 4: Interface Segregation Principle

� Make fine grained interfaces that are client specific.

� Clients should not be forced to depend upon interfaces that
they don't use.

� This principle teaches us to take care how we write our
interfaces.

� When we write our interfaces we should take care to add only
methods that should be there.

� If we add methods that should not be there the classes
implementing the interface will have to implement those
methods as well.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.25

SOLID 4: Interface Segregation Principle

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.
26

SOLID 4: Interface Segregation Principle

� For example if we create an interface called Worker and
add a method lunch break, all the workers will have to
implement it.

� What if the worker is a robot?

� As a conclusion Interfaces containing methods that are
not specific to it are called polluted or fat interfaces.
Avoid them!

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.27

interface segregation principle - bad

example
interface IWorker {

public void work();

public void eat();

}

class Worker implements IWorker{

public void work() {

//working

}

public void eat() {

// eating in launch break

}

}

class SuperWorker implements IWorker{

public void work() {

//.... working much more

}

public void eat() {

//.... eating in launch break

}

}

class Manager {

IWorker worker;

public void setWorker(IWorker w) {

worker=w;

}

public void manage() {

worker.work();

}

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.28

interface segregation principle - bad

example
interface IWorkable {

public void work();

}

interface IFeedable{

public void eat();

}

class Worker implements IWorkable, IFeedable{

public void work() { //working

}

public void eat() { //.... eating in launch
break

}

}

class Robot implements IWorkable{

public void work() { //working

}

}

class SuperWorker implements IWorkable,
IFeedable{

public void work() { //.... working much more

}

public void eat() {//.... eating in launch break

}

}

class Manager {

Workable worker;

public void setWorker(IWorkable w) {

worker=w;

}

public void manage() {

worker.work();

}

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.29

SOLID 5: Dependency Inversion

Principle

� Program to the interface, not the implementation.

� High-level modules should not depend on low-level modules.

� Both should depend on abstractions.

� Abstractions should not depend on details.

� Details should depend on abstractions.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.30

Design patterns, Laura Semini,
Università di Pisa, Dipartimento di

Informatica.

31

SOLID 5: Dependency Inversion

Principle

� DIP states that we should decouple high level modules from low
level modules, introducing an abstraction layer between the high
level classes and low level classes.

� Furthermore it inverts the dependency: instead of writing our
abstractions based on details, the we should write the details
based on abstractions.

� Put simply, this says

� "depend only on things which are abstract",

� "interface programming" or "programming to the interface".

� In essence, you should not rely on any concrete implementations
of any classes, be they your own or framework objects.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.32

SOLID 5: Dependency Inversion

Principle

� Question:

� Is DIP the same as information hiding?

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.33

SOLID 5: Dependency Inversion

Principle: bad ex

class EventLogWriter

{

public void Write(string message)

{

//Write to event log here

}

}

class AppPoolWatcher

{ // Handle to EventLog writer to write to the
logs

EventLogWriter writer = null;

// This function will be called when the app
pool has problem

public void Notify(string message)

{

if (writer == null)

{writer = new EventLogWriter(); }

writer.Write(message);

}

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.34

SOLID 5: Dependency Inversion

Principle: problems with the example

� The next requirement is to send email to network
administrator for some specific set of error.

� Now, how will we do that?

� One idea is to create a class for sending emails and keeping its handle in
the AppPoolWatcher but at any moment we will be using only one
object either EventLogWriter or EmailSender.

� The problem will get even worse when we have more actions
to take selectively, like sending SMS.

� Then we will have to have one more class whose instance will be kept
inside the AppPoolWatcher.

� The dependency inversion principle says that we need to decouple this
system in such a way that the higher level modules i.e. the
AppPoolWatcher in our case will depend on a simple abstraction and
will use it. This abstraction will in turn will be mapped to some concrete

class which will perform the actual operation.
Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.35

SOLID 5: Dependency Inversion

Principle: solution

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.36

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.37

GRASP

� General Responsibility Assignment Software Patterns

� “Applying UML and Patterns” by Craig Larman

� These are not ‘design patterns’, rather fundamental principles
of object design: GRASP patterns focus on one of the most
important aspects of object design, assigning responsibilities to
classes

� Information Expert, Creator, Controller, Low Coupling, High Cohesion,
Polymorphism, Pure Fabrication, Indirection, Protected Variations

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.38

Example – domain model

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.39

point of sale

application

OO design

� A (too ☺) simple definition :

� In the analysis part of the current and previous iterations
you have

� Identified use cases and created use case descriptions to get
the requirements

� Created and refined the domain concept model

� Now in order to make a piece of object design you

� Assign methods to software classes

� Design how the classes collaborate (i.e. send messages) in
order to fulfill the functionality stated in the use cases.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.40

Central tasks in design

� Deciding what methods belong where

� How the objects should interact

� A use-case realization

� describes how a particular use case is realized within the design
model in terms of collaborating objects.

� Use-case realization work is a design activity, the design grows
with every new use case realization.

� Interaction diagrams and patterns apply while doing use-case
realizations.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.41

Def of responsibilities

� Responsibilities are related to the problem domain

� In design model, responsibilities are obligations of an object in
terms of its behavior.

� There are two main types of responsibilities:

� Doing responsibilities:

� Doing something itself, such as creating an object or doing a calculation

� Initiating action in other objects

� Controlling and coordinating activities in other objects.

� Knowing responsibilities

� Knowing about private encapsulated data

� Knowing about related objects.

� Knowing about things it can derive or calculate.

� Knowing are often easy to infer from the domain model, where the
attributes and associations are illustrated.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.42

Responsibility vs method

� The translation of problem domain responsibilities into
classes and methods is influenced by the granularity of the
responsibility.

� A responsibility is not the same thing as a method, but
methods are implemented to fulfill responsibilities.

� Example

� The Sale class might define a methods to know its total; say, a
method named getTotal.

� To fulfill that responsibility, the Sale may collaborate with other
objects, such as sending a getSubtotal message to each
SalesLineltem object asking for its subtotal.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.43

GRASP –

learning and doing Basic Design

� The GRASP patterns are a learning aid to help one
understand essential object design.

� Design reasoning is applied in a methodical, rational,
explainable way.

� GRASP approach is based on assigning responsibilities,
thus creating the basic object and control structures

� Guided by patterns of assigning responsibilities

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.44

Responsibilities and Sequence

Diagrams

� Responsibilities are
illustrated and assigned
to classes by creating
mainly sequence
diagrams.

� Note that during this
design work you should
stay at the specification
perspective, thinking
about the service
interfaces of objects,
not their internal
implementation

� Sale objects are given a
responsibility to create Payments.

� The responsibility is invoked with a
makePayment message

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.45

The nine GRASP Patterns

� Creator

� Information Expert

� High Cohesion

� Low Coupling

� Controller

� Polymorphism

� Indirection

� Pure Fabrication

� Protected Variations

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.46

Creator

� Problem

� Who should be responsible for creating new instances of a
class?

� Solution:

� Assign class B the responsibility to create an instance of class A
if one or more of the following is true:

� B aggregates A objects.

� B contains A objects.

� B records instances of A objects.

� B closely uses A objects.

� B has the initializing data

� Question: which is the intent?

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.47

Example

� Who should be
responsible for
creating a SalesLineltem
instance?

� Applying Creator, we
look for a class that
aggregates, contains,
and so on, SalesLineltem
instances.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.48

Creating SalesLineItem

� a Sale contains many SalesLineltem objects, thus the
Creator pattern suggests that Sale is a good candidate to
have the responsibility of creating SalesLineltem instances.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.49

Creator: discussion

� The ‘basic rationale’ behind Creator pattern is to find a creator
that needs to be connected to the created object in any event.

� Thus assigning it ‘creating responsibility’ supports low coupling

� Composite objects are good candidates for creating their parts

� Sometimes you identify a creator by looking for the class that
has the initialization data that will be passed to constructor
during creation.

� This in fact is an application of Expert pattern (we’ll see later).

� For example, Payment instance needs to be initialized, when created with
the Sale total.

� Since Sale knows the total, Sale is a candidate creator of the Payment.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.50

Creator: discussion (cont’d)

� Benefits

� Low coupling is supported, which implies lower maintenance
dependencies and higher opportunities for reuse.

� Contradictions

� Often, creation is a complex design issue involving many contradicting
forces

� In these cases, it is advisable to delegate creation to a helper class
called a Factory.

� GoF patterns contain many factory patterns that may inspire a better
design for creation.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.51

The nine GRASP Patterns

� Creator

� Information Expert

� High Cohesion

� Low Coupling

� Controller

� Polymorphism

� Indirection

� Pure Fabrication

� Protected Variations

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.52

Information Expert

� Problem

� What is the general principle of assigning responsibilities to
objects.

� Solution

� Assign a responsibility to the information expert, that is the
class that has the information necessary to fulfill the
responsibility.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.53

Information Expert: discussion

� Question

� Do we look at the Domain Model or the Design Model to
analyze the classes that have the information needed?

� Domain model illustrates conceptual classes, design model software
classes

� Answer

� If there are relevant classes in the Design Model, look there
first.

� Otherwise, look in the Domain Model, and attempt to use (or
expand) its representations to inspire the creation of
corresponding design classes

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.54

How to apply the pattern

� Start by clearly stating the responsibility:

� “Who should be responsible for knowing the total of a sale?

� Apply “Information Expert” pattern…

� Assume we are just starting design work and there is no
Design Model or a minimal one, therefore

� Search the Domain Model for information experts; the real-
world Sale is a good candidate.

� Then, add a software class to the Design Model similarly called
Sale, and give it the responsibility of knowing its total, expressed
with the method named getTotal.

� CRC cards

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.55

Example

� Consider the following partial Domain Model

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.56

Discussion

� What information is needed to determine the grand
total?

� It is necessary to know about all the SalesLineltem instances of
a sale and the sum of their subtotals.

� A Sale instance contains these; therefore,

� by the guideline of Information Expert, Sale is a suitable class of
object for this responsibility.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.57

A cascade of responsibilities

� What is needed to determine the line item subtotal?

� by Expert, SalesLineltem should determine the subtotal

� To fulfill this responsibility, a SalesLineltem needs to know the
product price.

� By Expert, the ProductDescription is an information expert on
answering its price

� In conclusion, to fulfill the responsibility of knowing and
answering the sale's total, three responsibilities were
assigned to three design classes:

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.58

The assigned responsibilities illustrated

with a collaboration diagram.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.59

Information Expert: discussion

� Information Expert is a basic guiding principle used
continuously in object design.

� The fulfillment of a responsibility often requires
information that is spread across different classes

� This implies that there are many "partial" information experts
who will collaborate in the task.

� Different objects will need to interact via messages to share
the work.

� The Information Expert should be an early pattern
considered in every design unless the design implies a
controller or creation problem, or is contraindicated on a
higher design level.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.60

Information Expert: Benefits

� Information encapsulation is maintained, since objects use
their own information to fulfill tasks.

� This usually supports low coupling.

� Behavior is distributed across the classes that have the
required information,

� thus encouraging cohesive "lightweight" class definitions that are
easier to understand and maintain

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.61

Information Expert: Contradictions

� In some situations a solution suggested by Expert is
undesirable, because of problems in coupling and cohesion.

� For example, who should be responsible for saving a Sale in
a database?

� If Sale is responsible, then each class has its own services to save
itself in a database. The Sale class must now contain logic related to
database handling, such as related to SQL and JDBC.

� This will raises its coupling and duplicate the logic. The design
would violate a separation of concerns – a basic architectural
design goal.

� Thus, even though by Expert there could be justification on
object design level, it would result a poor architecture
design

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.62

The nine GRASP Patterns

� Creator

� Information Expert

� Low Coupling

� High Cohesion

� Controller

� Polymorphism

� Indirection

� Pure Fabrication

� Protected Variations

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.63

Low Coupling

� Problem

� How to support low dependency, low change impact, and
increased reuse?

� Solution

� Assign a responsibility so that coupling remains low.

� Coupling is a measure of how strongly one element is
connected to, has knowledge of, or relies on other
elements.

� An element with low (or weak) coupling is not dependent
on too many other elements

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.64

Low Coupling: discussion

� A class with high (strong) coupling suffers from the
following problems:

� Forced local changes because of changes in related classes.

� Harder to understand in isolation.

� Harder to reuse because its use requires the additional
presence of the classes on which it is dependent.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.65

Example

� We need to create a Payment instance and associate it with
Sale.

� What class should be responsible for this?

� Since Register “records” a Payment, the
Creator pattern suggests Register as
a candidate for creating the Payment.

� The Register instance could then send an addPayment
message to the Sale, passing along the new Payment as a
parameter.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.66

Unnecessary high coupling

� This assignment of responsibilities couples the Register
class to knowledge of the Payment class.

� Register is also coupled to Sale, as it will be in any design
solution. This hints us of another solution, according to
low coupling pattern

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.67

Low coupling solution

� Two patterns suggested different designs. This is very
common. Creating a design is balancing contradicting
forces.

� In practice, the level of coupling alone can’t be considered
in isolation from other principles such as Expert and
Creator. Nevertheless, it is one important factor to
consider in improving a design.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.68

Discussion

� In OO languages common forms of coupling from type X
to type Y include:

� X has an attribute (data member or instance variable) that refers to
a Y instance, or Y itself.

� A X object calls on services of a Y object.

� X has a method that references an instance of Y, or Y itself, by any
means. E.g. a parameter or local variable of type Y, or the object
returned from a message being an instance of Y.

� X is a direct or indirect subclass of Y.

� Y is an interface, and X implements that interface.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.69

A subclass is strongly coupled to its superclass

Discussion (cont’d)

� It is not high coupling per se that is the problem; the
problem is high coupling to elements that are unstable in
some dimension, such as their interface, implementation or
presence.

� Coupling to stable or pervasive elements is seldom a
problem

� Pick your battles

� Focus on the points of realistic high instability or future
evolution

� Encapsulate the variability

� Low coupling between variable part and rest of the system

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.70

The nine GRASP Patterns

� Creator

� Information Expert

� Low Coupling

� High Cohesion

� Controller

� Polymorphism

� Indirection

� Pure Fabrication

� Protected Variations

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.71

High Cohesion

� Problem (one of them)

� How to keep complexity manageable?

� Solution

� Assign a responsibility so that cohesion remains high.

� Cohesion (or more specifically, functional cohesion)

� Is a measure of how strongly related and focused the
responsibilities of an element are.

� An element with highly related responsibilities, and which does
not do a tremendous amount of work, has high cohesion.

� A class with low cohesion does many unrelated things, or does
too much work.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.72

Low Cohesion Problems

� A class with low cohesion suffer from the following
problems:

� Hard to comprehend (understand)

� Hard to reuse

� Delicate; constantly affected by change.

� Hard to maintain

� Low cohesion classes have taken on responsibilities that
should have been delegated to other objects.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.73

Example

� We need to create a Payment instance and associate it with
Sale.

� What class should be responsible for this?

� Since Register “records” a Payment, the
Creator pattern suggests Register as
a candidate for creating the Payment.

� The Register instance could then send an addPayment
message to the Sale, passing along the new Payment as a
parameter.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.74

Suggested (wrong) Solution

� This places part of the responsibility for making a
payment in the Register. This is acceptable in isolated ex.

� However, if we continue to make the Register class responsible
for doing some or most of the work, assigning it more system
operations, it will become incohesive.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.75

A better Solution

� This design delegates the payment creation responsibility
to the Sale, which supports higher cohesion in register.

� This design supports both high cohesion and low coupling
and is desireable.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.76

Discussion

� Like Low Coupling, High Cohesion is a principle to keep
in mind during all design decisions

� It is important to evaluate design constantly with respect to
these principles, regardless of the design result.

� Cohesion Benefits

� Clarity and ease of comprehension of the design is increased.

� Maintenance and enhancements are simplified.

� Low coupling is often supported.

� The fine grain of highly related functionality supports reuse

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.77

Discussion (cont’d)

� There are cases in which lower cohesion is justified.

� to simplify maintenance by one person. E.g. if there is only one
or two SQL experts know how to best define and maintain
this SQL.

� If performance implications associated with remote objects
and remote communication

� As a simple example, instead of a remote object with three
fine-grained operations setName, setSalary, and setHireDate,
there is one remote operation setData which receives a set of
data. This results in less remote calls, and better performance.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.78

Suggested biblio

� Chapter 16 of Applying UML and Patterns, Craig Larman

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.79

Homework

Analyse an example taken from the IS course.

E.g. MyAir

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.80

