
Tecniche di Progettazione:

Design Patterns

Design principles, part 2

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.1

Design principles part 1

� Basic (architectural) design principles

� Encapsulation

� Accessors & Mutators (aka getters and setters)

� Cohesion

� Uncoupling

� SOLID

� Single Responsibility Principle (1 class 1 reason to change).

� Open Closed Principle (Extending ≠⇒ modification of the class.)

� Liskov Substitution Principle

� Interface Segregation Principle (Make fine grained interfaces).

� Dependency Inversion Principle (Program to the interface).

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.2

Design principles part 1 (cont’d)

� GRASP

� General Responsibility Assignment Software Patterns

� First four:

� Creator

� Information Expert

� High Cohesion

� Low Coupling

� HOMEWORK

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.3

The nine GRASP Patterns

� Creator

� Information Expert

� Low Coupling

� High Cohesion

� Controller

� Polymorphism

� Indirection

� Pure Fabrication

� Protected Variations

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.4

Controller: problem

� Who should be responsible for handling an input system
event?

� What first object beyond the UI layer receives and
coordinates a system operation?
� An input system event (system operation) is an event
generated by an external actor.

� Examples
� when a cashier using a POS terminal presses the "End Sale" button to
indicate “the sale has ended”.

� a writer using a word processor presses the "spell check“ button, he
is generating a system event indicating "perform a spell check."

� A Controller object is a non-user interface object
responsible for receiving or handling a system event.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.5

The controller object: two alternate

solutions

� Assign the responsibility for receiving or handling a
system event message to a controller class that:

� Represents the overall system, device, or subsystem

� This class is called façade controller.

� Represents a use case scenario within which the s. e. occurs

� Often this class is named <UseCaseName>Handler,
<UseCaseName>Coordinator, or <Use-CaseName>Session

� Use the same class for all system events originating in the same use
case. (A session is an instance of a conversation with an actor.)

� Note that "window," "applet," "widget," "view," and
"document" classes typically receive these events and
delegate them to a controller.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.6

Controller : Example

� System events in Buy Items use case

� enterItem()

� endSale()

� makePayment()

7 Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.

Good design

- presentation layer decoupled from problem domain

8

Bad design

– presentation layer coupled to problem domain

9

But then: What object should be the

controller for enterItem?

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.10

Controller object: 2 choices

� By the controller pattern, there are choices

� A controller class to represent the whole system, some root
object … Register for example.

� A controller to handle all system events of a use case,
ProcessSaleHandler for example

� Which choice is more appropriate depend on many other
factors. The value of the pattern is to make you consider
the alternatives.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.11

Discussion

� A controller delegates to other objects the work that
needs to be done. It coordinates or controls the activity.
It should not do much work itself.

� Increased potential for reuse.
� Using a controller object keeps external event sources and internal
event handlers independent of each other’s type and behaviour.

� It ensures that application logic is not handled in the interface layer

� Reason about the states of the use case.
� Ensures that the system operations occur in legal sequence, and
permits to reason about the current state of activity and operations
within the use case.

� For example, it may be necessary to guarantee that the makePayment
operation does not occur until the endSale operation has occurred.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.12

Discussion (cont’d)

� The first category of controller is a façade controller
representing the overall system.

� Façade controllers are suitable where there are not too many
system events or it is not possible for the GUI to redirect
system event messages to distinguished controllers

� The controller objects can become highly coupled and
uncohesive with more responsiblities

� The second category of controller is a use-case
controller; in this case there is a different controller for
each use case.

� It is desirable to use the same controller class for all the
system events of one use case.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.13

The nine GRASP Patterns

� Creator

� Information Expert

� Low Coupling

� High Cohesion

� Controller

� Polymorphism

� Indirection

� Pure Fabrication

� Protected Variations

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.14

Def of polymorphism

� is one of the fundamental features of the OO paradigm

� an abstract operation may be implemented in different ways in
different classes

� applies when several classes, each implementing the operation,
either have a common superclass in which the operation exists,
or else implement an interface that contains the operation

� gets power from dynamic binding

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.15

Polymorphism : Example

� Who should be responsible for authorising different
kinds of payments? Payments may be in

� cash (authorising involves determining if it is counterfeit)

� credit (authorising involves communication with bank)

� check (authorising involves driver license record)

16

Polymorphism

� Problem:

� How to handle alternatives based on type? How to create
pluggable software components?

� Alternatives based on type – avoiding if-then-else conditional logic
that makes extension difficult

� Pluggable components – how can you replace one component with
another without affecting the client code?

� Solution:

� When alternate behaviours are selected based on the type of
an object, use polymorphic method call to select the behaviour,
rather than using if statement to test the type.

17

Broader use of polymorphism

� In the GRASP context polymorphism has also a broader
meaning

� Give the same name to services in different objects when the
services are similar or related

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.18

Broader use of polymorphism: Ex.

� There are multiple external third-party tax
calculators that must be supported – the system
needs to be able to integrate with all of these.

� The calculators have different interfaces but similar,
though varying behavior.

� What object should be responsible for handling this
variation?

� Since the behavior of calculator adaptation varies by
the type of calculator, by polymorphism the
responsibility of this adaptation is assigned to
different calculator (adapter) objects themselves.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.19

Ex

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.20

21

Discussion

� Easier and more reliable than using explicit selection logic

� Extensions required for new variations are easy to add

� New implementations can be introduced without
affecting clients.

� aka:

� “Do it myself”

� Example: payments authorise themselves

� “Choosing Message”

� “don’t ask ‘what kind?’”

