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Design principles part 1

� Basic (architectural) design principles 

� Encapsulation

� Accessors & Mutators  (aka getters and setters)

� Cohesion

� Uncoupling

� SOLID

� Single Responsibility Principle (1 class 1 reason to change). 

� Open Closed Principle  (Extending ≠⇒ modification of the class.) 

� Liskov Substitution Principle 

� Interface Segregation Principle (Make fine grained interfaces). 

� Dependency Inversion Principle (Program to the interface). 
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Design principles part 1 (cont’d)

� GRASP

� General Responsibility Assignment Software Patterns 

� First four:

� Creator

� Information Expert

� High Cohesion

� Low Coupling

� HOMEWORK
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The nine GRASP Patterns

� Creator

� Information Expert

� Low Coupling

� High Cohesion

� Controller

� Polymorphism

� Indirection

� Pure Fabrication

� Protected Variations
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Controller: problem

� Who should be responsible for handling an input system 
event? 

� What first object beyond the UI layer receives and 
coordinates a system operation? 
� An input system event (system operation) is an event 
generated by an external actor. 

� Examples  
� when a cashier using a POS terminal presses the "End  Sale" button to 
indicate “the sale has ended”. 

� a writer using a word processor presses the "spell check“ button, he 
is generating a system event indicating  "perform a spell check." 

� A Controller object is a non-user interface object 
responsible for receiving or handling a system event.  
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The controller object: two alternate 

solutions

� Assign the responsibility for receiving or handling a 
system event message to a controller class that:

� Represents the overall system, device, or subsystem 

� This class is called façade controller. 

� Represents a use case scenario within which the s. e. occurs 

� Often this class is named <UseCaseName>Handler, 
<UseCaseName>Coordinator, or <Use-CaseName>Session 

� Use the same class for all system events originating in the same use 
case. (A session is an instance of a conversation with an actor. )

� Note that "window," "applet," "widget," "view," and 
"document"  classes typically receive these events and 
delegate them to a controller. 

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.6



Controller : Example

� System events in Buy Items use case

� enterItem()

� endSale()

� makePayment()
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Good design

- presentation layer decoupled from problem domain
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Bad design 

– presentation layer coupled to problem domain 
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But then: What object should be the 

controller for enterItem?

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.10



Controller object: 2 choices

� By the controller pattern, there are choices

� A controller class to represent the whole system, some root 
object … Register for example.

� A controller to handle all system events of a use case, 
ProcessSaleHandler for example

� Which choice is more appropriate depend on many other 
factors. The value of the pattern is to make you consider 
the alternatives.
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Discussion

� A controller delegates to other objects the work that 
needs to be done. It coordinates or controls the activity. 
It should not do much work itself.

� Increased potential for reuse. 
� Using a controller object keeps external event sources and internal 
event handlers independent of each other’s type and behaviour.

� It ensures that application logic is not handled in the interface layer

� Reason about the states of the use case. 
� Ensures that the system operations occur in legal sequence,  and 
permits to reason about the current state of activity and operations 
within the use case.

� For example, it may be necessary to guarantee that the makePayment 
operation does not occur until the endSale operation has occurred.
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Discussion (cont’d)

� The first category of controller is a façade controller 
representing the overall system.

� Façade controllers are suitable where there are not too many 
system events or it is not possible for the GUI to redirect 
system event messages to distinguished controllers

� The controller objects can become highly coupled and 
uncohesive with more responsiblities

� The second category of controller is a use-case 
controller; in this case there is a different controller for 
each use case.

� It is desirable to use the same controller class for all the 
system events of one use case.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.13



The nine GRASP Patterns

� Creator

� Information Expert

� Low Coupling

� High Cohesion

� Controller

� Polymorphism

� Indirection

� Pure Fabrication

� Protected Variations
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Def of polymorphism

� is one of the fundamental features of the OO paradigm

� an abstract operation may be implemented in different ways in 
different classes

� applies when several classes, each implementing the operation, 
either have a common superclass in which the operation exists, 
or else implement an interface that contains the operation

� gets power from dynamic binding
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Polymorphism : Example

� Who should be responsible for authorising different 
kinds of payments? Payments may be in

� cash (authorising involves determining if it is counterfeit)

� credit (authorising involves communication with bank)

� check (authorising involves driver license record)
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Polymorphism

� Problem: 

� How to handle alternatives based on type? How to create 
pluggable software components?

� Alternatives based on type – avoiding if-then-else conditional logic 
that makes extension difficult

� Pluggable components – how can you replace one component with 
another without affecting the client code?

� Solution:

� When alternate behaviours are selected based on the type of 
an object, use polymorphic method call to select the behaviour, 
rather than using if statement to test the type.
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Broader use of polymorphism

� In the GRASP context polymorphism has also a broader 
meaning

� Give the same name to services in different objects when the 
services are similar or related
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Broader use of polymorphism: Ex.

� There are multiple external third-party tax 
calculators that must be supported – the system 
needs to be able to integrate with all of these.

� The calculators have different interfaces but similar, 
though varying behavior.

� What object should be responsible for handling this 
variation?

� Since the behavior of calculator adaptation varies by 
the type of calculator, by polymorphism the 
responsibility of this adaptation is assigned to 
different calculator (adapter) objects themselves.
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Ex
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Discussion

� Easier and more reliable than using explicit selection logic

� Extensions required for new variations are easy to add

� New implementations can be introduced without 
affecting clients.

� aka: 

� “Do it myself”

� Example: payments authorise themselves

� “Choosing Message” 

� “don’t ask ‘what kind?’”


