
Tecniche di Progettazione:

Design Patterns

Design principles, part 2

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.1

Design principles part 1

� Basic (architectural) design principles

� Encapsulation

� Accessors & Mutators (aka getters and setters)

� Cohesion

� Uncoupling

� SOLID

� Single Responsibility Principle (1 class 1 reason to change).

� Open Closed Principle (Extending ≠⇒ modifying.)

� Liskov Substitution Principle

� Interface Segregation Principle (Make fine grained interfaces).

� Dependency Inversion Principle (Program to the interface).

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.2

Design principles part 1 (cont’d)

� GRASP

� General Responsibility Assignment Software Patterns

� First four:

� Creator

� Information Expert

� High Cohesion

� Low Coupling

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.3

The nine GRASP Patterns

� Creator

� Information Expert

� Low Coupling

� High Cohesion

� Controller

� Polymorphism

� Indirection

� Pure Fabrication

� Protected Variations

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.4

Controller: problem

� Who should be responsible for handling an input system
event?

� What first object beyond the UI layer receives and
coordinates a system operation?
� An input system event (system operation) is an event
generated by an external actor.

� Examples
� when a cashier using a POS terminal presses the "End Sale" button to
indicate “the sale has ended”.

� a writer using a word processor presses the "spell check“ button, he
is generating a system event indicating "perform a spell check."

� A Controller object is a non-user interface object
responsible for receiving or handling a system event.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.5

The controller object: two alternate

solutions

� Assign the responsibility for receiving or handling a
system event message to a controller class that:

� Represents the overall system, device, or subsystem

� This class is called façade controller.

� Represents a use case scenario within which the s. e. occurs

� Often this class is named <UseCaseName>Handler,
<UseCaseName>Coordinator, or <Use-CaseName>Session

� Use the same class for all system events originating in the same use
case. (A session is an instance of a conversation with an actor.)

� Note that "window," "applet," "widget," "view," and
"document" classes typically receive these events and
delegate them to a controller.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.6

Controller : Example

� System events in Buy Items use case

� enterItem()

� endSale()

� makePayment()

7 Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.

Good design

- presentation layer decoupled from problem domain

8

Bad design

– presentation layer coupled to problem domain

9

But then: What object should be the

controller for enterItem?

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.10

Controller object: 2 choices

� By the controller pattern, there are choices

� A controller class to represent the whole system, some root
object … Register for example.

� A controller to handle all system events of a use case,
ProcessSaleHandler for example

� Which choice is more appropriate depend on many other
factors. The value of the pattern is to make you consider
the alternatives.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.11

Discussion

� A controller delegates to other objects the work that
needs to be done. It coordinates or controls the activity.
It should not do much work itself.

� Increased potential for reuse.
� Using a controller object keeps external event sources and internal
event handlers independent of each other’s type and behaviour.

� It ensures that application logic is not handled in the interface layer

� Reason about the states of the use case.
� Ensures that the system operations occur in legal sequence, and
permits to reason about the current state of activity and operations
within the use case.

� For example, it may be necessary to guarantee that the makePayment
operation does not occur until the endSale operation has occurred.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.12

Discussion (cont’d)

� The first category of controller is a façade controller
representing the overall system.

� Façade controllers are suitable where there are not too many
system events or it is not possible for the GUI to redirect
system event messages to distinguished controllers

� The controller objects can become highly coupled and
uncohesive with more responsiblities

� The second category of controller is a use-case
controller; in this case there is a different controller for
each use case.

� It is desirable to use the same controller class for all the
system events of one use case.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.13

The nine GRASP Patterns

� Creator

� Information Expert

� Low Coupling

� High Cohesion

� Controller

� Polymorphism

� Indirection

� Pure Fabrication

� Protected Variations

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.14

Def of polymorphism

� is one of the fundamental features of the OO paradigm

� an abstract operation may be implemented in different ways in
different classes

� applies when several classes, each implementing the operation,
either have a common superclass in which the operation exists,
or else implement an interface that contains the operation

� gets power from dynamic binding

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.15

Polymorphism : Example

� Who should be responsible for authorising different
kinds of payments? Payments may be in

� cash (authorising involves determining if it is counterfeit)

� credit (authorising involves communication with bank)

� check (authorising involves driver license record)

16

Polymorphism

� Problem:

� How to handle alternatives based on type? How to create
pluggable software components?

� Alternatives based on type – avoiding if-then-else conditional logic
that makes extension difficult

� Pluggable components – how can you replace one component with
another without affecting the client code?

� Solution:

� When alternate behaviours are selected based on the type of
an object, use polymorphic method call to select the behaviour,
rather than using if statement to test the type.

17

Broader use of polymorphism

� In the GRASP context polymorphism has also a broader
meaning

� Give the same name to services in different objects when the
services are similar or related

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.18

Broader use of polymorphism: Ex.

� There are multiple external third-party tax
calculators that must be supported – the system
needs to be able to integrate with all of these.

� The calculators have different interfaces but similar,
though varying behavior.

� What object should be responsible for handling this
variation?

� Since the behavior of calculator adaptation varies by
the type of calculator, by polymorphism the
responsibility of this adaptation is assigned to
different calculator (adapter) objects themselves.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.19

Ex

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.20

21

Discussion

� Easier and more reliable than using explicit selection logic

� Extensions required for new variations are easy to add

� New implementations can be introduced without
affecting clients.

� aka:

� “Do it myself”

� Example: payments authorise themselves

� “Choosing Message”

� “don’t ask ‘what kind?’”

The nine GRASP Patterns

� Creator

� Information Expert

� Low Coupling

� High Cohesion

� Controller

� Polymorphism

� Pure Fabrication

� Indirection

� Protected Variations

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.22

Pure Fabrication

� Problem:

� Not to violate High Cohesion and Low Coupling

� Solution:

� Assign a highly cohesive set of responsibilities to an artificial
class that does not represent anything in the problem
domain, in order to support high cohesion, low coupling, and
reuse.

23

Pure Fabrication: discussion

� The design of objects can be roughly partitioned to two
groups

� Those chosen by representational decomposition

� Those chosen by behavioral decomposition

� The latter group does not represent anything in the
problem domain, they are simply made up for the
convenience of the designer, thus the name pure fabrication.

� The classes are designed to group together related
behavior

� A pure fabrication object is a kind of functioncentric (or
behavioral) object

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.24

Pure Fabrication: Example

� Suppose, in the point of sale example, that support is
needed to save Sale instances in a relational database.

� By Expert, there is some justification to assign this
responsibility to Sale class. However.

� The task requires a relatively large number of supporting database-
oriented operations and the Sale class becomes incohesive.

� The sale class has to be coupled to the relational database increasing
its coupling.

� Saving objects in a relational database is a very general task for which
many classes need support.

� Placing these responsibilities in the Sale class suggests there is going
to be poor reuse or lots of duplication in other classes that do the
same thing.

25

Pure Fabrication : Example

� The Sale remains well designed, with high cohesion
and low coupling

� The PersistentStorage class is itself relatively cohesive

� The PersistentStorage class is a very generic and
reusable object

26

PersistentStorage

save()

By Pure Fabrication

Other ex

� A login class: not defined by the domain but needed

� Factories

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.27

Discussion

� High cohesion is supported because responsibilities are
factored into a class that only focuses on a very specific
set of related tasks.

� Reuse potential may be increased because of the
presence of Pure Fabrication classes.

� Architectural goals like separation of concerns may be
supported by a pure fabrication

� e.g. a PersistentStorage class with the sole responsibility of saving
objects in some persistent storage keeps its client classes
highly cohesive, removes the ugly coupling from client classes
to databases, and may itself be highly reusable.

28

The nine GRASP Patterns

� Creator

� Information Expert

� Low Coupling

� High Cohesion

� Controller

� Polymorphism

� Pure Fabrication

� Indirection

� Protected Variations

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.29

Indirection

� Problem:

� How to avoid direct coupling?

� How to de-couple objects so that Low coupling is
supported and reuse potential remains high?

� Solution:

� Assign the responsibility to an intermediate object to
mediate between other components or services, so that
they are not directly coupled.

� Many indirection intermediaries are Pure
Fabrications.

30

Example : PersistentStorage

� The Pure fabrication example of de-coupling the Sale
from the relational database services through the
introduction of a PersistentStorage is also an
example of assigning responsibilities to support
Indirection.

� The PersistentStorage acts as a intermediary between
the Sale and database

31

Tax Ex. adapters are indirection

intermediaries

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.32

Indirection : Example

� Assume that :

� A point-of-sale terminal application needs to manipulate a modem in order to transmit credit
payment request

� The operating system provides a low-level function call API for doing so.

� A class called CreditAuthorizationService is responsible for talking to the modem

� If CreditAuthorizationService invokes the low –level API function calls directly, it is

highly coupled to the API of the particular operating system. If the class needs to be

ported to another operating system, then it will require modification.

� Add an intermediate Modem class between the CreditAuthorizationService and the

modem API. It is responsible for translating abstract modem requests to the API and

creating an Indirection between the CreditAuthorizationService and the modem.
33

The nine GRASP Patterns

� Creator

� Information Expert

� Low Coupling

� High Cohesion

� Controller

� Polymorphism

� Pure Fabrication

� Indirection

� Protected Variations

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.34

Protected Variation

� Problem:

� How to design objects, subsystems and systems so that the
variations or instability in these elements does not have an
undesirable impact on other elements.

� Solution:

� Identify points of predicted variation or instability; assign
responsibilities to create a stable interface (or protection
mechanism or enveloppe) around them.

� Data encapsulation, interfaces, polymorphism, indirection
and standards are motivated by Protected Variation.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.35

Protected Variation: Example

� Technology like Service Lookup is an example of
Protected Variation because clients are protected from
variations in the location of services using the lookup
service.

� Benefits:

� Extensions required for new variations are easy to add.

� New implementations can be introduced without affecting
clients.

� Coupling is lowered.

� The impact of cost of changes can be lowered.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.36

Protected Variation: Law of Demeter

� Aka Structure-hiding design, aka Don’t Talk to Strangers

� Special case of Protected variations.

� If two classes have no other reason to be directly aware
of each other or otherwise coupled, then the two classes
should not directly interact.

� A method should send messages only to:

� this

� An attribute of this

� An element of a collection which is attribute of this

� A parameter of the method

� An object created within the method

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.37

Protected Variation: Law of Demeter

� Avoid

� sale.getPayment().getAmount().getCurrency()

� And also the equivalent

� x=sale.getPayment()

� y=x. getAmount()

� z=y. getCurrency()

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.38

Law of Demeter : Example

39

Violating Law of Demeter: Example

40

Supporting Law of Demeter

41

In this case :Post delegates the paymentAmount()

method to :Sale. A paymentAmount() method must

be added to the Sale class.

Law of Demeter: discussion

� Keeps coupling between classes low and makes a design
more robust

� Adds a small amount of overhead in the form of indirect
method calls

42

Delegation vs inheritance

Design patterns, Laura Semini,
Università di Pisa, Dipartimento di

Informatica.

43

Delegation vs inheritance

[Mark Grand98]

� Inheritance

� defines a new class, which use the interface of a parent class
while adding extra, more problem-specific methods.

� Delegation

� is a way of reusing and extending the behavior of a class by
writing a new class that incorporates the functionality of the
original class by using an instance of the original class and
calling its methods.

� No. 1 issue in OO is if a class A should inherit from B or
A should use B.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.44

Motivation

� Inheritance is a wonderful thing, but sometimes it isn’t
what you want.

� Often you start inheriting from a class but then find that many
of the superclass operations aren’t really true of the subclass.
In this case you have an interface that’s not a true reflection of
what the class does.

� Or you may find that you are inheriting a whole load of data
that is not appropriate for the subclass.

� Or you may find that there are protected superclass methods
that don’t make much sense with the subclass.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.45

Motivation (continued)

� You can live with the situation and use convention to say
that although it is a subclass, it’s using only part of the
superclass function. But that results in code that says one
thing when your intention is something else—a confusion
you should remove.

� By using delegation instead, you make it clear that you are
making only partial use of the delegated class. You control
which aspects of the interface to take and which to
ignore.

� The cost is extra delegating methods that are boring to
write but are too simple to go wrong.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.46

Replace Inheritance with Delegation

� Create a field for the superclass, adjust methods to
delegate to the superclass, and remove the subclassing.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.47

Mechanics
� Create a field in the subclass that refers to an instance of
the superclass. Initialize it to this.

� Change each method defined in the subclass to use the
delegate field. Compile &test after changing each method.

� You won’t be able to replace any methods that invoke a method on
super that is defined on the subclass, or they may get into an infinite
recurse. These methods can be replaced only after you have broken
the inheritance.

� Remove the subclass declaration and replace the delegate
assignment with an assignment to a new object.

� For each superclass method used by a client, add a simple
delegating method.

� Compile and test.
Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.48

Example

� One of the classic examples of inappropriate inheritance
is making a stack a subclass of vector. Java does this in its
utilities (naughty boys!), but in this case I use a simplified
form of stack:

class MyStack extends Vector {
public void push(Object element) {insertElementAt(element,0); }

public Object pop() { Object result = firstElement();
removeElementAt(0); return result; }

}

� Looking at the users of the class, I realize that clients do
only four things with stack: push, pop, size, and isEmpty.
The latter two are inherited fromVector.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.49

Example (continued)

� I begin the delegation by creating a field for the delegated
vector. I link this field to this so that I can mix delegation
and inheritance while I carry out the refactoring:

private Vector _vector = this;

� Now I start replacing methods to get them to use the
delegation. I begin with push:

public void push(Object element) {
_vector.insertElementAt(element,0); }

� I can compile and test here, and everything will still work.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.50

Example (continued)

� Now pop:

public Object pop() {

Object result = _vector.firstElement();

_vector.removeElementAt(0);

return result;

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.51

Example (continued)

� Once I’ve completed these subclass methods, I need to
break the link to the superclass:

class MyStack

private Vector _vector = new Vector();

� I then add simple delegating methods for superclass
methods used by clients:

public int size() { return _vector.size(); }

public boolean isEmpty() { return _vector.isEmpty(); }

� Now I can compile and test. If I forgot to add a delegating
method, the compilation will tell me.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.52

Interface vs class inheritance

� Class inheritance: implementation reuse

� dangerous when overiding to nothing

� See the non flying (rubber) duck in the head first book, p. 4-5.

� Interface Inheritance: subtypes

� Flyable and Quackable duck, subtypes of Duck, with fly and
quack functionalities, resp.

� But then no code reuse for those funcionalities

� And… there might be different fly behaviours even among the
ducks that do fly.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.53

Delegation (When not using inheritance)

[Mark Grand98]

� Inheritance is a common way of extending and reusing
the functionality of a class. However, inheritance is
inappropriate for many situations:

� Inheritance is useful for capturing is-a-kind-of relationships
which are rather static in nature.

� is-a-role-played-by relationships are awkward to model by
inheritance, where delegation could be a better choice. Using
instances of a class to play multiple roles.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.54

Inheritance vs delegation: changing roles

� Don't use inheritance where roles interchange.

� For example, an airline reservation system may include such
roles as passenger, ticket selling agent and flight crew.

� A class called Person may use subclasses corresponding to
each of these roles.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.55

Example (cont’d)

� The problem is that the same person can fill more than one of
these roles.

� A person who is normally part of a flight crew can also be a
passenger…

� This way, the number of subclasses would increase exponentially.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.56

Example (cont’d)

� If person A, CrewMember, becomes now also a
Passenger, a new object Passenger is created, referring A.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.57

Example (cont’d)

� But then problems with using the specific methods, which
were unforeseen.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.58

59

Inheritance vs delegation: killing ex.

� If you want to let the
Window client change the
implementation of area,
you need define different
specializations, and rebuild
the whole object to
perform the change.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.

� … and you can't change the implementation
inherited from super classes at runtime.

60

Inheritance vs delegation: killing ex. (cont’d)

� With delegation, you only need to change the object relative
to the delegated operation you want to change

rectangle

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.

Inheritance vs delegation:languages

� In Java or C#, an object cannot change its type once it has
been instantiated.

� So, if your object need to appear as a different object or
behave differently depending on an object state or
conditions, then use Composition

� Refer to State and Strategy Design Patterns.

� If the object need to be of the same type, then use
Inheritance or implement interfaces

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.61

Inheritance vs delegation: hiding

� Don't use inheritance if you end up in a situation where a
class is trying to hide a method or variable inherited from
a superclass.

� If you define a field in a subclass that has the same name as an
accessible field in its superclass, the subclass's field hides the
superclass's version.

� E.g., if a superclass declares a public field, subclasses will either inherit
or hide it. (You can't override a field.)

� If a subclass hides a field, the superclass's version is still part of
the subclass's object data; however methods in the subclass can
access the superclass's version only by using the super
keyword, as in super.fieldName.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.62

Inheritance vs delegation: utility classes

� Don't use inheritance of a utility class

� you're not in control of the parent class and it may change
scope later (inheriting java.util.Vector is a very, very bad idea
since sun may later declare methods depricated).

� It's always easier to replace changing a class you just use – than
one you inherit from.

� Besides, inheritance exposes a subclass to details of its parent's
class implementation, that's why it's often said that inheritance
breaks encapsulation (in a sense that you really need to focus
on interfaces only not implementation, so reusing by sub
classing is not always preferred).

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.63

Places where not to use inheritance (but

rather delegation) (continued)

� Don't use inheritance from a class, which is written very
specifically to a narrow problem - because that will make
it more difficult to inherit from another class later.

� Client classes that use the problem domain class may be
written in a way that assumes the problem domain class is a
subclass of the utility class.

� If the implementation of the problem domain changes in a way
that results in its having a different superclass, those client
classes that rely on its having its original superclass will break.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.64

Potential Drawbacks of Delegation

� There may be some minor performance penalty for
invoking an operation across object boundaries as
opposed to using an inherited method.

� Delegation can’t be used with partially abstract
(uninstantiable) classes

� Delegation does not impose any disciplined structure on
the design.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.65

Homework

� Prepare some (5 to 10) slides on the topic delegation vs
inheritance with different examples than the one
presented here.

� Possible starting point

� http://stackoverflow.com/questions/49002/prefer-composition-
over-inheritance

� Send (the pdf) by Tuesday do me (semini@di.unipi.it)
with subject

� DPhomework1

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.66

� zhuanyshev.ilyas@gmail.com

� matteo.busi42@gmail.com

� Italo_guerrieri@hotmail.com

� shaikmastan1990@yahoo.in

� Federico.umani@gmail.com

� ddl.gomes@campus.fct.unl.pt

� prm.ferreira@campus.fct.unl.pt

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.67

