
Tecniche di Progettazione:

Design Patterns

Delegation vs inheritance

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.1

Delegation vs inheritance

[Mark Grand98]

� Inheritance

� defines a new class, which use the interface of a parent class
while adding extra, more problem-specific methods.

� Delegation

� is a way of reusing and extending the behavior of a class by
writing a new class that incorporates the functionality of the
original class by using an instance of the original class and
calling its methods.

� No. 1 issue in OO is if a class A should inherit from B or
A should use B.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.2

Motivation

� Inheritance is a wonderful thing, but sometimes it isn’t
what you want.

� Often you start inheriting from a class but then find that many
of the superclass operations aren’t really true of the subclass.
In this case you have an interface that’s not a true reflection of
what the class does.

� Or you may find that you are inheriting a whole load of data
that is not appropriate for the subclass.

� Or you may find that there are protected superclass methods
that don’t make much sense with the subclass.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.3

Motivation (continued)

� You can live with the situation and use convention to say
that although it is a subclass, it’s using only part of the
superclass function. But that results in code that says one
thing when your intention is something else—a confusion
you should remove.

� Remember: SOLID: Interface Segregation Principle

� Clients should not be forced to depend upon interfaces that they
don't use

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.4

Motivation (continued)

� By using delegation instead:

� you make it clear that you are making only partial use of the
delegated class.

� you control which aspects of the interface to take and which
to ignore.

� The cost is extra delegating methods that are boring to
write but are too simple to go wrong.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.5

Replace Inheritance with Delegation

� Create a field for the superclass, adjust methods to
delegate to the superclass, and remove the subclassing.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.6

Mechanics
1. Create a field in the subclass that refers to an instance of

the superclass. Initialize it to this.

2. Change each method defined in the subclass to use the
delegate field. Compile&test after changing each method.

� You won’t be able to replace any methods that invoke a method on
super that is defined on the subclass, or they may get into an infinite
recurse. These methods can be replaced only after you have broken
the inheritance.

3. Remove the subclass declaration and replace the
delegate assignment with an assignment to a new object.

4. For each superclass method used by a client, add a simple
delegating method.

5. Compile and test.
Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.7

Example

� One of the classic examples of inappropriate inheritance
is making a stack a subclass of vector. Java1.1 does this in
its utilities (naughty boys!), but in this case I use a
simplified form of stack:

class MyStack extends Vector {
public void push(Object element) {insertElementAt(element,0); }

public Object pop() { Object result = firstElement();
removeElementAt(0); return result; }

}

� Looking at the users of the class, I realize that clients do
only four things with stack: push, pop, size, and isEmpty.
The latter two are inherited fromVector.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.8

Example (continued)

� I begin the delegation by creating a field for the delegated
vector. I link this field to this so that I can mix delegation
and inheritance while I carry out the refactoring:

private Vector _vector = this;

� Now I start replacing methods to get them to use the
delegation. I begin with push:

public void push(Object element) {
_vector.insertElementAt(element,0); }

� I can compile and test here, and everything will still work.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.9

Example (continued)

� Now pop:

public Object pop() {

Object result = _vector.firstElement();

_vector.removeElementAt(0);

return result;

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.10

Example (continued)

� Once I’ve completed these subclass methods, I need to
break the link to the superclass:

class MyStack

private Vector _vector = new Vector();

� I then add simple delegating methods for superclass
methods used by clients:

public int size() { return _vector.size(); }

public boolean isEmpty() { return _vector.isEmpty(); }

� Now I can compile and test. If I forgot to add a delegating
method, the compilation will tell me.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.11

Interface vs class inheritance

� Class inheritance: implementation reuse

� dangerous when overriding to nothing

� See the non flying (rubber) duck in the head first book, p. 4-5.

� Interface Inheritance: subtypes

� Flyable and Quackable duck, subtypes of Duck, with fly and
quack functionalities, resp.

� But then no code reuse for those funcionalities

� And… there might be different fly behaviours even among the
ducks that do fly.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.12

Delegation (When not using inheritance)

[Mark Grand98]

� Inheritance is a common way of extending and reusing
the functionality of a class.

� However, inheritance is inappropriate for many situations:

� Inheritance is useful for capturing is-a-kind-of relationships
which are rather static in nature.

� is-a-role-played-by
relationships are
awkward to model
by inheritance, where
delegation could be
a better choice.
Using instances of a class to play multiple roles. (see airline ex.)

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.13

Inheritance vs delegation: changing roles

� Don't use inheritance where roles interchange.

� For example, an airline reservation system may include such
roles as passenger, ticket selling agent and flight crew.

� A class called Person may use subclasses corresponding to
each of these roles.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.14

Example (cont’d)

� The problem is that the same person can fill more than one of
these roles.

� A person who is normally part of a flight crew can also be a
passenger…

� This way, the number of subclasses would increase exponentially.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.15

Example (cont’d)

� If person A, CrewMember, becomes now also a
Passenger, a new object Passenger is created, referring A.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.16

Example (cont’d)

� Not a good solution

� problems with using the specific methods, which were
unforeseen.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.17

18

Inheritance vs delegation: killing ex.

� If you want to let the
Window client change the
implementation of area,
you need define different
specializations, and rebuild
the whole object to
perform the change.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.

� … and you can't change the implementation
inherited from super classes at runtime (obviously
because inheritance is defined at compile time).

19

Inheritance vs delegation: killing ex. (cont’d)

� With delegation, you only need to change the object relative
to the delegated operation you want to change

rectangle

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.

Inheritance vs delegation:languages

� In Java or C#, an object cannot change its type once it has
been instantiated.

� So, if your object need to appear as a different object or
behave differently depending on an object state or
conditions, then use Composition

� Refer to State and Strategy Design Patterns.

� If the object need to be of the same type, then use
Inheritance

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.20

Inheritance vs delegation: hiding

� Don't use inheritance if you end up in a situation where a
class is trying to hide a method or variable inherited from
a superclass.

� If you define a field in a subclass that has the same name as an
accessible field in its superclass, the subclass's field hides the
superclass's version.

� E.g., if a superclass declares a public field, subclasses will either inherit
or hide it. (You can't override a field.)

� If a subclass hides a field, the superclass's version is still part of
the subclass's object data; however methods in the subclass can
access the superclass's version only by using the super
keyword, as in super.fieldName.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.21

Inheritance vs delegation: utility classes

� Don't use inheritance of a utility class

� you're not in control of the parent class and it may change
scope later

� inheriting java.util.Vector is a very, very bad idea: at any point some
methods can be declared deprecated.

� It's always easier to replace changing a class you just use – than
one you inherit from.

� Besides, inheritance exposes a subclass to details of its parent's
class implementation, that's why it's often said that inheritance
breaks encapsulation (in a sense that you really need to focus
on interfaces only not implementation, so reusing by sub
classing is not always preferred).

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.22

Places where not to use inheritance (but

rather delegation) (continued)

� Don't use inheritance from a class, which is written very
specifically to a narrow problem - because that will make
it more difficult to inherit from another class later.

� Client classes that use the problem domain class may be
written in a way that assumes the problem domain class is a
subclass of the utility class. If the implementation of the
problem domain changes in a way that results in its having a
different superclass, those client classes that rely on its having
its original superclass will break.

� An even more serious problem is that client classes can call the
public methods of the utility superclass, which defeats its
encapsulation.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.23

Potential Drawbacks of Delegation

� There may be some minor performance penalty for
invoking an operation across object boundaries as
opposed to using an inherited method.

� Delegation can’t be used with partially abstract
(uninstantiable) classes

� Delegation does not impose any disciplined structure on
the design.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.24

