
Tecniche di Progettazione:

Design Patterns

GoF: Observer

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.1

Weather Monitoring

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.2

GoF: Observer

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.3

Weather

Data

class

Naif solution

public class WeatherData{

...

public void measurementsChanged() {

float temperature = getTemperature();

float humidity = getHumidity();

float pressure = getPressure();

currentConditionsDisplay.update(temperature, humidity, pressure);

statisticsDisplay.update(temperature, humidity, pressure);

forecastDisplay.update(temperature, humidity, pressure);

}

}

What’s wrong?
Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.4

Maintenance!

� System must be expandable.

� Other developers can create
new custom display
elements.

� Users can add or remove as
many display elements as
they want to the application.

Design patterns, Laura Semini,
Università di Pisa, Dipartimento di

Informatica.

5

What’s wrong?

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.6

This happens by chance, it can be false in
the general case.

The Observer Pattern

� Intent

� Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified
and updated automatically

� AKA

� Dependents, Publish-Subscribe, Model-View

� Motivation

� The need to maintain consistency between related objects
without making classes tightly coupled

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.7

Publish - Subscribe

8

Example

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.9

variation point

Applicability

� Use the Observer pattern in any of the following
situations:

� When a change to one object requires changing others

� When an object should be able to notify other objects
without making assumptions about those objects

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.10

Structure

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.11

Participants

� Subject

� Keeps track of its observers

� Provides an interface for attaching and detaching Observer
objects

� Observer

� Defines an interface for update notification

� ConcreteSubject

� The object being observed

� Stores state of interest to ConcreteObserver objects

� Sends a notification to its observers when its state changes

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.12

Participants (cont’d)

� ConcreteObserver

� The observing object

� Stores state that should stay consistent with the subject's

� Implements the Observer update interface to keep its state
consistent with the subject's

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.13

A scenario –
(not so) special case where observers also cause subject’s state

change

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.14

variation point

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.15

All concrete All concrete All concrete All concrete

observers have this observers have this observers have this observers have this

associationassociationassociationassociation

Benefits

� Minimal coupling between the Subject and the Observer

� Can reuse subjects without reusing their observers and
vice versa

� Observers can be added without modifying the subject

� Each subject knows is its list of observers

� Subject does not need to know the concrete class of an
observer, just that each observer implements the update
interface

� Subject and observer can belong to different abstraction
layers

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.16

Support for event multicasting

� Subject sends notification to all subscribed observers

� Observers can be added/removed at any time

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.17

Liabilities

� Possible cascading of notifications

� Observers are not necessarily aware of each other and
must be careful about triggering updates

� Simple update interface requires observers to deduce
changed item

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.18

Known Uses

� Smalltalk Model/View/Controller user interface
framework

� Model = Subject

� View = Observer

� Controller is a mediator. (see next lecture, this style is more
complex)

� Java AWT/Swing Event Model

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.19

Implementation Issues

� How does the subject keep track of its observers?

� Array, linked list.

� What if an observer wants to observe more than one
subject?

� Have the subject tell the observer who it is via the update
interface.

� Who triggers the update?

� The subject whenever its state changes.

� The observers after they cause one or more state changes

� Some third party object(s).

� Make sure the subject updates its state before sending
out notifications.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.20

Implementation Issues(cont’d)

� How much info about the change should the subject send
to the observers?

� Push Model - Lots

� Pull Model -Very Little

� Can the observers subscribe to specific events of
interest?

� If so, it's publish-subscribe

� Can an observer also be a subject?

� Yes!

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.21

Implementation Issues(cont’d)

� What if an observer wants to be notified only after
several subjects have changed state?

� Use an intermediary object which acts as a mediator

� Subjects send notifications to the mediator object which
performs any necessary processing before notifying the
observers

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.22

Java Implementation Of Observer

� Java provides the Observable/Observer classes as built-in
support for the Observer pattern

� The java.util.Observable class is the base Subject class.
Any class that wants to be observed extends this class.

� Provides methods to add/delete observers

� Provides methods to notify all observers

� A subclass only needs to ensure that its observers are notified
in the appropriate mutator methods

� Uses a Vector for storing the observer references

� The java.util.Observer interface is the Observer interface.
It must be implemented by any observer class.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.23

java.util

Interface Observer

� public interface Observer

� A class can implement the Observer interface when it wants to
be informed of changes in observable objects.

� Since: JDK1.0

� void update(Observable o, Object arg)

� This method is called whenever the observed object is
changed. An application calls an Observable object's
notifyObservers method to have all the object's observers
notified of the change.

� Parameters:

� o - the observable object.

� arg - an argument passed to the notifyObservers method.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.24

java.util

Class Observable

� public class Observable

� It can be subclassed to represent an object that the application
wants to have observed (the subject).

� An observable object can have one or more observers.

� After an observable instance changes, an application calling the
Observable's notifyObservers method causes all of its observers
to be notified of the change by a call to their update method.

� The order in which notifications will be delivered is
unspecified.

� The default implementation provided in the Observable class will
notify Observers in the order in which they registered interest, but
subclasses may change this order, use no guaranteed order, deliver
notifications on separate threads, or may guarantee that their subclass
follows this order, as they choose.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.25

java.util

Class Observable: changes

� protected void setChanged()

� Marks this Observable object as having been changed; the
hasChanged method will now return true.

� protected void clearChanged()

� Indicates that this object has no longer changed, or that it has
already notified all of its observers of its most recent change,
so that the hasChanged method will now return false.

� This method is called automatically by the notifyObservers
methods.

� public boolean hasChanged()

� Returns true if and only if the setChanged method has been
called more recently than the clearChanged method on this
object; false otherwise.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.26

java.util

Class Observable: notifyObservers

� public void notifyObservers(Object arg)

� If this object has changed, as indicated by the hasChanged
method, then notify all of its observers and then call the
clearChanged method to indicate that this object has no longer
changed.

� Each observer has its update method called with two
arguments: this observable object and the arg argument.

� public void notifyObservers()

� equivalent to: notifyObservers(null)

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.27

java.util

Class Observable: Observers list

� public void addObserver(Observer o)

� Adds an observer to the set of observers for this object, provided that it
is not the same as some observer already in the set. The order in which
notifications will be delivered to multiple observers is not specified.

� public void deleteObserver(Observer o)

� Deletes an observer from the set of observers of this object. Passing null
to this method will have no effect.

� public void deleteObservers()

� Clears the observer list: this object no longer has any observers

� public int countObservers()

� Returns the number of observers of this Observable object

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.28

Example: a subject (observable)

public class ConcreteSubject extends Observable {

private String name;

private float price;

public ConcreteSubject(String name, float price) {

this.name = name;

this.price = price;

System.out.println("ConcreteSubject created: "

+ name + " at “ + price);

}

(nothing interesting so far….)

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.29

Example: a subject (observable)(Cont’d)

public String getName() {return name;}

public float getPrice() {return price;}

public void setName(String name) {

this.name = name;

setChanged();

notifyObservers(name);

}

public void setPrice(float price) {

this.price = price;

setChanged();

notifyObservers(new Float(price));

}

}
Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.30

Example: an Observer (of name changes)

public class NameObserver implements Observer {

private String name;

public NameObserver() {

name = null;

System.out.println(“NameObserver created: Name is " + name);

}

public void update(Observable obj, Object arg) {

if (arg instanceof String) {

name = (String)arg;

System.out.println("NameObserver: Name changed to " +

name);

} else {

System.out.println("NameObserver: Some other change to

subject!");

}}}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.31

Example: an Observer (of price changes)
public class PriceObserver implements Observer {

private float price;

public PriceObserver() {

price = 0;

System.out.println("PriceObserver created: Price is " + price);

}

public void update(Observable obj, Object arg) {

if (arg instanceof Float) {

price = ((Float)arg).floatValue();

System.out.println("PriceObserver: Price changed

to " + price);

} else {

System.out.println(”PriceObserver: Some other

change tosubject!");

}}}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.32

Example: The TestClass
public class TestObservers {

public static void main(String args[]) {

// Create the Subject and Observers.

ConcreteSubject s = new ConcreteSubject("Corn Pops", 1.29f);

NameObserver nameObs = new NameObserver();

PriceObserver priceObs = new PriceObserver();

// Add those Observers

s.addObserver(nameObs);

s.addObserver(priceObs);

// Make changes to the Subject.

s.setName("Frosted Flakes");

s.setPrice(4.57f);

s.setPrice(9.22f);

s.setName("Sugar Crispies");

}}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.33

Observable/Observer Example (Cont’d)

Test program output
ConcreteSubject created: Corn Pops at 1.29

NameObserver created: Name is null

PriceObserver created: Price is 0.0

PriceObserver: Some other change to subject!

NameObserver: Name changed to Frosted Flakes

PriceObserver: Price changed to 4.57

NameObserver: Some other change to subject!

PriceObserver: Price changed to 9.22

NameObserver: Some other change to subject!

PriceObserver: Some other change to subject!

NameObserver: Name changed to Sugar Crispies

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.34

A Problem With Observable/Observer

� Problem:

� Suppose the class which we want to be an observable is
already part of an inheritance hierarchy:

� class SpecialSubject extends ParentClass

� Since Java does not support multiple inheritance, how can we
have ConcreteSubject extend both Observable and
ParentClass?

� Solution:

� Use Delegation

� We will have SpecialSubject contain an Observable object

� We will delegate the observable behavior that SpecialSubject
needs to this contained Observable object

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.35

Delegated Observable

public class SpecialSubject extends ParentClass {

private String name;

private float price;

private DelegatedObservable obs;

public SpecialSubject(String name, float price) {

this.name = name;

this.price = price;

obs = new DelegatedObservable();

}

public String getName() {return name;}

public float getPrice() {return price;}

public Observable getObservable() {return obs;}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.36

Delegated Observable (cont’d)

public void setName(String name) {

this.name = name;

obs.setChanged();

obs.notifyObservers(name);

}

public void setPrice(float price) {

this.price = price;

obs.setChanged();

obs.notifyObservers(new Float(price));

}

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.37

Delegated Observable (cont’d)

� What's this DelegatedObservable class?

� Two methods of java.util.Observable are protected methods: setChanged() and
clearChanged()

� Apparently, the designers of Observable felt that only subclasses of Observable
(that is, "true" observable subjects) should be able to modify the state-changed flag

� If SpecialSubject contains an Observable object, it could not invoke the
setChanged() and clearChanged() methods on it

� So we have DelegatedObservable extend Observable and override these two
methods making them have public visibility

� Java rule: A subclass can change the visibility of an overridden method of its
superclass, but only if it provides more access

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.38

Delegated Observable (cont’d)

// A subclass of Observable that allows delegation.

public class DelegatedObservable extends Observable

{

public void clearChanged() {

super.clearChanged();

}

public void setChanged() {

super.setChanged();

}

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.39

Delegated Observable (cont’d)
// Test program for SpecialSubject with a Delegated Observable.

public class TestSpecial {

public static void main(String args[]) {

// Create the Subject and Observers.

SpecialSubject s = new SpecialSubject("Corn Pops", 1.29f);

NameObserver nameObs = new NameObserver();

PriceObserver priceObs = new PriceObserver();

// Add those Observers!

s.getObservable().addObserver(nameObs); COMMENT

s.getObservable().addObserver(priceObs); VS DEMETER

// Make changes to the Subject.

s.setName("Frosted Flakes");

s.setPrice(4.57f);

s.setPrice(9.22f);

s.setName("Sugar Crispies");

}}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.40

Delegated Observable (cont’d)

� This version of SpecialSubject did not provide implementations
of any of the methods of Observable. As a result, it had to
allow its clients to get a reference to its contained Observable
object using the getObservable() method. This may have
dangerous consequences. A rogue client could, for example,
call the deleteObservers() method on the Observable object,
and delete all the observers!

� Let’s have SpecialSubject not expose its contained Observable
object, but instead provide “wrapper” implementations of the
addObserver() and deleteObserver() methods which simply
pass on the request to the contained Observable object.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.41

Delegated Observable 2
/**

* A subject to observe! But this subject already extends another class.

* So use a contained DelegatedObservable object.

* Note that in this version of SpecialSubject we provide implementations of two of the methods

* of Observable: addObserver() and deleteObserver().

* These implementations simply pass the request on to our contained DelegatedObservable reference.

* Now clients can use the normal Observable semantics to add themselves as observers of this object.

*/

public class SpecialSubject2 extends ParentClass {

private String name;

private float price;

private DelegatedObservable obs;

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.42

Delegated Observable 2 (cont’d)

public SpecialSubject2(String name, float price) {

this.name = name;

this.price = price;

obs = new DelegatedObservable();

}

public String getName() {return name;}

public float getPrice() {return price;}

public void addObserver(Observer o) {

obs.addObserver(o);

}

public void deleteObserver(Observer o) {

obs.deleteObserver(o);

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.43

Delegated Observable 2 (cont’d)

public void setName(String name) {

this.name = name;

obs.setChanged();

obs.notifyObservers(name);

}

public void setPrice(float price) {

this.price = price;

obs.setChanged();

obs.notifyObservers(new Float(price));

}

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.44

Delegated Observable 2 (cont’d)
// Test program for SpecialSubject2 with a Delegated Observable.

public class TestSpecial2 {

public static void main(String args[]) {

// Create the Subject and Observers.

SpecialSubject2 s = new SpecialSubject2("Corn Pops", 1.29f);

NameObserver nameObs = new NameObserver();

PriceObserver priceObs = new PriceObserver();

// Add those Observers!

s.addObserver(nameObs);

s.addObserver(priceObs);

// Make changes to the Subject.

s.setName("Frosted Flakes");

s.setPrice(4.57f);

s.setPrice(9.22f);

s.setName("Sugar Crispies");

}}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.45

DISCUSSION: setChanged()

� The rational for setChanged() is clear in «pulling»
situations

� where the subject does not sent notifications, but simply
chages its state and shows a flag.

� Then, periodically, the observer checks the subject’s state
(through method hasChanged(), which is public – while
setChanged() is not) and in case decides an action.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.46

Java Event Model

� Java 1.1 introduced a new GUI event model based on the
Observer Pattern

� GUI components which can generate GUI events are
called event sources

� Objects that want to be notified of GUI events are called
event listeners

� Event generation is also called firing the event

� Comparison to the Observer Pattern:

� ConcreteSubject => event source

� ConcreteObserver => event listener

� For an event listener to be notified of an event, it must
first register with the event source

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.47

Java Event Model (cont’d)

� An event listener must implement an interface which
provides the method to be called by the event source
when the event occurs

� Unlike the Observer Pattern which defines just the one
simple Observer interface, the Java AWT event model has
different listener interfaces, each tailored to a different
type of GUI event:

� Listeners for Semantic Events

� ActionListener

� ItemListener

� ..

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.48

Java Event Model (cont’d)

� Listeners for Low-Level Events

� KeyListener

� MouseListener

� MouseMotionListener

� …

� Some of these listener interfaces have several methods which
must be implemented by an event listener.

� For example, the WindowListener interface has seven such methods.
In many cases, an event listener is really only interested in one
specific event, such as the Window Closing event.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.49

Java Event Model (cont’d)

� Java provides “adapter” classes as a convenience in
this situation.

� For example, the WindowAdapter class implements
the WindowListener interface, providing “do nothing”
implementation of all seven required methods. An
event listener class can extend WindowAdapter and
override only those methods of interest.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.50

� The source object registers its listener(s) for a certain type of event.

� Source object fires event event upon triggered. For example, clicking a Button fires
an ActionEvent, mouse-click fires MouseEvent, key-type fires KeyEvent, etc.

� How the source and listener understand each other? The answer is via an agreed-
upon interface. For example, if a source is capable of firing an event called XxxEvent
(e.g., MouseEvent) involving various operational modes (e.g., mouse-clicked, mouse-
entered, mouse-exited, mouse-pressed, and mouse-released). Firstly, we need to
declare an interface called XxxListener (e.g., MouseListener) containing the names of
the handler methods

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.51

Homework

� You will build a point of sale GUI (may be a simple
console) for a restaurant staff.

� Description:

� Point of sale interfaces are designed to simplify the process of
making transactions, often in a retail environment. We often
see them used in restaurants where managers can input the
menu and waiters can quickly enter customer orders, which
are transmitted to the kitchen and cashier. Modern systems
usually include a touch screen interface, which we will simulate
with a mouse-based GUI (here, may be a console based GUI).

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.52

Homework (Cont’d)

� Consider a menu:
Hamburger 3.99
Cheeseburger 4.99
Milk Shake 5.00
Soda 2.00
Fries 2.50
….

� The program should load the menu and create a panel full of
large buttons (ideal for a touchscreen) (here may be a console
based command list instead of a button) for each
menu item.

� A waiter should be able to click on each menu item (here may
write indexes of the commands) to add it to the current order
(the subject).

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.53

Homework (Cont’d)

� This should add the item to a receipt panel which displays the full
order and the total cost. The total cost should be accurate at all
times, updated as each item is added (not only when the order is
finalized).
The waiter should be able to click a Place Order (notification
needed now) button (here in console based application, select
place order command from menu list) that simulates transmitting
the order to the kitchen and cashier.

� Simply, a screen in the kitchen shows the list of the order and the
number of the order. The screen of the cashier shows the order
number, names and costs of the ordered items, and the total cost
(two different observers).

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.54

Homework (Cont’d): the assignment

� Design the classes and their interfaces according to observer
pattern. Draw the UML class diagram. (with paper and pencil if
you want).

� With push and pull policies

� With or without the JAVA API

� 4 possible solutions, choose the one you better like (and please
coordinate yourself to distribute the options)

� Send email with subject DPhomework2

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.55

