
Tecniche di Progettazione:

Design Patterns

GoF: Factory Method e Abstract Factory

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.1

Factory Patterns

� Factory: a class whose sole job is to easily create and return
instances of other classes

� Creational patterns abstract the object instantiation process.

� They hide how objects are created and help make the overall
system independent of how its objects are created and composed.

� They make it easier to construct complex objects instead of calling
a constructor, use a method in a "factory" class to set up the
object saves lines and complexity to quickly construct / initialize
objects

� examples in Java:

� borders (BorderFactory),

� key strokes (KeyStroke),

� network connections (SocketFactory)
2

Factory Patterns

� Class creational patterns focus on the use of inheritance to
decide the object to be instantiated

� Factory Method

� Object creational patterns focus on the delegation of the
instantiation to another object

� Abstract Factory

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.3

The Problem With “New”

� Each time we invoke the “new” command to create a new
object, we violate the “Code to an Interface” design
principle

� Example

� Duck duck = new DecoyDuck()

� Even though our variable’s type is set to an “interface”, in
this case “Duck”, the class that contains this statement
depends on “DecoyDuck”

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.4

In addition

� if you have code that checks a few variables and
instantiates a particular type of class based on the state of
those variables, then the containing class depends on each
referenced concrete class

if (hunting) { return new DecoyDuck(); } //decoy=da richiamo

else { return new RubberDuck();}

� Obvious Problems: needs to be recompiled if classes
change

� add new classes � change this code

� remove existing classes � change this code

� This means that this code violates the open-closed
principle and the “encapsulate what varies” design
principle

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.5

We want to build a Maze

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.6

Example: Maze

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.7

Here's a MazeGame class with a

createMaze() method

/**

* MazeGame.

*/

public class MazeGame {

// Create the maze.

public Maze createMaze() {

Maze maze = new Maze();

Room r1 = new Room(1);

Room r2 = new Room(2);

Door door = new Door(r1, r2);

maze.addRoom(r1);

maze.addRoom(r2);

r1.setSide(MazeGame.North, new Wall());

r1.setSide(MazeGame.East, door);

r1.setSide(MazeGame.South, new Wall());

r1.setSide(MazeGame.West, new Wall());

r2.setSide(MazeGame.North, new Wall());

r2.setSide(MazeGame.East, new Wall());

r2.setSide(MazeGame.South, new Wall());

r2.setSide(MazeGame.West, door);

return maze;

}

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.8

The problem with this createMaze()

method is its inflexibility.

� What if we wanted to have enchanted mazes with
EnchantedRooms and EnchantedDoors? Or a secret agent
maze with DoorWithLock and WallWithHiddenDoor?

� What would we have to do with the createMaze() method? As
it stands now, we would have to make significant changes to it
because of the explicit instantiations using the new operator of
the objects that make up the maze.

� How can we redesign things to make it easier for createMaze()
to be able to create mazes with new types of objects?

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.9

Let's add factory methods to the

MazeGame class

/**

* MazeGame with a factory methods.

*/

public class MazeGame {

public Maze makeMaze() {return new Maze();}

public Room makeRoom(int n) {return new Room(n);}

public Wall makeWall() {return new Wall();}

public Door makeDoor(Room r1, Room r2) {return new Door(r1, r2);}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.10

Abstract or concrete

public Maze createMaze() {

Maze maze = makeMaze();

Room r1 = makeRoom(1);

Room r2 = makeRoom(2);

Door door = makeDoor(r1, r2);

maze.addRoom(r1);

maze.addRoom(r2);

r1.setSide(MazeGame.North, makeWall());

r1.setSide(MazeGame.East, door);

………..

r2.setSide(MazeGame.West, door);

return maze;

}

}
Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.11

We made createMaze() just slightly more

complex, but a lot more flexible!

� Consider this EnchantedMazeGame
class:

public class EnchantedMazeGame extends MazeGame {

public Room makeRoom(int n) {return new EnchantedRoom(n);}

public Wall makeWall() {return new EnchantedWall();}

public Door makeDoor(Room r1, Room r2){return new EnchantedDoor(r1, r2);}

}

� The createMaze() method of MazeGame is inherited by
EnchantedMazeGame

� It can be used to create regular mazes

or enchanted mazes without modification!

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.12

The Factory Method Pattern

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.13

Operates on products
produced by the Factory

method

In the official definition:
Factory method lets the subclasses decide which class to instantiate
Decide: --not because the classes themselves decide at runtime

-- but because the creator is written withount knowlwdge of the actual products
that will be created, which is decided by the choice of the subclass that is usd

The Factory Method Pattern:

Participants

� Product

� Defines the interface for the type of objects the factory
method creates

� ConcreteProduct

� Implements the Product interface

� Creator

� Declares the factory method, which returns an object of
type Product

� ConcreteCreator

� Overrides the factory method to return an instance of a
ConcreteProduct

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.14

Factory Method pattern at work: Maze

� The reason this works is that the createMaze() method of
MazeGame defers the creation of maze objects to its
subclasses.

� In this example, the correlations are:

� Creator => MazeGame

� ConcreteCreator => EnchantedMazeGame
(MazeGame is also a ConcreteCreator)

� Product => MapSite

� ConcreteProduct => Wall, Room, Door, EnchantedWall,
EnchantedRoom, EnchantedDoor

� Maze is a concrete Product (but also Product)

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.15

The Factory Method Pattern

� Applicability

� Use the Factory Method pattern in any of the following
situations:

� A class can't anticipate the class of objects it must create

� A class wants its subclasses to specify the objects it creates

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.16

Example3: Pizza

� Consider a pizza store that makes different types of pizzas
public class PizzaStore {

Pizza orderPizza(String type){

Pizza pizza;

If (type == CHEESE)
pizza = new CheesePizza();

else if (type == PEPPERONI)
pizza = new PepperoniPizza();

else if (type == PESTO)
pizza = new PestoPizza();

pizza.prepare();
pizza.bake();
pizza.package();
pizza.deliver();
return pizza
}

}

This becomes unwieldy
as we add to our menu

This part stays the same

Idea: pull out the creation code and put it into an object that only deals with creating
pizzas - the PizzaFactory

Example3: Pizza

Simple solution: just a factory
public class PizzaStore {

private SimplePizzaFactory factory;

public PizzaStore(SimplePizzaFactory factory) {

this.factory = factory;

}

public Pizza orderPizza(String type) {

Pizza pizza = factory.createPizza(type);

pizza.prepare();

pizza.bake();

pizza.cut();

pizza.box();

return pizza;

}

}

public class SimplePizzaFactory {

public Pizza createPizza(String type) {

if (type.equals("cheese")) {

return new CheesePizza();

} else if (type.equals("greek")) {

return new GreekPizza();

} else if (type.equals("pepperoni")) {

return new PepperoniPizza();

}

}

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.18

Replace concrete instantiation with call to the PizzaFactory to create a new pizza
Now we don’t need to mess with this code if we add new pizzas

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.19

Example3: Pizza

Simple Factory to Factory Method

� To demonstrate the factory method pattern, the pizza store example
evolves

� to include the notion of different franchises

� that exist in different parts of the country (California, New York, Chicago)

� Each franchise will need its own factory to create pizzas that match the
proclivities of the locals

� However, we want to retain the preparation process that has made PizzaStore such a
great success

� The Factory Method Design Pattern allows you to do this by

� placing abstract, “code to an interface” code in a superclass

� placing object creation code in a subclass

� PizzaStore becomes an abstract class with an abstract createPizza() method

� We then create subclasses that override createPizza() for each region

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.20

Example3: Pizza: Factory Method
public abstract class PizzaStore {

protected abstract createPizza(String type);

public Pizza orderPizza(String type) {

Pizza pizza = createPizza(type);

pizza.prepare();

pizza.bake();

pizza.cut();

pizza.box();

return pizza;

}

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.21

public class NYPizzaStore extends PizzaStore {

public Pizza createPizza(String type) {

if (type.equals("cheese")) {

return new NYCheesePizza();

} else if (type.equals("greek")) {

return new NYGreekPizza();

} else if (type.equals("pepperoni")) {

return new NYPepperoniPizza();

}

return null;

}

}

Factory Method is one way of following

the dependency inversion principle

� “Depend upon abstractions. Do not depend upon concrete
classes.”

� Normally “high-level” classes depend on “low-level”
classes;

� Instead, they BOTH should depend on an abstract interface

� DependentPizzaStore depends on eight concrete Pizza
subclasses

� PizzaStore, however, depends on the Pizza interface, as do the
Pizza subclasses

� In this design, PizzaStore (the high-level class) no longer
depends on the Pizza subclasses(the low level classes); they
both depend on the abstraction “Pizza”. Nice.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.22

Consequences

� Benefits

� Code is made more flexible and reusable by the elimination of
instantiation of application-specific classes

� Code deals only with the interface of the Product class and can work
with any ConcreteProduct class that supports this interface

� Liabilities

� Clients might have to subclass the Creator class just to instantiate a
particular ConcreteProduct

� Implementation Issues

� Creator can be abstract or concrete

� Should the factory method be able to create multiple kinds of products?
If so, then the factory method has a parameter (possibly used in an if-
else!) to decide what object to create.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.23

Abstract Factory

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.24

Intent

� Provide an interface for creating families of related or
dependent objects without specifying their concrete
classes.

� The Abstract Factory pattern is very similar to the
Factory Method pattern.

� One difference between the two is that with the Abstract
Factory pattern, a class delegates the responsibility of object
instantiation to another object via composition whereas the
Factory Method pattern uses inheritance and relies on a
subclass to handle the desired object instantiation.

� Actually, the delegated object frequently uses factory
methods to perform the instantiation!

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.25

Abstract Factory: structure

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.26

Participants

� AbstractFactory

� Declares an interface for operations that create abstract product objects

� ConcreteFactory

� Implements the operations to create concrete product objects

� AbstractProduct

� Declares an interface for a type of product object

� ConcreteProduct

� Defines a product object to be created by the corresponding concrete
factory

� Implements the AbstractProduct interface

� Client

� Uses only interfaces declared by AbstractFactory and AbstractProduct
classes

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.27

Abstract Factory applied to the

MazeGame

// MazeFactory.

public class MazeFactory {

public Maze makeMaze() {return new Maze();}

public Room makeRoom(int n) {return new Room(n);}

public Wall makeWall() {return new Wall();}

public Door makeDoor(Room r1, Room r2) {

return new Door(r1, r2);}

}

Note that the MazeFactory class is just a collection of factory methods!

Also, note that MazeFactory acts as both an AbstractFactory and a
ConcreteFactory.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.28

Abstract Factory applied to the

MazeGame

� The createMaze() method of the MazeGame class takes a
MazeFactory reference as a parameter:

public class MazeGame {

public Maze createMaze(MazeFactory factory) {

Maze maze = factory.makeMaze();

Room r1 = factory.makeRoom(1);

Room r2 = factory.makeRoom(2);

Door door = factory.makeDoor(r1, r2);

maze.addRoom(r1);

maze.addRoom(r2);

r1.setSide(MazeGame.North, factory.makeWall());

…

return maze;

}}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.29

createMaze() delegates
the responsibility for
creating maze objects
to the MazeFactory

object

Extend MazeFactory to create other

factories

public class EnchantedMazeFactory extends MazeFactory {

public Room makeRoom(int n) {return new EnchantedRoom(n);}

public Wall makeWall() {return new EnchantedWall();}

public Door makeDoor(Room r1, Room r2)

{return new EnchantedDoor(r1, r2);}

}

� In this example, the correlations are:

� AbstractFactory => MazeFactory

� ConcreteFactory => EnchantedMazeFactory (MazeFactory is also a
ConcreteFactory)

� AbstractProduct => MapSite

� ConcreteProduct => Wall, Room, Door, EnchantedWall, EnchantedRoom,
EnchantedDoor

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.30

Factory Method Abstract Factory

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.31

MazeGame

public Wall makeWall()

{return new

EnchantedWall();}

The Abstract Factory Pattern:

Consequences

� Benefits

� Isolates clients from concrete implementation classes

� Makes exchanging product families easy, since a particular
concrete factory can support a complete family of products

� Enforces the use of products only from one family

� Liabilities

� Supporting new kinds of products requires changing the
AbstractFactory interface

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.32

The Abstract Factory Pattern:

Implementation Issues

� How many instances of a particular concrete factory
should there be?

� An application typically only needs a single instance of a
particular concrete factory

� How can the factories create the products?

� Factory Methods

� Factories

� How can new products be added to the AbstractFactory
interface?

� AbstractFactory defines a different method for the creation of
each product it can produce

� We could change the interface to support only a make(String
kindOfProduct) method

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.33

How Do Factories Create Products?

Method 1: Use Factory Methods
/**
* WidgetFactory.
* This WidgetFactory is an abstract class.
* Concrete Products are created using the

factory methods
* implemented by sublcasses.
*/
public abstract class WidgetFactory {

public abstract Window createWindow();
public abstract Menu createScrollBar();
public abstract Button createButton();

}

/**
* MotifWidgetFactory.
* Implements the factory methods of its

abstract superclass.
*/
public class MotifWidgetFactory
extends WidgetFactory {
public Window createWindow() {return

new MotifWindow();}
public ScrollBar createScrollBar() {

return new MotifScrollBar();}
public Button createButton() {return new

MotifButton();}
}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.34

Typical client code: (Note: the client code is the same no matter
how the factory creates the product!)
...
WidgetFactory wf = new MotifWidgetFactory(); // Create new factory.
Button b = wf.createButton(); // Create a button.
Window w = wf.createWindow() // Create a window.

How Do Factories Create Products?

Method 2: Use Factories
/**
* WidgetFactory.
* This WidgetFactory contains references to factories
* (composition!) used to create the Concrete Products.
* But it relies on a subclass constructor to create the
* appropriate factories.
*/
public abstract class WidgetFactory {

protected WindowFactory windowFactory;
protected ScrollBarFactory scrollBarFactory;
protected ButtonFactory buttonFactory;
public Window createWindow() {return

windowFactory.createWindow();}
public ScrollBar createScrollBar() {return

scrollBarFactory.createScrollBar();}
public Button createButton() {return

buttonFactory.createButton();}
}

/**
* MotifWidgetFactory.
* Instantiates the factories used by its superclass.
*/
public class MotifWidgetFactory

extends WidgetFactory {
public MotifWidgetFactory() {
windowFactory = new MotifWindowFactory();
scrollBarFactory = new MotifScrollBarFactory();
buttonFactory = new MotifButtonFactory();

}
}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.35

How Do Factories Create Products?

Method 3: Use Factories With No Required Subclasses

/**
* WidgetFactory.
* This WidgetFactory contains reference to factories used
* to create Concrete Products. But it does not need to be
* subclassed. It has an appropriate constructor to set
* these factories at creation time and mutators to change
* them during execution.
*/
public class WidgetFactory {
private WindowFactory windowFactory;
private ScrollBarFactory scrollBarFactory;
private ButtonFactory buttonFactory;
public WidgetFactory(WindowFactory wf,

ScrollBarFactory sbf, ButtonFactory bf) {
windowFactory = wf;
scrollBarFactory = sbf;

buttonFactory = bf;
}

public void setWindowFactory(WindowFactory wf) {
windowFactory = wf;

}
public void setScrollBarFactory(ScrollBarFactory sbf) {

scrollBarFactory =sbf;
}
public void setButtonFactory(ButtonFactory bf) {

buttonFactory = bf;
}
public Window createWindow() {return

windowFactory.createWindow();}
public ScrollBar createScrollBar() {return

scrollBarFactory.createScrollBar();}
public Button createButton() {return

buttonFactory.createButton();}
}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.36

This is Strategy…

Moving On

� The factory method approach to the pizza store is a big
success allowing our company to create multiple
franchises across the country quickly and easily

� But, bad news, we have learned that some of the
franchises

� while following our procedures (the abstract code in
PizzaStore forces them to)

� are skimping on ingredients in order to lower costs and
increase margins

� Our company’s success has always been dependent on
the use of fresh, quality ingredients

� so “Something Must Be Done!”

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.37

Abstract Factory to the Rescue!

� We will alter our design such that a factory is used to
supply the ingredients that are needed during the pizza
creation process

� Since different regions use different types of ingredients, we’ll
create region-specific subclasses of the ingredient factory to
ensure that the right ingredients are used

� But, even with region-specific requirements, since we are
supplying the factories, we’ll make sure that ingredients that
meet our quality standards are used by all franchises

� They’ll have to come up with some other way to lower costs. ☺

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.38

First, We need a Factory Interface

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.39

Note the introduction of more abstract classes:

Dough, Sauce, Cheese, etc.

Second, We implement a Region-

Specific Factory

� This factory ensures
that quality
ingredients are used
during the pizza
creation process…

� … while also taking
into account the
tastes of people who
live in Chicago

� But how (or where)
is this factory used?

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.40

Within Pizza Subclasses… (I)

� First, alter the Pizza abstract base class to make the
prepare method abstract…

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.41

Within Pizza Subclasses… (II)

� Then, update Pizza subclasses to make use of the factory!
Note: we no longer need subclasses like NYCheesePizza
and ChicagoCheesePizza because the ingredient factory
now handles regional differences

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.42

One last step…

� We need to update our PizzaStore subclasses to create
the appropriate ingredient factory and pass it to each
Pizza subclass in the createPizza factory method.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.43

Summary: What did we just do?

1) We created an ingredient factory interface to allow for
the creation of a family of ingredients for a particular
pizza

2) This abstract factory gives us an interface for creating a
family of products

1) The factory interface decouples the client code from the
actual factory implementations that produce context-specific
sets of products

3) Our client code (PizzaStore) can then pick the factory
appropriate to its region, plug it in, and get the correct
style of pizza (Factory Method) with the correct set of
ingredients (Abstract Factory)

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.44

Homework

� Apply the factory patterns to produce:

� Products: TVs and Remote controls (RC)

� Two types: Samsung and Philips

� With Factory method: creator builds a TV and its RC, then
packs it.

� With Abstract Factory: a client chooses the factory and asks
for the product(s) he needs.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.45

Lab on next Wednesday?

� IDEA:

� You can all meet in N1 nextWednesday at 11 and

� Analyse how to combine Factories and Decorator to produce
decorated Christmas trees.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.46

