
Tecniche di Progettazione:

Design Patterns

GoF: Singleton

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.1

Singleton pattern

� Intent

� Ensure a class only has one instance

� Provide a global point of access to it

� Motivation

� Sometimes we want just a single instance of a class to exist in
the system

� For example, we want just one window manager. Or just one
factory for a family of products.

� We need to have that one instance easily accessible

� And we want to ensure that additional instances of the class
can not be created

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.2

Overview

� Singleton Mechanics

� Lazy initialization

� Singletons and Threads

� Recognizing Singleton

Recognizing Singleton

� Unique objects are not uncommon

� Most objects in an application bear a unique responsibility

� Yet singleton classes are relatively rare

� Fact that an object/class is unique doesn’t mean that the
Singleton pattern is at work

Chocolate Factory Case Study

� Choc-O-Holic Inc’s industrial strength Chocolate
Boiler mixes ingredients and milk at a high
temperature to make liquid chocolate

� The ChocolateBoiler class also has two boolean
attributes empty and boiled

� The ChocolateBoiler class contains five
methods fill(), drain(), boil(),
isEmpty() and isBoiled()

� Model this class

ChocolateFactory

Problems...

� The Chocolate Boiler has overflowed! It added more milk
to the mix even though it was full!!

� What happened?

� Hint: What happens if more than two instances of
ChocolateBoiler are created?

� Solution: The problem is with two instances
controlling the same phisycal boiler

Static Attributes in a Class

� Each object of a class has its own copy of all the instance
variables of that class. However, in certain cases all class
objects should share only one copy of a particular variable.
Such variables are called static variables. A program contains
only one copy of each of a class’s static variables in memory,
no matter how many objects of the class have been
instantiated.

� A static variable represents class-wide information. All class
objects share the same static data item.

� The public static attributes of a class can be accessed through
the class name and dot operator (e.g. Math.PI). Private static
attributes can only be accessed through methods and
properties of that class.

Prevent multiple instances

� How can you prevent other developers from
constructing new instances of your class?
� Create a single constructor with private access

� private static ChocolateBoiler

_chocolateboiler = new

ChocolateBoiler()

� Make the unique instance available through a public
static GetChocolateBoiler() method

Lazy Initialization

� Rather than creating a singleton instance ahead of
time – wait until instance is first needed
public static ChocolateBoiler GetChocolateBoiler()

{

if (_chocolateboiler == null)

{

_chocolateboiler = new ChocolateBoiler();

// ...

}

return _chocolateboiler

}

Why use Lazy Initialization?

1. Might not have enough information to instantiate a
singleton at static initialization time

� Example: a ChocolateBoiler singleton may

have to wait for the real factory’s machines to
establish communication channels

2. If the singleton is resource intensive and may not be
required

� Example: a program that has an optional query
function that requires a database connection

Full Picture

public class ChocolateBoiler {

private static ChocolateBoiler _chocolateboiler;

private ChocolateBoiler () {};

public static ChocolateBoiler GetChocolateBoiler()

{

if (_chocolateboiler == null)

{

_chocolateboiler = new ChocolateBoiler();

// ...

}

return _chocolateboiler

}

}

UML Class Diagram

Our class so far...

•Will not work for threads …

Thread Example
� If the program is run in a multi-threaded environment

it is possible for two threads to initialize a singleton
at roughly the same time

Thread 1 Thread 2

public stat ChocolateBoiler

getInstance()

public stat ChocolateBoiler

getInstance()

if (uniqueInstance == null)

if (uniqueInstance == null)

uniqueInstance =

new ChocolateBoiler()

uniqueInstance =

new ChocolateBoiler()

return uniqueInstance;

return uniqueInstance;

Problems with Multithreading

� In the case of multithreading with more than one
processor the getInstance() method could be called at
more or less the same time resulting in to more than one
instance being created.

� Possible solutions:

� Synchronize the getInstance() method

� Move to an eagerly created instance rather than a lazily
created one.

� Use double—checked—locking

Synchronizing the getInstance() Method

Code

public static synchronized Singleton getInstance()

{...

}

� Disadvantage – synchronizing can decrease system
performance by a factor of 100.

� Synchronization is expensive, however,and is really only
needed the first time the unique instance is created.

� Use only if the performance of the getInstance() method
is not critical to the application.

Use an Eagerly Created Instance Rather

than a Lazy One

• Code:
//Data elements

private static Singleton uniqueInstance = new

Singleton()

private Singleton() {}

public static Singleton getInstance() {

return uniqueInstance

}

• Disadvantage – Memory may be allocated

and not used.

Use double—checked—locking

� In an effort to make this method more efficient, an idiom
called double-checked locking was created. The idea is to
avoid the costly synchronization for all invocations of the
method except the first. The cost of synchronization
differs from JVM to JVM. In the early days, the cost could
be quite high. As more advanced JVMs have emerged, the
cost of synchronization has decreased, but there is still a
performance penalty for entering and leaving a
synchronized method or block. Regardless of the
advancements in JVM technology, programmers never
want to waste processing time unnecessarily.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.19

Use double—checked—locking

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.20

• Code:
private volatile static Singleton uniqueInstance

private Singleton() {}

public static Singleton getInstance() {

if (uniqueInstance == null)

synchronized (Singleton.class) {

if (uniqueInstance == null) {

uniqueInstance = new Singleton()

return uniqueInstance

}

• Volatile: direttiva alla macchina virtuale per dire che la variabile
può essere condivisa tra più threads, e che non devono essere
fatte ottimizzazioni tipo caching: If a variable is declared as
volatile then is guaranteed that any thread which reads the field
will see the most recently written value.

Singleton With Subclassing

� What if we want to be able to subclass Singleton and have the
single instance be a subclass instance?

� For example, suppose MazeFactory had subclasses
EnchantedMazeFactory and AgentMazeFactory. We want to
instantiate just one factory, either an EnchantedMazeFactory
or an AgentMazeFactory.

� How could we do this? Several methods:

� Have the static instance() method of MazeFactory determine the
particular subclass instance to instantiate. This could be done via an
argument or environment variable. The constructors of the subclasses
can not be private in this case, and thus clients could instantiate other
instances of the subclasses.

� Have each subclass provide a static instance() method. Now the subclass
constructors can be private.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.21

Singleton With Subclassing Method 1

� Method 1: Have the MazeFactory instance() method
determine the subclass to instantiate

/**

* Class MazeFactory is an implementation of a class that

* only allows one instantiation of a subclass.

*/

public abstract class MazeFactory {

// The private reference to the one and only instance.

private static MazeFactory uniqueInstance = null;

// The MazeFactory constructor.

// If you have a default constructor, it can not be private here!

protected MazeFactory() {}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.22

Singleton With Subclassing Method 1

(Continued)

// Return a reference to the single instance.

// If instance not yet created, create "enchanted" as default.

public static MazeFactory instance() {

if (uniqueInstance == null) return instance("enchanted");

else return uniqueInstance;

}

// Create the instance using the specified String name.

public static MazeFactory instance(String name) {

if(uniqueInstance == null)

if (name.equals("enchanted"))

uniqueInstance = new EnchantedMazeFactory();

else if (name.equals("agent"))

uniqueInstance = new AgentMazeFactory();

return uniqueInstance;}}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.23

Singleton With Subclassing Method 1

(Continued)

� Client code to create factory the first time:

MazeFactory factory = MazeFactory.instance("enchanted");

� Client code to access the factory:

MazeFactory factory = MazeFactory.instance();

� Note that the constructors of EnchantedMazeFactory
and AgentMazeFactory can not be private, since
MazeFactory must be able to instantiate them. Thus,
clients could potentially instantiate other instances of
these subclasses.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.24

Singleton With Subclassing Method 1

(Continued)

� The instance(String) methods violates the Open-Closed
Principle, since it must be modified for each new
MazeFactory subclass

� We could use Java class names as the argument to the
instance(String) method, yielding simpler code:

public static MazeFactory instance(String name) {

if (uniqueInstance == null)

uniqueInstance = Class.forName(name).newInstance();

return uniqueInstance;

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.25

Singleton With Subclassing Method 2
Have each subclass provide a static instance method()

/**

* Class MazeFactory is an implementation of a class that only allows one

* instantiation of a subclass. This version requires its subclasses to provide

* an implementation of a static instance() method.

*/

public abstract class MazeFactory {

// The protected reference to the one and only instance.

protected static MazeFactory uniqueInstance = null;

// The MazeFactory constructor.

// If you have a default constructor, it can not be private here!

protected MazeFactory() {}

// Return a reference to the single instance.

public static MazeFactory instance() {return uniqueInstance;}

}
Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.26

Singleton With Subclassing Method 2

(Continued)

/**

* Class EnchantedMazeFactory is an implementation of a class

* that only allows one instantiation.

*/

public class EnchantedMazeFactory extends MazeFactory {

// Return a reference to the single instance.

public static MazeFactory instance() {

if(uniqueInstance == null)

uniqueInstance = new EnchantedMazeFactory();

return uniqueInstance;

}

// Private subclass constructor!!

private EnchantedMazeFactory() {}

}
Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.27

Singleton With Subclassing Method 2

(Continued)

� Client code to create factory the first time:

MazeFactory factory = EnchantedMazeFactory.instance();

� Client code to access the factory:

MazeFactory factory = MazeFactory.instance();

� Note that now the constructors of the subclasses are
private. Only one subclass instance can be created!

� Also note that the client can get a null reference if it
invokes MazeFactory.instance() before the unique subclass

� instance is first created

� Finally, note that uniqueInstance is now protected!

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.28

