Tecniche di Progettazione:
Design Patterns

GoF': Visitor

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Visitor Pattern

» Intent

Lets you define a new operation without changing the classes
on which they operate.

» Motivation

Allows for increased functionality of a class(es) while
streamlining base classes.

A primary goal of designs should be to ensure that base classes
maintain a minimal set of operations.

Encapsulates common functionality in a class framework.

Visitor Pattern

» Motivation (cont)

Visitors avoid type casting that is required by methods that
pass base class pointers as arguments. The following code
describes how a typical class could expand the functionality of
an existing composite.

myOperation(Base b) {
if (b instanceof ChildA){
Il Perform task for child type A.
} else if (b instanceof ChildB){
Il Perform task for child type B.
} else if (b instanceof ChildC){
Il Perform task for child type C.

Single vs double dispatch

» double dispatch is a mechanism that dispatches a
function call to different concrete functions depending on:

the runtime types of two objects involved in the call.

» With single dispatch the operation that is executed
depends on: the name of the request, and the type of the
receiver.

4 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Structure

Vizitaor Pattern rJ

Client Visitor

YiztConcreteElement Al ConcreteElement)
YiztConcreteElementBl ConcreteElementB)

w»

ConcreteVisitor ConcreteVisior2
YizitConcreteElement Al ConcreteElement 4 YizitConcreteElement Al ConcreteElement 4
YiztConcreteElemertB{ConcreteElementB) YiztConcreteElemertB{ConcreteElementB)
2
ObjectStructure Flamant

w»

AcceptWisitor ¥

1

ConcreteElementA ConcreteElementB
Acceptvisitar v Accept(Visitar v
Dperation L) DperationB)

5 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Visitor Pattern: Participants

» Visitor

Declares a Visit Operation for each class of Concrete Elements in the
object structure.

» Concrete Visitor
Implements each operation declared by Visitor.
» Element
Defines an Accept operation that takes the visitor as an argument.
» Concrete Element
Implements an accept operation that takes the visitor as an argument.

» Object Structure

Can enumerate its elements.
May provide a high level interface to all the visitor to visit its elements.

May either be a composite or a collection.

Visitor Pattern: Collaborations

aConcreteElementB

aConcreteVisitor

OperationA()

pmd

anObjectStructure aConcreteElementA
‘L Accept(aVisitor) _L
| VisitConcreteElementA(aConcreteElementA)
ik
Accept(aVisitor) T

VisitConcreteElementB(aConcreteElementB)

.

OperationB()

Visitor Pattern: Applicability

» When an object structure contains many classes of
objects with different interfaces and you want to perform
functions on these objects that depend on their concrete
classes.

» When you want to keep related operations together by
defining them in one class.

» When the class structure rarely change but you need to
define new operations on the structure.

» When many distinct and unrelated operations need to be
performed on objects in an object structure, and you
want to avoid "polluting” their classes with these
operations

Visitor Pattern: Consequences

» Makes adding new operations easier.

» Collects related functionality.

» Adding new Concrete Element classes is difficult.
» Can “visit” across class types, unlike iterators.

» Accumulates states as they visit elements.

» May require breaking object encapsulation to support the
implementation.

Static or Dynamic binding

public interface Visitor {
public void visitX(X x);
public void visitY (Y y);
}

public class ConcreteVisitor {
public void visitX(X x) { ...}
public void visitY(Y y) { ...}

public abstract class XY {
public abstract void accept(Visitor v);
}
public class X extends XY {
public void accept(Visitor v) { v.visitX(this); }
}
public class Y extends XY {
public void accept(Visitor v) { v.visitY (this); }

}

public interface Visitor {
public void visit(X x);
public void visit(Y y);

}

public class ConcreteVisitor {
public void visit(X x) { ... }
public void visit(Y y) { ...}

public abstract class XY {

public abstract void accept(Visitor v);

}
public class X extends XY {

public void accept(Visitor v) { v.visit(this);}
}
public class Y extends XY {

public void accept(Visitor v) { v.visit(this);}

}

10 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica

1)

Visitor
otart with an inhentance hierarchy {} {}

to which you would [ike to add new 3) Define a new second hierarchy

operations withaut the need to called "isitar" that has as many

madify existing code. "visit" methods as the first hierarchy
has dernved classes.

Add an "accept{ Visttor)" method to {} {}

thig existing hierarchy. double
polymorphism

41 The client calls accept() on an instance of the first hierarchy, and passes
an instance of the secand hierarchy.

a) The accept() method calls wisit() on the object it was passed.

b) The magic of dynamic binding (applied twice) vectors flow of contral to
the right piece of code based on the type of two objects

11 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Visitor: Related Patterns

» Composites

Visitors can be used to apply an operation over an object
structure defined by the composite pattern.

» Interpreter

Visitors may be applied to do the interpretation.

ixample

<<Java Interface>>
& ShoppingCartVisitor

com.joumaldev.design.visitar

@ visit(Book)int
@ visit(Fruit):int

I

<<Java Interface==
¥ temElement

com.joumaldev.design.visitor

@ acceptiShoppingCartVisitor)int

4 R

=<Java 'Elassrr
(®ShoppingCartVisitorimpl

com. joumnaldev.design.visitor

=< Java Clags>>
(®Book

com.joumnaldev.design.visitor

& ShoppingCartVisitorimpl()
@ visit(Book)int

@ visit(Fruit):int

o price: int
o isbnMNumber: String

13

& Book(int,String)
@ getPrice():int
o getlsbnMumber():String

i@ accept(ShoppingCartVisitor)yint

Design patterns, Laura Semini, Universita di
Pisa, Dipartimento di Informatica.

<<Java Class=>
(& Fruit

com.jourmnaldev.design. visitor

o pricePerkg: int
o weight: int
o name: String

& Fruit(int,int,String)

@ getPricePerkg()int

@ getWeight()int

@ getMame():String

@ accept{ShoppingCart\isitor)int

