
Tecniche di Progettazione:

Design Patterns

GoF: Visitor

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.1

Polymorphism reminded:

overriding and dynamic binding

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.2

Polymorphism reminded:

overloading and static dispatch

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.3

Polymorphism reminded:

overloading may need casting

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.4

Polymorphism reminded:
overloading with casting and instanceof

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.5

Polymorphism reminded:
overloading with instanceof

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.6

Visitor

� With the pattern Visitor we can avoid this:

� And the pattern has also a more general intent

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.7

Visitor Pattern

� Intent

� Lets you define new operations without changing the classes
on which they operate.

� Motivation

� Allows for increased functionality of a class(es) while
streamlining base classes.

� A primary goal of designs should be to ensure that base classes
maintain a minimal set of operations.

� Encapsulates common functionality in a class framework.

Visitor Pattern

� Motivation (cont)

� Visitors avoid type casting that is required by methods that
pass base class pointers as arguments. The following code
describes how a typical class could expand the functionality of
an existing composite.

myOperation(Base b) {

if (b instanceof ChildA){

// Perform task for child type A.

} else if (b instanceof ChildB){

// Perform task for child type B.

} else if (b instanceof ChildC){

// Perform task for child type C.

}

}

Single vs double dispatch

� double dispatch is a mechanism that dispatches a
function call to different concrete functions depending on:

� the runtime types of two objects involved in the call.

� With single dispatch the operation that is executed
depends on: the name of the request, and the type of the
receiver.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.10

Structure

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.11

Visitor Pattern: Participants

� Visitor

� Declares a Visit Operation for each class of Concrete Elements in the
object structure.

� Concrete Visitor

� Implements each operation declared by Visitor.

� Element

� Defines an Accept operation that takes the visitor as an argument.

� Concrete Element

� Implements an accept operation that takes the visitor as an argument.

� Object Structure

� Can enumerate its elements.

� May provide a high level interface to all the visitor to visit its elements.

� May either be a composite or a collection.

Visitor Pattern: Collaborations

Visitor Pattern: Applicability

� When an object structure contains many classes of
objects with different interfaces and you want to perform
functions on these objects that depend on their concrete
classes.

� When you want to keep related operations together by
defining them in one class.

� When the class structure rarely change but you need to
define new operations on the structure.

� When many distinct and unrelated operations need to be
performed on objects in an object structure, and you
want to avoid "polluting" their classes with these
operations

Visitor Pattern: Consequences

� Makes adding new operations easier.

� Collects related functionality.

� Adding new Concrete Element classes is difficult.

� Can “visit” across class types, unlike iterators.

� Accumulates states as they visit elements.

� May require breaking object encapsulation to support the
implementation.

Static or Dynamic
public interface Visitor {

public void visitX(X x);

public void visitY(Y y);

}

public class ConcreteVisitor {

public void visitX(X x) { ... }

public void visitY(Y y) { ... }

}

public abstract class XY {

public abstract void accept(Visitor v);

}

public class X extends XY {

public void accept(Visitor v) { v.visitX(this); }

}

public class Y extends XY {

public void accept(Visitor v) { v.visitY(this); }

}

public interface Visitor {

public void visit(X x);

public void visit(Y y);

}

public class ConcreteVisitor {

public void visit(X x) { ... }

public void visit(Y y) { ... }

}

public abstract class XY {

public abstract void accept(Visitor v);

}

public class X extends XY {

public void accept(Visitor v) { v.visit(this); }

}

public class Y extends XY {

public void accept(Visitor v) { v.visit(this); }

}
Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.16

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.17

Visitor: Related Patterns

� Composites

� Visitors can be used to apply an operation over an object
structure defined by the composite pattern.

� Interpreter

� Visitors may be applied to do the interpretation.

Example: write the code

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.19

Exercise (may be homework, unless you develop
another example of application of visitor)

Given the following classes

class Red {…}

class Blue {…}

class Green {…}

Assume an array “colors” contains mixed objects from the above 3 classes.
We want to the following:

1. To find number of Red, Blue, and Green objects, respectively, in the array.

2. To create another array “sortedColors” which contain the same objects
as in “colors” but sorted according to their colors in red-blue-green
order.

Using Visitor pattern to implement the above two operations. You need to
write abstract and concrete Visitor classes, modify Red, Blue, Green classes,
and write a main program to use a Visitor object to perform each of the
operations.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.20

Game of Life

� Group project due in some weeks

� The universe of the Game of Life is an infinite two-
dimensional orthogonal grid of square cells, each of which
is in one of two possible states, live or dead. Every cell
interacts with its eight neighbors, which are the cells that
are directly horizontally, vertically, or diagonally adjacent.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.21

Game of Life

Any live cell with fewer than two live neighbours dies, as if
caused by underpopulation.

� Any live cell with more than three live neighbours dies, as
if by overcrowding.

� Any live cell with two or three live neighbours lives on to
the next generation.

� Any dead cell with exactly three live neighbours becomes
a live cell.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.22

Game of Life

� The initial pattern constitutes the seed of the system. The
first generation is created by applying the above rules
simultaneously to every cell in the seed?births and deaths
happen simultaneously, and the discrete moment at which
this happens is sometimes called a tick (in other words,
each generation is a pure function of the one before). The
rules continue to be applied repeatedly to create further
generations.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.23

