
Tecniche di Progettazione:

Design Patterns

GoF: Iterator

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.1

Diner and Pancake House Merger

� Objectville diner and Objectville pancake house are
merging into one entity.

� Thus, both menus need to merged.

� The problem is that the menu items have been stored in
an ArrayList for the pancake house and an Array for the
diner.

� Neither of the owners are willing to change their
implementation.

Problems

� Suppose we are required to print every item on both
menus.

� Two loops will be needed instead of one.

� If a third restaurant is included in the merger, three loops
will be needed.

� Design principles that would be violated:

� Coding to implementation rather than interface

� The program implementing the joint print_menu() needs to
know the internal structure of the collection of each set of
menu items.

� Duplication of code

Solution

� Encapsulate what varies, i.e. encapsulate the iteration.

� An iterator is used for this purpose.

� The DinerMenu class and the PancakeMenu class need to
implement a method called createIterator().

� The Iterator is used to iterate through each collection
without knowing its type (i.e. Array or ArrayList)

Original Iteration

� Getting the menu items:
PancakeHouseMenu pancakeHouseMenu= new PancakeHouse Menu();

ArrayList breakfastItems = pancakeHouseMenu.getMenu Items();

DinerMenu dinerMenu = new DinerMenu();

MenuItems[] lunchItems = dinerMenu.getMenuItems();

� Iterating through the breakfast items:

for(int i=0; i < breakfastItems.size(); ++i)

{MenuItem menuItem = (MenuItem) breakfastItems.get(i)}

� Iterating through the lunch items:
for(int i=0; I < lunchItems.length; i++)

{MenuItem menuItem = lunchItems[i]}

Using an Iterator

� Iterating through the breakfast items:
Iterator iterator = breakfastMenu.createIterator();

while(iterator.hasNext())

{

MenuItem menuItem = (MenuItem)iterator.next();

}

� Iterating through the lunch items:

Iterator iterator = lunchMenu.createIterator();

while(iterator.hasNext())

{

MenuItem menuItem = (MenuItem)iterator.next();

}

Iterator Design Pattern

� The iterator pattern encapsulates iteration.

� The iterator pattern requires an interface called Iterator.

� The Iterator interface has two methods:

� hasNext()

� next()

� Iterators for different types of data structures are
implemented from this interface.

Class Diagram for the Merged Diner

Using the Java Iterator Class

� Java has an Iterator class.

� The Iterator class has the following methods:

� hasNext()

� next()

� remove()

� Removes from the underlying collection the last element returned by
the iterator (optional operation). This method can be called only once
per call to next. The behavior of an iterator is unspecified if the
underlying collection is modified while the iteration is in progress in
any way other than by calling this method.

� If the remove() method should not be allowed for a particular data
structure, a java.lang.UnsupportedOperationException should be
thrown.

Improving the Diner Code

� Changing the code to use java.util.iterator:

� Delete the PancakeHouseIterator as the ArrayList class has a
method to return a Java iterator.

� Change the DinerMenuIterator to implement the Java Iterator
.

� Another problem - all menus should have the same
interface.

� Include a Menu interface

Adding the Menu interface

PancakeHouseMenu

Waitress Iterator
<<interface>>

menuItems

createIterator()

printMenu() hasNext()
next()

PancakeHouseMenuIterator

hasNext()
next()

DinerMenuIterator

hasNext()
next()

remove()

remove() remove()

DinerMenu

menuItems

createIterator()

Menu

createIterator()

<<interface>>

Iterator Pattern Definition

� Allows the traversal of the elements of a collection
without exposing the underlying implementation.

Iterator Pattern Class Diagram

Some Facts About the Iterator Pattern

� Earlier methods used by an iterator were first(),
next(), isDone() and currentItem().

� Two types of iterators: internal and external.

� An iterator can iterate forward and backwards.

� Ordering of elements is dictated by the underlying
collection.

� Promotes the use of “polymorphic” iteration by
writing methods that take Iterators as parameters.

Enumeration is a predecessor of Iterator

� Both will give successive elements, but Iterator is
improved in such a way so:

� Iterators allow the caller to remove elements.

� Method names have been improved (shorter).

Enumeration Iterator

hasMoreElement() hasNext()

nextElement() next()

N/A remove()

� As also mentioned in the Java API Specifications, for
newer programs, Iterator should be preferred over
Enumeration, as "Iterator takes the place of Enumeration
in the Java collections framework."

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.15

Design Principle

� If collections have to manage themselves as well as
iteration of the collection this gives the class two
responsibilities instead of one.

� Every responsibility is a potential area for change.

� More than one responsibility means more than one area of
change.

� Thus, each class should be restricted to a single
responsibility.

� Single responsibility: A class should have only one reason
to change.

� High cohesion vs. low cohesion.

Exercise

� Extend the current restaurant system to include a dinner
menu from Objectville café.

� The program for the café stores the menu items in
Hashtable. Examine and change the code to integrate the
code into the current system.

Changes

� The CafeMenu class must implement the Menu interface.

� Delete the getItems() method from the CafeMenu class.

� Add a createIterator() method to the CafeMenu class.

� Changes to the Waitress class

� Declare an instance of Menu for the CafeMenu.

� Allocate the CafeMenu instance in the constructor.

� Change the printMenu() method to get the iterator for the
CafeMenu and print the menu.

� Test the changes

Iterators and Collections

� In Java the data structure classes form part of the Java
collections framework.

� These include the ArrayList, Vector, LinkedList, Stack and
PriorityQueue classes.

� Each of these classes implements the java.util.Collection
interface which forces all subclasses to have an iterator()
method.

� The Hashtable class contains keys and values which must
iterated separately.

Problems with this Code? (waitress)
public void printMenu()

{

Iterator pancakeIterator =

pancakeHouseMenu.createIterator();

Iterator dinerIterator = dinerMenu.createIterator();

Iterator cafeIterator = cafeMenu.createIterator();

System.out.println("MENU\n----\nBREAKFAST");

printMenu(pancakeIterator);

System.out.println("\nLUNCH");

printMenu(dinerIterator);

System.out.println(“\nDINNER”);

printMenu(cafeIterator);

}

Comincia a diventare prolisso…..

Iterate over menus

public class Waitress{

ArrayList menus;

public void printMenu(){

Iterator menuIterator = menus.iterator();

while (menuIterator.hasNext()){

Menu menu = (Menu) = menuIterator .next();

printMenu(menu.createIterator());

}

}

public void printMenu(Iterator iterator);{…}

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.21

