
Tecniche di Progettazione:

Design Patterns

GoF: Builder, Chain Of Responsibility, Flyweight

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.1



Builder

Design patterns, Laura Semini, Università di Pisa, Dipartimento di 
Informatica.

2



Builder: intent

� Separate the construction of a complex object from its 
representation so that the same construction process can 
create different representations



Builder: structure



Builder: participants

� Builder

� Specifies an interface for creating/assembling parts of a 
product.

� ConcreteBuilder 

� Implements the Builder interface

� Director 

� Constructs an object of an unknown type using the Builder 
interface

� Product 

� Complete object returned by invoking getResult() on the 
ConcreteBuilder



Design patterns, Laura Semini, 
Università di Pisa, Dipartimento di 

Informatica.

6



Builder: consequences

� Isolates code for construction and representation

� Construction logic is encapsulated within the director

� Product structure is encapsulated within the concrete builder

� => Lets you vary a product's internal representation

� Supports fine control over the construction process

� Breaks the process into small steps



Builder: applicability

� Use the Builder pattern when

� The algorithm for creating a complex object should be 
independent of the parts that make up the object and how 
they're assembled. 

� The construction process must allow different representations 
for the object that's constructed 



Builder: implementation

� The Builder interface

� Must be general enough to allow construction of many 
products

� Abstract base class for all products?

� Usually not feasible (products are highly different)

� Default implementation for methods of Builder?

� "Yes": May decrease amount of code in ConcreteBuilders

� "No:" May introduce silent bugs

� concrete builders can define incompatible parts.



Ex. da riscrivere a fine lezione

Design patterns, Laura Semini, 
Università di Pisa, Dipartimento di 

Informatica.

10



MazeBuilder  (the builders) 

public class MazeBuilder { 

public void buildMaze(){ };

public void buildRoom(int r){ }; 

public void buildDoor(int d);{ } 

public Maze getMaze();{ } 

} 

This interface can create three things: (1) the maze, (2) rooms with a particular room 
number,  and (3) doors between numbered rooms. The GetMaze operation returns 
the maze to the client. Subclasses of MazeBuilder will override this operation to 
return the maze that they build.

All the maze-building operations of MazeBuilder do nothing by default. They're not 
declared abstarct to let derived classes override only those methods in which 
they're interested.

public class StandardMazeGame implements MazeBuilder { } 

public class ComplexMazeGame implements MazeBuilder{ }

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.11



MazeBuilder (director) (note: getMaze())

public class MazeGame { 

public Maze createComplexMaze(MazeBuilder builder) { 
builder.buildDoor(12); 

builder.buildDoor(22); 

builder.buildRoom(133); 

return builder.getMaze(); } 

public Maze createMaze(MazeBuilder builder) { 
builder.buildDoor(1); 

builder.buildDoor(3); 

builder.buildRoom(4); 

return builder.getMaze(); } } 

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.12



MazeBuilder (client) 

public class Client { 

public static void main(String[] args) { 

Maze maze; 

MazeGame director = new MazeGame(); 

MazeBuilder builder = new StandardMazeGame(); 
maze = director.createMaze(builder); 

}

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.13



Compare this version of CreateMaze 

with the original.

� Notice how the builder hides the internal representation 
of the Maze that is, the classes that define rooms, doors, 
and walls and how these parts are assembled to complete 
the final maze. 

� Someone might guess that there are classes for 
representing rooms and doors, but there is no hint of one 
for walls. 

� This makes it easier to change the way a maze is 
represented, since none of the clients of MazeBuilder 
(director) has to be changed.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.14



Factory Method Abstract Factory

Design patterns, Laura 
Semini, Università di 
Pisa, Dipartimento di 

15

public Wall makeWall() 
{return new 
EnchantedWall();}



What is the difference between Builder Design 

pattern and Factory Design pattern?

� The Factory pattern can almost be seen as a simplified version of the 
Builder pattern.

� In the Factory pattern, the factory is in charge of creating various 
subtypes of an object depending on the needs.

� The user of a factory method doesn't need to know the exact subtype of 
that object. An example of a factory method createCar might return a Ford 
or a Honda typed object.

� In the Builder pattern, different subtypes are also created by a builder 
method, but the composition of the objects might differ within the same 
subclass.

� To continue the car example you might have a createCar builder method 
which creates a Honda-typed object with a 4 cylinder engine, or a Honda-
typed object with 6 cylinders. The builder pattern allows for this finer 
granularity.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.16



What is the difference between Builder Design 

pattern and Factory Design pattern? Cont’d

� From Wikipedia: 

� Builder focuses on constructing a complex object step by step. Abstract 
Factory emphasizes a family of product objects (either simple or complex). 
Builder returns the product as a final step, but as far as the Abstract 
Factory is concerned, the product gets returned immediately.

� Builder often builds a Composite.

� Often, designs start out using Factory Method (less complicated, more 
customizable, subclasses proliferate) and evolve toward Abstract Factory, 
Prototype, or Builder (more flexible, more complex) as the designer 
discovers where more flexibility is needed.

� Sometimes creational patterns are complementary: Builder can use one of 
the other patterns to implement which components get built.  Abstract 
Factory, Builder, and Prototype can use Singleton in their implementations.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.17



Chain Of responsibility



Chain Of Responsibility

� Intent

� Avoid coupling the sender of a request  to its receiver by giving 
more than one object a chance to handle the request.  Chain 
the receiving objects and pass the request along the chain until 
an object handles it

� Example

� Help information on an interface

� Organize from most specific to general (da chi sa fare meno 
cose a chi ne sa fare di più)

� Pattern decouples object that initiates request from the object 
the ultimately provides the help (non è il cliente che gira tra gli 
sportelli, ma la sua richiesta)



Flow

� Request is passed a long chain of objects until one 
handles it



Flow

� First Object receives the request and either handles it or 
forwards it to the next candidate

� Example

� User clicks help on a PrintButton within a PrintDialog



Applicability

� Use Chain of Responsibility when

� More than one object may handle a request and the handler 
isn’t known a priori.

� You want to issue a request to one of several objects without 
specifying the receiver explicitly

� The Set of objects than can handle a request should be 
specified dynamically



Structure



Participants

� Handler

� Defines an interface for handling request

� Optional implements the successor link

� ConcreteHandler

� Handles requests it is responsible for

� Can access its successor

� Forwards requests it does not handle

� Client

� Initiates the request to a (usually the first)  ConcreteHandler 
object on the chain



Consequences

� Reduced Coupling

� Objects are free from knowing what object handles the 
request

� Added Flexibility in assigning responsibilities to objects

� Can change chain at runtime

� Can subclass for special handlers

� Receipt is guaranteed

� Request could fall off the chain

� Request could be dropped with bad chain



Implementation

� Implementing the successor chain

� Define new links

� Can be handled at the base class level

� Use existing links

� If a structure already exists

� In case like Composite, can use parent link

� Sometimes redundant links are needed, if relationship structure differs



Implementation

� Representing Requests

� Hard coded operations: static invocation of a method 

� Ex: handleRequest() 

� Limited in handling requests

� Simple approach

� Argument in the request, to let the handler decide which 
method to use

� Requires conditionals

� Requires packing/unpacking arguments

� Separate Request Objects

� Introduce a Request class hierarchy 

� Must be able to determine type in handler

� Can subclass handlers



Related Patterns

� Composite

� Used with Chain of Responsibility so parent can act as a 
successor

� Decorator

� See next slide



Why would I ever use a Chain of 

Responsibility over a Decorator?

� CoR:  you can break the chain at any point 

� This is not true of Decorator. 

� Decorators can be thought of as executing all at once without 
any interaction with the other decorators. 

� Use the Chain of Responsibility pattern when you can 
conceptualize your program as a chain made up of links, 
where each link can either handle a request or pass it up 
the chain.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.29



What's the difference between “Chain of 

responsibility” and “Strategy”?

� They're very different.

� Strategy is about having a generic interface which you can use to provide 
different implementations of an algorithm, or several algorithms or pieces 
of logic which have some common dependencies.

� For instance, a CollectionSorter could support a SortingStrategy (merge 
sort, quick sort, bubble sort). They all have the same interface and purpose, 
but can do different things.

� In some cases you may decide to determine strategy inside. Maybe the 
sorter has some heuristics based on collection size etc.  

� Most of the time it indeed is injected from outside. This is when the pattern 
really shines: It provides users the ability to override (or provide) behavior. 
(dependency injection and Inversion of Control. )

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.30



What's the difference between “Chain of 

responsibility” and “Strategy” patterns?

� Chain of responsibility is about having a chain of objects which usually 
go from more detailed to more generic. Each of the pieces in chain can 
provide the answer, but they have different levels of detail.

� Popular GOF example is a context help system. When you click on a 
component in your desktop app, which help to display? First item in chain 
could look for help for the very component you clicked. Next in chain 
could try and display help for the whole containing dialog. Next for the 
application module... and so on.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.31



Chain-of-responsibility vs. lists of 

handlers

� Problem:  refactor a huge(1000 lines) method full of "if" statements.

� Solution 1: chain-of-responsibility pattern: base "Handler" class. Then, 
"Handler1", "Handler2", etc. 

� Solution 2:  base "Handler" class as well, with "Handler1", "Handler2", just 
like the previous method mentioned.
However, there would be no "getSuccessor" method. Instead,  a Collection 
class with a list of handlers(a Vector, an ArrayList, …).
The handleRequest function would still exist, but it wouldn't propagate the 
call to the next handlers. It would just process the request or return null.
To handle a request, one would use

� for(Handler handle : handlers){
result = handle.handleRequest(request);
if(result!=null) return result;

}
throw new CouldNotParseRequestException(); 

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.32



Chain-of-responsibility vs. lists of 

handlers (cont’d)

� Solution 2 makes it easy and clear to manipulate this set of handlers: the 
collections interface is well known and everybody understands how to 
iterate over a List or what not.

� If the handlers can completely handle a request on their own, Solution 2 is 
fine. The handlers do not have a reference to other handlers, which makes 
the handler interface simple.  You can add or remove handlers from the 
middle of the chain. 

� One problem with Solution 2 is that a handler cannot do pre-processing or 
post-processing on the request. If this functionality is required, then Chain 
of Responsibility is better. In CoR, the handler is the one responsible for 
delegating to the next handler on the chain, so the handler can do pre-
processing and/or post-processing, including modifying or replacing the 
response from the next handler on the chain. In this way, CoR is very 
similar to Decorator; it's just the intent that's different.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.33



Flyweight

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.34



Flyweight Pattern

� Intent

� Use sharing to support large numbers of fine-grained 
objects efficiently

� Motivation

� Can be used when an application could benefit from using 
objects throughout their design, but a naïve implementation 
would be prohibitively expensive

� Objects for each character in a document editor

�Cost is too great!

� Can use flyweight to share characters



Head first example

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.36



Another ex.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.37



Intrinsic vs. Extrinsic

� most objects would share a set of stateless information, 
this could be extracted from the main objects to be held 
in flyweight objects 

� Intrinsic

� The intrinsic data is held in the properties of the flyweight 
objects that are shared. This information is stateless and 
generally remains unchanged, as any changes would be 
effectively replicated amongst all of the objects that reference 
the flyweight 

� Extrinsic

� Extrinsic data can be stateful as it is held outside of a flyweight 
object. It can be passed to methods of a flyweight when needed 
but should never be stored within a shared flyweight object.



Flyweight: Structure



Flyweight: Participants

� Flyweight

� Declares an interface through which flyweights can receive and 
act on extrinsic state

� ConcreteFlyweight

� Implements the Flyweight interface and adds storage for 
intrinsic state, if any

� Must be shareable

� UnsharedConcreteFlyweight 

� Although the flyweight design pattern enables sharing of 
information, it is possible to create instances of concrete 
flyweight classes that are not shared. In these cases, the objects 
may be stateful.



Flyweight: Participants

� FlyweightFactory

� Creates and manages flyweight objects

� Ensures that flyweights are shared properly

� Client

� Maintains reference to flyweights

� Computes or stores the extrinsic state of flyweights



Flyweight: Applicability

� Use the Flyweight pattern when ALL of the following are 
true

� An application uses a large number of objects

� Storage costs are high because of the sheer quantity of objects

� Most object state can be made extrinsic

� Many Groups of objects may be replaced by relatively few 
shared objects once extrinsic state is removed

� The application doesn’t depend on object identity



Flyweight vs static attributes

� shared data may not be static

� Ex: characters with sared formatting, next paragraph can 
change format

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.43



Flyweight: Consequences
� May introduce run-time costs associated with transferring, 

finding, and/or computing extrinsic state

� Costs are offset by space savings

� Storage savings are a function of the following factors:

� The reduction in the total number of instances that comes 
from sharing

� The amount of intrinsic state per object

� Whether extrinsic state is computed or stored

� Ideal situation

� High number of shared flyweights

� Objects use substantial quantities of both intrinsic and 
extrinsic state

� Extrinsic state is computed



Implementation

� Removing extrinsic state

� Success of pattern depends on ability to remove extrinsic state 
from shared objects

� No help if there are many different kinds of extrinsic state

� Ideally, state is computed separately

� Managing shared objects

� Objects are shared so clients should not instantiate

� FlyweightFactory is used to create and share objects

� Garbage collection may not be necessary



Flyweight: Related Patterns

� Composite

� Often combined with flyweight

� Provides a logically hierarchical structure in terms of a 
directed-acyclic graph with shared leaf nodes

� State and Strategy

� Best implemented as flyweights

� If state objects have no instance variable,  i.e. the state they 
represent is completely characterized by the class type, then a 
state object can be shared by distinguished contexts. In this 
case the states are flyweights, without intrinsic state, but only 
with a behaviour.

� Similarly, a strategy can be implemented with a Flyweight.



� Flyweight is a boxing category, for light weight people.

� Flyweight pattern is for "light weight" objects (though 
many of them).

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.47


