
Tecniche di Progettazione:

Design Patterns

GoF: Composite

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.1

Composite pattern

� Intent

� Compose objects into tree structures to represent part-whole
hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly. This is called recursive
composition.

� Applicability

� Use the Composite pattern when

� You want to represent part-whole hierarchies of objects

� You want clients to be able to ignore the difference between
compositions of objects and individual objects.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.

Composite: structure

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.

1..*

{ordered}

Composite: participants

� Component

� declares the interface for object composition

� implements default behaviour (if any)

� declares an interface for accessing and managing the child components

� Leaf

� Defines the behaviour of the composition primitive objects

� Composite:

� defines behaviour for components having children

� stores child components

� implements operations to access childs

� Client:

� manipulates objects in the composition through the Composite
interface

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.

Composite: Example

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.

Composite: Collaboration

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.

Directory / File Example

� Directory = Composite

� File = Leaf

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.

/

bin/ user/ tmp/

file1 file2 subdir/ file3

file4 file5

Composite

Composite Composite Composite

CompositeLeaf Leaf Leaf

Leaf Leaf

Directory / File Example – Classes

� One class for Files (Leaf nodes)

� One class for Directories (Composite nodes)

� Collection of Directories and Files

� How do we make sure that Leaf nodes and Composite
nodes can be handled uniformly?

� Derive them from the same abstract base class

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.

Leaf
Class:
File

Composite Class:
Directory

Directory / File Example – Structure

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.

Abstract Base Class: Node

Leaf Class: File Composite Class: Directory

Directory / File Example – Operation

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.

Abstract Base Class: Node
size() in bytes of entire directory
and sub-directories

Leaf Class: File
size () of file

Composite Class: Directory
size () Sum of file sizes in this
directory and its sub-
directories

long Directory::size () {
long total = 0;
Node* child;
for (int i = 0; child = getChild(); ++i; {

total += child->size();
}
return total;

}

Consequences

� Solves problem of how to code recursive hierarchical
part-whole relationships.

� Client code is simplified.

� Client code can treat primitive objects and composite objects
uniformly.

� Existing client code does not need changes if a new leaf or
composite class is added (because client code deals with the
abstract base class).

� Can make design overly general.

� Can’t rely on type system to restrict the components of a
composite. Need to use run-time checks.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.

Implementation Issues

� Should Component maintain the list of components that will be used by a
composite object? That is, should this list be an instance variable of
Component rather than Composite?

� Better to keep this part of Composite and avoid wasting the space in every leaf
object.

� Where should the child management methods (add(),
remove(), getChild()) be declared?

� In the Component class: Gives transparency, since all components can be
treated the same. But it's not safe, since clients can try to do
meaningless things to leaf components at run-time.

� In the Composite class: Gives safety, since any attempt to perform a
child operation on a leaf component will be caught at compile-time. But
we lose transparency, since now leaf and composite components have
different interfaces.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.12

Implementation Issues cont’d

� Is child ordering important?

� Depends on application

� What's the best data structure to store components?

� Depends on application

� A composite object knows its contained components,
that is, its children. Should components maintain a
reference to their parent component?

� Depends on application, but having these references supports
the Chain of Responsibility pattern

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.13

