
Tecniche di Progettazione:

Design Patterns

GoF: Flyweight

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.1

Flyweight Pattern

� Intent

� Use sharing to support large numbers of fine-grained
objects efficiently

� Motivation

� Can be used when an application could benefit from using
objects throughout their design, but a naïve implementation
would be prohibitively expensive

� Objects for each character in a document editor

�Cost is too great!

� Can use flyweight to share characters

Example

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.3

Flyweight

Head first example

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.4

The manager is acting as a collecion more than a Flyweight

Flyweight

Intrinsic vs. Extrinsic

� Most objects would share a set of stateless information,
this could be extracted from the main objects to be held
in flyweight objects

� Intrinsic

� The intrinsic data is held in the properties of the flyweight
objects that are shared. This information is stateless and
generally remains unchanged, as any changes would be
effectively replicated amongst all of the objects that reference
the flyweight

� Extrinsic

� Extrinsic data can be stateful as it is held outside of a flyweight
object. It can be passed to methods of a flyweight when needed
but should never be stored within a shared flyweight object.

GoF Example

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.6

Creating a flyweight for each letter of the
alphabet:

Intrinsic state: a character code
Extrinsic state: coordinate position in the document

typographic style (font, color)
is determined from the text layout algorithms and formatting
commands in effect wherever the character appears

Flyweight: Structure

Flyweight: Participants

� Flyweight

� Declares an interface through which flyweights can receive and
act on extrinsic state

� ConcreteFlyweight

� Implements the Flyweight interface and adds storage for
intrinsic state, if any

� Must be shareable

� UnsharedConcreteFlyweight

� Although the flyweight design pattern enables sharing of
information, it is possible to create instances of concrete
flyweight classes that are not shared. In these cases, the objects
may be stateful.

Flyweight: Participants

� FlyweightFactory

� Creates and manages flyweight objects

� Ensures that flyweights are shared properly

� Client

� Maintains reference to flyweights

� Computes or stores the extrinsic state of flyweights

Example

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.10

Flyweight object interface

interface ICoffee {

public void serveCoffee(CoffeeContext context);

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.11

Concrete Flyweight object

class Coffee implements ICoffee {

private final String flavor;

public Coffee(String newFlavor) {

this.flavor = newFlavor;

System.out.println("Coffee is created! - " + flavor);

}

public String getFlavor() { return this.flavor; }

public void serveCoffee(CoffeeContext context) {

System.out.println("Serving " + flavor + " to table " +
context.getTable());

}}
Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.12

A context, here is table number

class CoffeeContext {

private final int tableNumber;

public CoffeeContext(int tableNumber) {

this.tableNumber = tableNumber;

}

public int getTable() {

return this.tableNumber;

}

}
Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.13

Flyweight Factory

class CoffeeFactory {

private HashMap<String, Coffee> flavors = new HashMap<String, Coffee>();

public Coffee getCoffeeFlavor(String flavorName) {

Coffee flavor = flavors.get(flavorName);

if (flavor == null) {

flavor = new Coffee(flavorName);

flavors.put(flavorName, flavor);

}

return flavor;

}

public int getTotalCoffeeFlavorsMade() {

return flavors.size();

}

}
Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.14

Waitress (continues)

public class Waitress {

//coffee array

private static Coffee[] coffees = new Coffee[20];

//table array

private static CoffeeContext[] tables = new CoffeeContext[20];

private static int ordersCount = 0;

private static CoffeeFactory coffeeFactory;

public static void takeOrder(String flavorIn, int table) {

coffees[ordersCount] = coffeeFactory.getCoffeeFlavor(flavorIn);

tables[ordersCount] = new CoffeeContext(table);

ordersCount++;

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.15

Waitress (continued)

public static void main(String[] args) {

coffeeFactory = new CoffeeFactory();

takeOrder("Cappuccino", 2);

takeOrder("Cappuccino", 2);

takeOrder("Regular Coffee", 1);

takeOrder("Regular Coffee", 2);

takeOrder("Regular Coffee", 3);

for (int i = 0; i < ordersCount; ++i) { coffees[i].serveCoffee(tables[i]); }

System.out.println("\nTotal Coffee objects made: " +

coffeeFactory.getTotalCoffeeFlavorsMade());

}

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.16

Flyweight: Applicability

� Use the Flyweight pattern when ALL of the following are
true

� An application uses a large number of objects

� Storage costs are high because of the sheer quantity of objects

� Most object state can be made intrinsic

� Many Groups of objects may be replaced by relatively few
shared objects once extrinsic state is removed

� The application doesn’t depend on object identity

Flyweight: Consequences
� May introduce run-time costs associated with transferring,
finding, and/or computing extrinsic state

� Costs are offset by space savings

� Storage savings are a function of the following factors:

� The reduction in the total number of instances that comes
from sharing

� The amount of intrinsic state per object

� Whether extrinsic state is computed or stored

� Ideal situation

� High number of shared flyweights

� Objects use substantial quantities of both intrinsic and
extrinsic state

� Extrinsic state is computed

Implementation

� Removing extrinsic state

� Success of pattern depends on ability to remove extrinsic state
from shared objects

� No help if there are many different kinds of extrinsic state

� Ideally, state is computed separately

� Managing shared objects

� Objects are shared so clients should not instantiate

� FlyweightFactory is used to create and share objects

� Garbage collection may not be necessary

Java Strings

� Java Strings are flyweighted by the compiler wherever possible.

� Can be flyweighted at runtime with the intern method.

public class StringTest {

public static void main(String[] args) {

String fly = "fly", weight = "weight";

String fly2 = "fly", weight2 = "weight";

System.out.println(fly == fly2); // true

System.out.println(weight == weight2); // true

String append = fly + weight;

System.out.println(append == "flyweight"); // false

String flyweight = (fly + weight).intern();

System.out.println(flyweight== "flyweight"); // true

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.20

Flyweight: Related Patterns

� Composite

� Often combined with flyweight

� Provides a logically hierarchical structure in terms of a
directed-acyclic graph with shared leaf nodes

� State and Strategy

� Best implemented as flyweights

� Flyweight is a boxing category, for light weight people.

� Flyweight pattern is for "light weight" objects (though
many of them).

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.22

