
Tecniche di Progettazione:

Design Patterns

GoF: Chain Of Responsibility

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.1

Chain Of Responsibility

� Intent

� Avoid coupling the sender of a request to its receiver by giving
more than one object a chance to handle the request. Chain
the receiving objects and pass the request along the chain until
an object handles it

� Example

� Help information on an interface

� Organize from most specific to general (da chi sa fare meno
cose a chi ne sa fare di più)

� Pattern decouples object that initiates request from the object
the ultimately provides the help (non è il cliente che gira tra gli
sportelli, ma la sua ruchiesta)

Flow

� Request is passed a long chain of objects until one
handles it

Flow

� First Object receives the request and either handles it or
forwards it to the next candidate

� Example

� User clicks help on a PrintButton within a PrintDialog

Applicability

� Use Chain of Responsibility when

� More than one object may handle a request and the handler
isn’t known a priori.

� You want to issue a request to one of several objects without
specifying the receiver explicitly

� The Set of objects than can handle a request should be
specified dynamically

Structure

Participants

� Handler

� Defines an interface for handling request

� Optional implements the successor link

� ConcreteHandler

� Handles requests it is responsible for

� Can access its successor

� Forwards requests it does not handle

� Client

� Initiates the request to a (usually the first) ConcreteHandler
object on the chain

Consequences

� Reduced Coupling

� Objects are free from knowing what object handles the
request

� Added Flexibility in assigning responsibilities to objects

� Can change chain at runtime

� Can subclass for special handlers

� Receipt is guaranteed

� Request could fall off the chain

� Request could be dropped with bad chain

Implementation

� Implementing the successor chain

� Define new links

� Can be handled at the base class level

� Use existing links

� In case like Composite, can use parent link

� Sometimes redundant links are needed, if relationship structure differs

Implementation

� Representing Requests

� Hard coded operations

� handle()

� Limited in handling requests

� Encoded request sent to the handler

� handle(int i)

� Requires conditionals

� Requires packing/unpacking arguments

� Send a Request Objects

� handle(Request r)

� Must be able to determine type in handler

� Can subclass handlers

Related Patterns

� Composite

� Used with Chain of Responsibility so parent can act as a
successor

� Decorator

� See next slide

Why would I ever use a Chain of

Responsibility over a Decorator?

� CoR: you can break the chain at any point

� This is not true of Decorator.

� Decorators can be thought of as executing all at once without
any interaction with the other decorators.

� Use the Chain of Responsibility pattern when you can
conceptualize your program as a chain made up of links,
where each link can either handle a request or pass it up
the chain.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.12

What's the difference between “Chain of

responsibility” and “Strategy”?

� They're very different.

� Strategy is about having a generic interface which you can use to provide
different implementations of an algorithm, or several algorithms or pieces
of logic which have some common dependencies.

� For instance, a CollectionSorter could support a SortingStrategy (merge
sort, quick sort, bubble sort). They all have the same interface and purpose,
but can do different things.

� In some cases you may decide to determine strategy inside. Maybe the
sorter has some heuristics based on collection size etc.

� Most of the time it indeed is injected from outside. This is when the pattern
really shines: It provides users the ability to override (or provide) behavior.
(dependency injection and Inversion of Control.)

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.13

What's the difference between “Chain of

responsibility” and “Strategy” patterns?

� Chain of responsibility is about having a chain of objects which usually
go from more detailed to more generic. Each of the pieces in chain can
provide the answer, but they have different levels of detail.

� Popular GOF example is a context help system. When you click on a
component in your desktop app, which help to display? First item in chain
could look for help for the very component you clicked. Next in chain
could try and display help for the whole containing dialog. Next for the
application module... and so on.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.14

Chain-of-responsibility vs. lists of

handlers

� Problem: refactor a huge(1000 lines) method full of "if" statements.

� Solution 1: chain-of-responsibility pattern: base "Handler" class. Then,
"Handler1", "Handler2", etc.

� Solution 2: base "Handler" class as well, with "Handler1", "Handler2", just
like the previous method mentioned.
However, there would be no "getSuccessor" method. Instead, a Collection
class with a list of handlers(a Vector, an ArrayList, …).
The handleRequest function would still exist, but it wouldn't propagate the
call to the next handlers. It would just process the request or return null.
To handle a request, one would use

� for(Handler handle : handlers){
result = handle.handleRequest(request);
if(result!=null) return result;

}
throw new CouldNotParseRequestException();

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.15

Chain-of-responsibility vs. lists of

handlers (cont’d)

� Solution 2 makes it easy and clear to manipulate this set of handlers: the
collections interface is well known and everybody understands how to
iterate over a List or what not.

� If the handlers can completely handle a request on their own, Solution 2 is
fine. The handlers do not have a reference to other handlers, which makes
the handler interface simple. You can add or remove handlers from the
middle of the chain.

� One problem with Solution 2 is that a handler cannot do pre-processing or
post-processing on the request. If this functionality is required, then Chain
of Responsibility is better. In CoR, the handler is the one responsible for
delegating to the next handler on the chain, so the handler can do pre-
processing and/or post-processing, including modifying or replacing the
response from the next handler on the chain. In this way, CoR is very
similar to Decorator; it's just the intent that's different.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.16

Chain of responsibility and Filters. Are

they the same thing ?

� Filter pattern is near from chain of responsibility pattern.

� But it is far enough to not mix them.

� In filter/interceptor pattern, we have not the notion of
responsibility.

� So, a filter or an interceptor is more a chain of processing
than a chain of responsibility.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.17

Chain of responsibility and Filters. Are

they the same thing ?

� Filters/interceptors in a chain may have (and have often)
no logic or functional relation between them

� nodes of a chain of responsibility have always a logic or
functional relation between them

� they have to handle the same concern.

� Example,

� in a chain filter, the first filter may handle logging concern, the
second filter, security concern and the last, encoding concern...

� In a chain of responsibility, the same concern is handled
by all nodes of the chain.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.18

Ex. ATM use the Chain of Responsibility

in money giving mechanism.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.19

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.20

Hemework (after having seen Builder)

� Use CoR to write a program that, given a number n, is
able to return:

1. the number of primes smaller than n

2. the decomposition in prime factors of n

� Hint: build a (or two differet) chain of prime numbers, and
assume n is smaller than 50.

� Use Builder to build the chain, in a situation where there
are two kinds of handlers, and hence two chains (the
client decides which chain to build):

� one only dealing with prime factorization,

� the other only counting the number of primes smaller than n
Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.21

