
Tecniche di Progettazione:

Design Patterns

GoF: Proxy

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.1

Case study: Gumball machine example

� The same example covered in Head First for the State
pattern

� Now we want to add some monitor to a collection of
Gumball machines

Gumball Class

Gumball Monitor

Role of the remote Proxy

Remote Methods

How the method call happens

Client calls method

Client Helper forwards to service helper

Service helper calls the real object

Real object returns result

Service helper forwards result to client

helper

Client helper returns result to client

Hooking up client and server objects

Back to Gumball machine problem

Proxy Pattern defined

The Proxy Pattern provides a surrogate or
placeholder for another object to control access
to it.

The proxy pattern is used to create a
representative object that controls access
to another object, which may be remote,
expensive to create or in need of securing.

Proxy Class Diagram

Making the call

Remote Proxy

Virtual Proxy

Playing CD Covers

Playing CD Cover Proxy

ImageProxy process

ImageProxy process

class ImageProxy implements Icon {

ImageIcon imageIcon;

URL imageURL;

Thread retrievalThread;

boolean retrieving = false;

public ImageProxy(URL url) { imageURL = url; }

public int getIconWidth() {

if (imageIcon != null) return imageIcon.getIconWidth();

else return 800; }

public int getIconHeight() {

if (imageIcon != null)return imageIcon.getIconHeight();

else return 600;}

public void paintIcon(final Component c, Graphics g, int x, int y) {

if (imageIcon != null) imageIcon.paintIcon(c, g, x, y);

else{ g.drawString("Loading CD cover, please wait...", x+300, y+190);

if (!retrieving) {

retrieving = true;

retrievalThread = new Thread(new Runnable() {

public void run() {

try {

imageIcon = new ImageIcon(imageURL, "CD Cover");

c.repaint();

} catch (Exception e) { e.printStackTrace();}

}

});

retrievalThread.start();

}

}

}

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.29

java.lang.reflect package can be used to

create a proxy class on the fly.
A proxy controls the access to the real object applying protection to the method calls in
a transparent way. The client will invoke methods against the proxy thinking it is the real
object.

The proxy zoo

� Firewall proxy

� Smart Reference proxy

� E.g. counts the number of references

� Caching proxy

� Synchronization Proxy

� Complexity hiding Proxy

� Similar to façade pattern, it also controls accesses

� Copy-on-write Proxy

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.31

Homework

� Consider your phone being the subject.

� Build a firewall proxy that filters sms and phone calls to
block those of stalkers (e.g. your former boy/girlfriends).

� The blacklist must be updateble

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.32

Appendix

Copy-on-write Proxy

Design patterns, Laura Semini,
Università di Pisa, Dipartimento di

Informatica.

33

Copy-On-Write Proxy Example

� Scenario: Suppose we have a large collection object, such as a hash table,
which multiple clients want to access concurrently. One of the clients
wants to perform a series of consecutive fetch operations while not letting
any other client add or remove elements.

� Solution 1: Use the collection's lock object. Have the client implement a
method which obtains the lock, performs its fetches and then releases the
lock.

� For example:

� public void doFetches(Hashtable ht) { synchronized(ht) {
� // Do fetches using ht reference. } }

� But this method may require holding the collection object's lock for a long
period of time, thus preventing other threads from accessing the collection

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.34

Copy-On-Write Proxy Example

(Continued)

� Solution 2: Have the client clone the collection prior to
performing its fetch operations. It is assumed that the
collection object is cloneable and provides a clone method
that performs a sufficiently deep copy

� For example, java.util.Hashtable provides a clone method that makes
a copy of the hash table itself, but not the key and value objects

void doFetches(Hashtable ht) {

Hashtable newht = (Hashtable) ht.clone();

// Do fetches using newht reference. } l

� The collection lock is held while the clone is being created. But once the
clone is created, the fetch operations are done on the cloned copy, without
holding the original collection lock. l But if no other client modifies the
collection while the fetch operations are being done, the expensive clone
operation was a wasted effort!

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.35

Copy-On-Write Proxy Example

(Continued)

� Solution 3: It would be nice if we could actually clone the
collection only when we need to, that is when some other
client has modified the collection. For example, it would be
great if the client that wants to do a series of fetches could
invoke the clone() method, but no actual copy of the collection
would be made until some other client modifies the collection.
This is a copy-on-write cloning operation.

� We can implement this solution using proxies

� Here is an example implementation of such a proxy for a hash
table written by Mark Grand from the book Patterns in Java.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.36

Copy-On-Write Proxy Example

(Continued)

� The proxy is the class LargeHashtable. When the proxy's
clone() method is invoked, it returns a copy of the proxy and
both proxies refer to the same hash table. When one of the
proxies modifies the hash table, the hash table itself is cloned.

� The ReferenceCountedHashTable class is used to let the
proxies know they are working with a shared hash table . This
class keeps track of the number of proxies using the shared
hash table.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.37

Copy-On-Write Proxy Example

(Continued)

// The proxy.

public class LargeHashtable extends Hashtable {
// The ReferenceCountedHashTable that this is a proxy for.

private ReferenceCountedHashTable theHashTable;

// Constructor

public LargeHashtable() {

theHashTable = new ReferenceCountedHashTable(); }

// Return the number of key-value pairs in this hashtable.

public int size() { return theHashTable.size(); }

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.38

Copy-On-Write Proxy Example

(Continued)

// Return the value associated with the specified key.

public synchronized Object get(Object key) {

return theHashTable.get(key); }
// Add the given key-value pair to this Hashtable.

public synchronized Object put(Object key, Object value) {
copyOnWrite();

return theHashTable.put(key, value); }
// Return a copy of this proxy that accesses the same Hashtable.

public synchronized Object clone() {

Object copy = super.clone();

theHashTable.addProxy();

return copy; }

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.39

Copy-On-Write Proxy Example

(Continued)

// This method is called before modifying the underlying

// Hashtable. If it is being shared then this method clones it.

private void copyOnWrite() {

if (theHashTable.getProxyCount() > 1) {
synchronized (theHashTable) {

theHashTable.removeProxy();

try {

theHashTable = (ReferenceCountedHashTable)
theHashTable.clone(); }

catch (Throwable e) {

theHashTable.addProxy(); } } } } …

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.40

Copy-On-Write Proxy Example

(Continued)

// Private class to keep track of proxies sharing the hash table.

private class ReferenceCountedHashTable extends Hashtable {

private int proxyCount = 1;

// Constructor

public ReferenceCountedHashTable() { super(); }

// Return a copy of this object with proxyCount set back to 1.

public synchronized Object clone() {

ReferenceCountedHashTable copy;

copy = (ReferenceCountedHashTable)super.clone();

copy.proxyCount = 1;

return copy; }

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.41

Copy-On-Write Proxy Example

(Continued)

// Return the number of proxies using this object. synchronized

int getProxyCount() { return proxyCount; }

// Increment the number of proxies using this object by one.
synchronized void addProxy() { proxyCount++; }

// Decrement the number of proxies using this object by one.
synchronized void removeProxy() { proxyCount--; } }

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.42

