
Tecniche di Progettazione:

Design Patterns

GoF: Visitor

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.1

Visitor Pattern

� Intent

� Lets you define a new operation without changing the classes
on which they operate.

� Motivation

� Allows for increased functionality of a class(es) while
streamlining base classes. streamlining base classes.

� A primary goal of designs should be to ensure that base classes
maintain a minimal set of operations.

� Encapsulates common functionality in a class framework.

Visitor Pattern: Applicability

� The following situations are prime examples for use of
the visitor pattern.

� When an object structure contains many classes of objects
with different interfaces and you want to perform functions on
these objects that depend on their concrete classes.

� When you want to keep related operations together by � When you want to keep related operations together by
defining them in one class.

� When the class structure rarely change but you need to define
new operations on the structure.

Structure

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.4

Visitor Pattern: Participants

� Visitor

� Declares a Visit Operation for each class of Concrete Elements in the
object structure.

� Concrete Visitor

� Implements each operation declared by Visitor.

� Element� Element

� Defines an Accept operation that takes the visitor as an argument.

� Concrete Element

� Implements an accept operation that takes the visitor as an argument.

� Object Structure

� Can enumerate its elements.

� May provide a high level interface to all the visitor to visit its elements.

� May either be a composite or a collection.

Visitor Pattern: Collaborations

Visitor Pattern: Consequences

� Makes adding new operations easier.

� Collects related functionality.

� Adding new Concrete Element classes is difficult.

� Can “visit” across class types, unlike iterators.

� Accumulates states as they visit elements.� Accumulates states as they visit elements.

� May require breaking object encapsulation to support the
implementation.

Visitor: Related Patterns

� Composites

� Visitors can be used to apply an operation over an object
structure defined by the composite pattern.

� Interpreter

� Visitors may be applied to do the interpretation.

Visitor Pattern

� Motivation (cont)

� Visitors avoid type casting that is required by methods that
pass base class pointers as arguments. The following code
describes how a typical class could expand the functionality of
an existing composite.

Void MyAddition::execute(Base* basePtr) {Void MyAddition::execute(Base* basePtr) {

if(dynamic_cast<ChildA*>(basePtr)){

// Perform task for child type A.

} else if (dynamic_cast<ChildB*>(basePtr)){

// Perform task for child type B.

} else if(dynamic_cast<ChildC*>(basePtr)){

// Perform task for child type C.

}

}

Double dispatch

� Visitor pattern is a very natural solution to double
dispatch problems.

� Double dispatch problem is a subset of dynamic dispatch
problems and it stems from the fact that method
overloads are determined statically at compile time, unlike
virtual(overriden) methods, which are determined at virtual(overriden) methods, which are determined at
runtime.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.10

Double dispatch.

Ex code:
public class CarOperations {

void doCollision(Car car){}
void doCollision(Bmw car){}
}

public class Car { public void doVroom(){} }

public class Bmw extends Car { public void doVroom(){} }

public static void Main() {
Car bmw = new Bmw();

//calls Bmw.doVroom() - single dispatch, works out that car is actually Bmw at runtime.
bmw.doVroom();

//calls CarOperations.doCollision(Car car) because compiler chose doCollision overload
based on the declared type of bmw variable

CarOperations carops = new CarOperations();
carops.doCollision(bmw);

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.11

Double dispatch.

Solution

� In the java project

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.12

Deprecated

Ex.Visitor 1/2: the visitor and main

//This is the car operations interface. It knows about all the different kinds
of cars it support
//and is statically typed to accept only certain ICar subclasses as
parameters

public interface CarVisitor {
void StickAccelerator(Toyota car);
void ChargeCreditCardEveryTimeCigaretteLighterIsUsed(Bmw car);void ChargeCreditCardEveryTimeCigaretteLighterIsUsed(Bmw car);

}

public class Program {
public static void Main() {
Car car = carDealer.getCarByPlateNumber("4SHIZL");
CarVisitor visitor = new SomeCarVisitor();
car.performOperation(visitor)

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.13

Deprecated

Ex. Visitor 2/2 (elements):

//Car interface, a car specific operation is invoked by calling PerformOperation

public interface Car {

public void performOperation(CarVisitor visitor);
}

public class Toyota implements Car {public class Toyota implements Car {

public void performOperation(CarVisitor visitor) { visitor.StickAccelerator(this); }
}

public class Bmw implements Car{
public void performOperation(ICarVisitor visitor) {

visitor.ChargeCreditCardEveryTimeCigaretteLighterIsUsed(this);
}

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.14

Another point of view

nice example

� The issue addressed by the Visitor pattern is the manipulation
of composite objects

� Without visitors, such manipulation runs into several problems as
illustrated by considering an implementation of integer lists, written
in Java

� interface List {}

� class Nil implements List {}

� class Cons implements List {
int head;
List tail;

}

� What happens when we write a program which computes the sum
of all components of a given List object?

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.15

First Attempt:

Instanceof and Type Casts

List l;

// The List-object we are working on.

int sum = 0;

// Contains the sum after the loop.

boolean proceed = true;

while (proceed) { while (proceed) {

if (l instanceof Nil)

proceed = false;

else if (l instanceof Cons) {

sum = sum + ((Cons) l).head; // Type cast!

l = ((Cons) l).tail; // Type cast!

}

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.16

Second Attempt:

Dedicated Methods

interface List {

int sum();

}

class Nil implements List {

public int sum() { return 0; }

} }

class Cons implements List {

int head;

List tail;

public int sum() {

return head + tail.sum();

}

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.17

Dedicated Methods

� Can compute the sum of all components of a given List-
object l by writing l.sum().

� Advantage: type casts and instanceof operations have
disappeared, and that the code can be written in a
systematic way.

Disadvantage: Every time we want to perform a new � Disadvantage: Every time we want to perform a new
operation on List-objects, say, compute the product of all
integer parts, then new dedicated methods have to be
written for all the classes, and the classes must be
recompiled

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.18

Third attempt:

Visitor (1/2)

interface List {

void accept(Visitor v);

}

class Nil implements List {

public void accept(Visitor v) { v.visitNil(this); }

}

class Cons implements List {

int head;

List tail;

public void accept(Visitor v) { v.visitCons(this);

} }

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.19

Third attempt:

Visitor (2/2)

interface Visitor {

void visitNil(Nil x);

void visitCons(Cons x);

}

class SumVisitor implements Visitor {

int sum = 0;

public void visitNil(Nil x) {}public void visitNil(Nil x) {}

public void visitCons(Cons x){

sum = sum + x.head;

x.tail.accept(this); } }

SumVisitor sv = new SumVisitor();

l.accept(sv);

System.out.println(sv.sum);

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.20

