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SCLP: a security example

A security officer has to install a new security
system on the ground floor of a museum. He has to

install a set of cameras so as to control a set of 11

strategic points of the floor. Security cameras may
be installed at each of these points (in the map
indexed from 1 to 11). Each camera can cover the

entire visual plane (from the front to the back). For | ¢ =

instance, if a camera is installed at point 5, it
controls points 4, 5, 6 and 9. Considering that the
costs of installing cameras are [5, 5, 4, 4,4, 4, 4, 6, 6,

3, 3, 5], define the problem of installing a suitable |3
number of cameras, to control all the strategic
points of the ground floor of the museum at
minimum cost, as an ILP model
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SCLP: a security example

Input data:

e | = set of strategic points (or demand nodes), indexed by i;
e J = set of candidate camera locations, indexed by j;

e a;; coverage parameters, : = 1,..11, y =1, ..11;
1 if camera at location j covers strategic point i
a; ; =
j :
0 otherwise

e ¢;, j = 1,..11 cost of installation of camera at location j
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Variables:
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SCLP: a security example

1 if camera at locatation j is installed
0 otherwise

Course on mathematical modelling



SCLP: a security example

ILP model

min E {'_’.j . .’Ifj

j=1,..11

Minimize the total cost of installing cameras

Y a1 Vi=1,.11

j=1,..11

Each strategic point (¢ from 1 to 11) needs to be covered by a camera

r; € {0,1} Vi=1,..11;

Variables are binary
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SCLP: a security example

# model

param TotPoints ;

param TotCameras;

set Points := 1.. TotPoints ;

set Cameras:= 1..TotCameras;
param Coverage {Points , Cameras};
param InstallingCost {Cameras};

var InstalCam{Cameras} binary;

minimize Total_InstallingCost: sum {j in Cameras}
InstallingCost|[j]* InstalCam([j];

subject to CoveringConstr{i in Points }
sum {j in Cameras} Coverageli,j] * InstalCam[j] >=1;

param TotCameras =11;
param TotPoints =11;
param InstallingCost:=
15

25

34

44

54

64

74

86

96

103

11 5;
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SCLP: a security example

# model

param TotPoints ;

param TotCameras;

set Points := 1.. TotPoints ;

set Cameras:= 1..TotCameras;
param Coverage {Points , Cameras};
param InstallingCost {Cameras};

var InstalCam{Cameras} binary;

minimize Total_InstallingCost: sum {j in Cameras}
InstallingCost|[j]* InstalCam([j];

subject to CoveringConstr{i in Points }
sum {j in Cameras} Coverageli,j] * InstalCam[j] >=1;

param Coverage:
1234567891011:=
111110001000
211100010010
311100000001
410011001000
500011100100
600001110100
701000110010
810010001111
900001101111
1001000011111
1100100001111

U
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SCLP: a security example

# Console # Console

ampl: reset; ampl: display InstalCam;
ampl: model Museum.mod,; InstalCam [*] :=

ampl: data Museum.dat; 10

ampl: option solver cplex amp;

ampl: solve;

CPLEX 12.6.1.0: optimal integer solution;
objective 11

15 MIP simplex iterations

0 branch-and-bound nodes
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SCLP: a security example

# Console
ampl: display InstalCam;
InstalCam [*] :=
10

20

31

40

51

6 0

70

8 0

90

10 1

11 O;
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An example of Minimum Cost Flow Problem

Bavarian Motor Company (BMC) manufactures luxury cars in Germany and
exports them in the U.S.; they are currently holding 200 cars available at the port
in Newark and 300 cars available at the port in Jacksonville. From there, the cars
are transported (by rail or truck) to five distributors having a specific
requirement of cars (see Figure). In the network, Newark and Jacksonville are
supply nodes (or origins): negative numbers (e.g. -200) represent their supply;
Boston, Columbus, Atlanta, Richmond and Mobile are demand nodes (or
destinations): positive numbers (e.g. +100) represent their demand.

The problem is to determine how to transport (flowing) cars along the arcs of the
network to satisfy the demands at a minimum cost.



An example of Minimum Cost Flow Problem

min 30x12 + 40114 + 5023 + 3dx9s + 40753 + 30154 +
T 35&"55 T Eﬂi‘ﬂg T 5[]&"74 T 45&"',—5 T 5[]&"75

—r12 — T14 = —200

192 — ITa3 = 100

Tag + T53 — T35 = 60

T14 + Tyq + Ty = 80

T35 + Tes + Trs — Tug — Tpg — Tpg = 170

T56 + T — Tes = (0

—Iy4 — Iys — I :_3" —300

T12,T14y... = 0
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A constrained Minimum Cost Flow Problem

Considering the same problem as before, take into account the following

additional constraints:

 Each link has a capacity, that cannot be exceeded (see the figure);

* Two additional links are available (Jacksonville-Boston and Newark-Atlanta),
but BMC has to but BMC has to pay a (fixed) activation cost to use them (see
the figure);

* By considering the demand of Boston fixed to 100 suppose that the number
of cars allowed to pass through the city is limited to 30;

 Columbus is allowed to increase its original demand (i. e. 60), but it has to pay
500 to BMC for any additional car that it will receive (with respect to the
original demand).



A constrained Minimum Cost Flow Problem

Columbus Boston Newark

50 30
160 (3 ) 8 /D—zm}

$40
; Richmond
'“‘:D 4580
$50
Mobile Jacksonville
+70 (6 ) (7)-300
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Jacksonville, Richmond 90

Jacksonville, Atlanta 180

Jacksonville, Mobile 50
Newark, Boston 50
Newark, Richmond 90
Atlanta Columbus 50
All other links 100
Jacksonville, Boston 300
Newark, Atlanta 800
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A constrained Minimum Cost Flow Problem

Each link has a capacity, that cannot be exceeded

X192 "f_: :.l[}
L14 E [J[}
I15 E J.[]“
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A constrained Minimum Cost Flow Problem

* Each link has a capacity, that cannot be exceeded

r12 < bl # model

T14 = 90 param Cap {Link};

15 < 100 [...]

subject to Capacity {(i,j) in Link}: Ship[i,j] <= Capli,jl;

]
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A constrained Minimum Cost Flow Problem

* Two additional links are available (Jacksonville-Boston and Newark-Atlanta),
but BMC has to pay a (fixed) activation cost to use them

Variables:

Yi5 = Y12 =

0 otherwise

1 if link from 1 to 5 is activated 1 1if link from 7 to 2 is activated
0 otherwise

min ... + 25x79 + 20x15 + 300y + 800y;5
I15 ':_: 1“03;'15
Lo ':_: 1[]03}'}'2
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A constrained Minimum Cost Flow Problem

* Two additional links are available (Jacksonville-Boston and Newark-Atlanta),
but BMC has to pay a (fixed) activation cost to use them

# model

[...]

set AdditionalLink within (Link);

param CostAct {AdditionalLink};

var additionalservice {AdditionalLink} binary;

[...]

minimize Total_Cost: sum {(i,j) in Link} Cost[i,j] * Shipl[i,j] + sum {(i,j) in AdditionalLink} CostAct[i,j] *additionalservice[i,j]
subject to LinkingActivation {(i,j) in AdditionalLink}: Shipli,j] <= Capli,j]*additionalserviceli,j];




A constrained Minimum Cost Flow Problem

* By considering the demand of Boston fixed to 100 suppose that the number
of cars allowed to pass through the city is limited to 30

T2 + I'79 E 1_3”



A constrained Minimum Cost Flow Problem

* By considering the demand of Boston fixed to 100 suppose that the number
of cars allowed to pass through the city is limited to 30

T2 + I'79 E 1_3“'

# model
[...]
set Transfer within (Cities);

[...]
subject to TransferConstr {i in Transfer}: sum {(j,i) in Link} Ship[j,i] <= DemSupli] + 30;




A constrained Minimum Cost Flow Problem

 Columbus is allowed to increase its original demand (i. e. 60), but it has to
pay 500 to BMC for any additional car that it will receive (with respect to the
original demand)

min ... — H00z
Loz —I— LIy — Ly = ﬁ“ + z

z>0



A constrained Minimum Cost Flow Problem

 Columbus is allowed to increase its original demand (i. e. 60), but it has to

pay 500 to BMC for any additional car that it will receive (with respect to the
original demand)

# model

[...]

set AddDemand within (Cities);

var additionaldemand {AddDemand} >= 0;
[...]

subject to AdditionalDemand {i in AddDemand}:
sum {(j,i) in Link} Ship[j,i] - sum {(i,k) in Link} Ship[i,k] == DemSup[i] + additionaldemand]i];




A constrained Minimum Cost Flow Problem

# model (I/11)

set Cities;

set Origins within (Cities);

set Destinations within (Cities);
set Transfer within (Cities);

set AddDemand within (Cities);
set Link within (Cities cross Cities);
set AdditionalLink within (Link);
param Cost {Link};

param CostAct {AdditionalLink};
param Cap {Link};

param DemSup {Cities};

var Ship {Link} >=0;
var additionalservice {AdditionalLink} binary;
var additionaldemand {AddDemand} >= 0;
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A constrained Minimum Cost Flow Problem

# model (11/11)

minimize Total_Cost:

sum {(i,j) in Link} Cost[i,j] * Ship[i,jl + sum {(i,j) in AdditionallLink} CostAct[i,j] * additionalservice[i,j]
- sum {i in AddDemand} 500*(additionaldemand]i]);

subject to Supply {i in Origins}: - sum {(i,k) in Link} Ship[i,k] >= DemSup[i];
subject to Demand {i in Destinations}: sum {(j,i) in Link} Ship[j,i] - sum {(i,k) in Link} Ship[i,k] == DemSup[i];

subject to AdditionalDemand {i in AddDemand}:
sum {(j,i) in Link} Ship[j,i] - sum {(i,k) in Link} Ship[i,k] == DemSup[i] + additionaldemand(i];

subject to Capacity {(i,j) in Link}: Ship[i,j] <= Capli,jl;
subject to TransferConstr {i in Transfer}: sum {(j,i) in Link} Ship[j,i] <= DemSupli] + 30;
subject to LinkingActivation {(i,j) in AdditionalLink}: Ship[i,j] <= Capli,j]*additionalserviceli,j];
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A constrained Minimum Cost Flow Problem

# data (I/111)
data;

set Cities := Newark Jacksonville Boston Columbus Atlanta Richmond Mobile;
set Origins := Newark Jacksonville;

set Destinations := Boston Atlanta Richmond Mobile;

set Transfer := Boston;

set AddDemand := Columbus;

param: DemSup:=
Newark -200
Jacksonville -300
Boston 100
Columbus 60

Atlanta 170
Richmond 80

Mobile 70;




A constrained Minimum Cost Flow Problem

# data (11/111)

set Link := (Jacksonville, Richmond)
(Jacksonville, Atlanta)
(Jacksonville, Mobile)
(Jacksonville, Boston)
(Newark, Richmond)
(Newark, Boston)
(Newark, Atlanta)
(Mobile, Atlanta)
(Atlanta, Mobile)
(Atlanta, Columbus)
(Atlanta, Richmond)
(Columbus, Atlanta)
(Boston, Columbus);

set AdditionalLink := (Jacksonville, Boston)
(Newark, Atlanta);




A constrained Minimum Cost Flow Problem

# model (111/11)

param CostAct :=
Jacksonville, Boston 300
Newark, Atlanta 800;

param: Cost, Cap:=
Jacksonville, Richmond 50 90
Jacksonville, Atlanta 45 180
Jacksonville, Mobile 50 50
Jacksonville, Boston 50 100
Newark, Richmond 40 90
Newark, Boston 30 50
Newark, Atlanta 40 100
Mobile, Atlanta 25 100
Atlanta, Mobile 35 100
Atlanta, Columbus 40 50
Atlanta, Richmond 30 100
Columbus, Atlanta 35 100

Boston, Columbus 50 100;




A constrained Minimum Cost Flow Problem

# run

reset;

model SND.mod;

data SND.dat;

option solver cplexamp;
solve;

display Ship;

display additionaldemand;
display additionalservice;

# solution (I/Il)

ampl: include SND.run;

CPLEX 12.6.1.0: optimal integer solution; objective 16950
8 MIP simplex iterations

0 branch-and-bound nodes

additionalservice :=

Jacksonville Boston 1

Newark Atlanta 1;

# solution (l1/11)

Ship :=

Atlanta  Columbus 50
Atlanta Mobile 20
Atlanta Richmond O
Boston Columbus 30
Columbus Atlanta O
Jacksonville Atlanta 170
Jacksonville Boston 80
Jacksonville Mobile 50
Jacksonville Richmond O
Mobile  Atlanta O
Newark  Atlanta 70
Newark Boston 50
Newark Richmond 80;

additionaldemand [*] :=
Columbus 20;




An example of Multicommodity flows

Bavarian Motor Company (BMC) manufactures also City cars, and exports them in the
U.S., in addition to the Luxury cars - as previously specified. They are 100 City cars
available at the port in Newark and 50 City cars available at the port in Jacksonville. From
there both Luxury cars and City cars are transported (by rail or truck) to the five
distributors having a specific requirement of each type of car (in the next table the
additional request of City cars is specified, whereas requirements of Luxury cars are the
same as previously defined).



An example of Multicommodity flows

The problem is to determine how to transport both types of

cars along the arcs of the network to satisfy the demands at

a minimum cost, considering that for marketing reasons:

e City cars cannot use the link between Jacksonville and
Atlanta;

e The number of City cars traveling from Atlanta to
Columbus has to be at least 30% higher than the number
of cars traveling from Boston to Columbus.

Boston
Columbus
Atlanta
Richmond
Mobile
Jacksonville

Newark

25
35
40
50

0

50
-100



AMPL Main Commands:

* reset; # reset the environment
* model modelfilename.mod,; # model upload

 data datafilename.dat; # data upload

 option solver nameofsolver; # optimizer selection

* solve; # solve

* display nameofvariables; # display variables
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