Course on mathematical modelling:
AMPL and CPLEX

teacher: Giacomo Lanza

Dipartimento di Informatica, Universita di Pisa
a.a. 2019-2020

Short Introduction to AMPL

« AMPL: A Mathematical Programming Language (1985)

* AMPL is a modeling language for describing a wide range of high-
complexity large-scale optimization problems (LP, MIP, QP, NLP)

* AMPLU's (algebraic) syntax and interactive command environment are
designed to help formulate models, communicate with a wide variety
of solvers and examine solutions

e Supports both open source (CBC) and commercial (MINOS, CPLEX,
Gurobi, Xpress) solvers

. Lanza

Short Introduction to AMPL

Model

AMFL

Solver

Course

on mathematical modelling

Solution

Short Introduction to AMPL

* Its syntax is similar to the usual mathematical notation for optimization
problems (summation, mathematical functions, ...)

* Flexible: two separated files for model and data, a unique script to run
* Full Edition to pay or free for 30 days

* |t exists a free size-limited AMPL Demo Version (500 variables and 500
constraints plus objectives for linear problems) which also includes
demo packages of solvers

AMPL Installation

* https://ampl.com/try-ampl/download-a-free-demo/

* Using the Command Prompt on your pc OR using an Integrated
Development Environment (IDE) which provides a simple and
straightforward enhanced modeling interface for AMPL users (AMPL
IDE)

G. Lanza Course on mathematical modelling 5

https://ampl.com/try-ampl/download-a-free-demo/

AMPL Installation

 AMPL IDE download for Windows or AMPL IDE download for Linux

* To install: double-click the zipfile, extract the folder named
amplide.mswin32 or amplide.mswin64; this will be your AMPL folder

* To run: Inside your AMPL folder, double-click the amplide folder icon
and then double-click the amplide.exe (under Windows and Mac OS
the program will have a black cat’s-head icon)

‘AIVIPL

AMPL Installation

& AMPL IDE
File Edit Commands Window Help

% Current Directory = O & console
v G AMPL

- - - ampl:
ChlUsers\Giacomo\amplide. mswinbd |

= amplide.mswinfd
=| data.dat
=| model.mod

How does AMPL work?

Two text files (the filenames you select must be at most eight
characters followed by a three character extension):

 a model file model. mod
e a data file data.dat

Both files need to be saved in your AMPL folder!

Model file

l Problem instance

G. Lanza

How does AMPL work?

Data file

~N

AMPL

|

Solver
CPLEX / MINOS

Solution T

Course on mathematical modelling

Solution

AMPL gives us the chance to express
the algebraic representation of a
model and the values of parameters
in files: a model file and a data file.
AMPL reads the model from the .mod
file, data from the .dat file and puts
them together into a format that the
solver understands. Then, AMPL
hands over this problem instance to
the solver, which in turn, solves the
instance, and hands back the solution
to AMPL.

AMPL General Syntax: model.mod

Elements:
* Parameters
* Variables

* Obj Function
* Constraints

AMPL General Syntax: model.mod

Parameters:
* Each parameter declaration starts with the keyword param
* Single parameters are declared using the syntax “param name_parameter;”

* Indexed parameters (vector or matrix) are declared using the syntax
“param name_parameter {range},”

param name_parameter,
param name_parameter{i in 1..n};
param name_parameter{iin 1..n} {j in 1..m};

G. Lanza Course on mathematical modelling 11

AMPL General Syntax: model.mod

Variables:

* Each variable declaration starts with the keyword var
* Single variables are declared using the syntax “var name _variable;”

* Indexed variables (vector or matrix) are declared using the syntax
“var name _variable {range},”

var name_variablel;
var name_variable 2{iin 1..n}
var name_variable 3{iin 1..n} {jin 1..m};

G. Lanza Course on mathematical modelling

12

AMPL General Syntax: model.mod

The objective function:

* |s declared using the syntax “maximize name_obJ.” or “minimize name_obj.”
* The objective statement

A semi-colon

maximize name_obj: tx + sum {iin 1..n} p[iP*ylil; |

G. Lanza Course on mathematical modelling 13

AMPL General Syntax: model.mod

Constraints:

* Are declared using the syntax “subject to name_constr:”

* The equation or inequality

* A semi-colon

subject to name_constr1: sum{iin 1..n} y[i] <=t;
subject to name_ constr2{iin 1..n}: y[i] >=0;
subject to name_ constr3: x >=0;

Course on mathematical modelling

14

AMPL General Syntax: data.dat

Parameters:

* Each parameter declaration starts with the keyword param, a colon and
equal sign and the value

* If a parameter has more than one component (vector or matrix), list the
parameter index followed by the value

param name_parameterl.= 2;
param name_parameter2 ;=110

215;

G. Lanza Course on mathematical modelling

Notes about AMPL Language

* The # symbol indicates the start of a comment (everything after that symbol is
ignored)

 All lines of code must end with a semi-colon

e Variables, parameters, obj and constraints names can be anything meaningful,
made up of upper and lower case letters, digits and underscores, but must be
unique (variables, parameters, obj and constraints cannot have the same name)

* AMPL is case sensitive

How to solve a Model

Steps:

e Upload the .mod file (model model. mod)

* Upload the .dat file (data data.dat)

* [Specify a solver (option solver cplexamp)] <- optional

* Solve the problem (solve)

* display the solution

* Before reloading the model, you must first reset AMPL by typing reset

AMPL IDE Description

cv C:\WINDOWS\system32\cmd.exe

Microsoft Windows XP [Uersion 5.1.26080]
(C> Copyright 1985-20881 Microsoft Corp.

C:\Documents and Settings\escstaff >ampl_

AMPL IDE Description

& AMPL IDE
File Edit Commands Window Help

% Current Directory = O & console
v G AMPL

- - - ampl:
ChlUsers\Giacomo\amplide. mswinbd |

= amplide.mswinfd
=| data.dat
=| model.mod

AM

Text Editor (where your .mod
and .dat are displayed)

G. Lanza

°L IDE Description

& AMPLIDE
File Edit Commands Window Help
TG
‘5. Cumrent Directory = 0 B Console

v G| AMRL

C\Users\Giaco

- ampl:
matamplide.mswingd

(= amplide.
=| data.dat

=| medel.mod

.mswinGd

Course on mathematical modelling

20

AMPL IDE Description

& AMPLIDE

File Edit Commands Window Help
L
5. Current Directory = 0 B Console =4 | =% = 0
B v G AMPL
ampl:

C\Users\Giacomatamplide.mswingd

(= amplide.mswint4
|Z| data.dat
|=| model.mod

AMPL Console (where you write
AMPL instructions to solve a
problem)

Text Editor (where your .mod
and .dat are displayed)

G. Lanza Course on mathematical modelling

AMPL IDE Description

& AMPLIDE

File Edit Commands Window Help

L

5. Current Directory = 0 B Console =4 | =% = 0

B v @ AMPL
ampl:

AMPL folder (where you should

C\Users\Giacomatamplide.mswingd

(= amplide.mswint4
|Z| data.dat
|=| model.mod

save your model and data files)

AMPL Console (where you write
AMPL instructions to solve a
problem)

Text Editor (where your .mod
and .dat are displayed)

G. Lanza Course on mathematical modelling

A Simple LP Example (Chapter 2.2.1, Page 15)

G. Lanza

“Blue Ridge Hot Tubs” produces and sells two types of hot tubs: “Aqua-Spa” and
“Hydro-Lux”. The manager buys hot tub shells from a local supplier, and then adds
pumps and tubing to the shells to create hot tubs.

The resources available in the next production cycle are:
e 200 pumps;
e 2 880 feet of tubing;
e 1.566 production labor hours.
The operating requisites are:
e cach Aqua-Spa requires 12 feet of tubing and 9 hours of labor:
e cach Hydro-Lux requires 16 feet of tubing and 6 hours of labor.

The profit for the manager is 350 on each Aqua-Spa he sells and 300 on each Hydro-Lux
he sells (the manager is confident to sell each hot tub he/she produces).

The decision problem of Blue Ridge Hot Tubs can be stated in the following way: how
many Aqua-Spa and Hydro-Lux are to be produced, taking into account the limited

resources and the operating requisites, so as to maximize the profit during the next
production cycle?

Course on mathematical modelling

23

A Simple LP Example (Chapter 2.2.1, Page 15)

The overall LP model 1s therefore:

max 350x1 + 3o

r1 + o < 200
Or; + Gas =< 1,566
12z, + 16x, < 2,880
I =10
ro = ()

G. Lanza Course on mathematical modelling

A Simple LP Example: Set Definition

“Blue Ridge Hot Tubs” produces and sells two types of hot tubs: “Aqua-Spa” and
“Hydro-Lux”. The manager buys hot tub shells from a local supplier, and then adds
pumps and tubing to the shells to create hot tubs.

The resources available in the next production cycle are:

e 200 pumps;
e 2 880 feet of tubing;

e 1.566 production labor hours.

The operating requisites are:

e cach Aqua-Spa requires 12 feet of tubing and 9 hours of labor;

e cach Hydro-Lux requires 16 feet of tubing and 6 hours of labor.

G. Lanza Course on mathematical modelling

25

AMPL General Syntax: Sets

AMPL lets us define sets composed of elements with specific names and use
these names directly to index parameters and variables.

* Each set is declared with the keyword “set name_set;”

A Simple LP Example: Set Definition

“Blue Ridge Hot Tubs” produces and sells two types of hot tubs: “Aqua-Spa” and
“Hydro-Lux”. The manager buys hot tub shells from a local supplier, and then adds
pumps and tubing to the shells to create hot tubs.

The resources available in the next production cycle are:

e 200 pumps;
e 2 880 feet of tubing;

e 1.566 production labor hours.

The operating requisites are:

e cach Aqua-Spa requires 12 feet of tubing and 9 hours of labor;

e cach Hydro-Lux requires 16 feet of tubing and 6 hours of labor.

model
set Resources;
set Tubs;

G. Lanza

Course on mathematical modelling

27

A Simple LP Example: Set Definition

“Blue Ridge Hot Tubs” produces and sells two types of hot tubs: “Aqua-Spa” and
“Hydro-Lux”. The manager buys hot tub shells from a local supplier, and then adds
pumps and tubing to the shells to create hot tubs.

The resources available in the next production cycle are:

e 200 pumps;
e 2 880 feet of tubing;

e 1.566 production labor hours.

The operating requisites are:

e cach Aqua-Spa requires 12 feet of tubing and 9 hours of labor;

e cach Hydro-Lux requires 16 feet of tubing and 6 hours of labor.

model
set Resources;
set Tubs;

data

set Resources := pumps tubing laborhours;
set Tubs := aquaspa hydrolux;

G. Lanza

Course on mathematical modelling

28

A Simple LP Example: Parameters Definition

max 3o0ry + 300
I + ro < 200
Or, + 6Gxs < 1,566
< 2,

12ry + 16, < 2,880
a =1
a =)
model # data
set Resources; set Resources := pumps tubing laborhours;
set Tubs; set Tubs := aguaspa hydrolux;
G. Lanza Course on mathematical modelling 29

A Simple LP Example: Parameters Definition

— : # data
Ill:‘l-"-'-lﬂ-iu-f'l + 3002 I set Resources := pumps tubing laborhours;
r1 + o < 200 set Tubs := aquaspa hydrolux;
O + 6Baxe < 1.566 param Profit:=
12r; + 16ax, < 2,880 aquaspa 350
T >) hydrolux 300;
ra = ()

model
set Resources;
set Tubs;

param Profit{Tubs};

G. Lanza Course on mathematical modelling

A Simple LP Example: Parameters Definition

data
max 350r; + 300z set Resources := pumps tubing laborhours;
r1 + o <|200 set Tubs := aquaspa hydrolux;
O + bBaxe <]..-E-J{]Eb param Profit:=
12r, + 16ax, <|2.880 aquaspa 350
T >) hydrolux 300;
rz = 0 param Availabilities:=
pumps 200
tubing 1566
model laborhours 2880;
set Resources;
set Tubs;

param Profit{Tubs};
param Availabilities {Resources};

G. Lanza Course on mathematical modelling

A Simple LP Example: Parameters Definition

max 300y + 300z,

1 + o = 200
O9r1 + bGaxo < 1.5606
12, + 16, < 2,880
T >0
ra = ()

model
set Resources;
set Tubs;

param Profit{Tubs};
param Availabilities {Resources};
param Requirement {Resources, Tubs};

data
set Resources := pumps tubing laborhours;
set Tubs := aquaspa hydrolux;

param Profit:=
aquaspa 350
hydrolux 300;

param Availabilities:=
pumps 200
tubing 1566
laborhours 2880;

param Requirement:
aquaspa hydrolux :=
pumps 1 1
tubing 9 6
laborhours 12 16;

G. Lanza Course on mathematical modelling

32

A Simple LP Example: Variables Definition

G. Lanza

e identify the decision variables: what are the fundamental decisions that must be
made to solve the problem?

— x1: number of Agua-Spa hot tubs to produce;

— x9: number of Hydro-Lux hot tubs to produce;

model
set Resources;
set Tubs;

param Availabilities {Resources};
param Requirement {Resources, Tubs};
param Profit{Tubs};

var Quantity {Tubs};

Course on mathematical modelling

33

A Simple LP Example: Objective Definition

e state the objective function as a linear combination of the decision variables: the
manager has a profit of 350 on each Acqua-Spa he/she sells, and of 300 on each
Hydro-Lux he/she sells; therefore the total profit, to be maximized, is

max 350z + 300xs;

model
maximize Total_Profit: sum {j in Tubs} Profit[j] * Quantitylj];

G. Lanza Course on mathematical modelling

A Simple LP Example: Contstraints Definition

e state the constraints as linear combinations of the decision variables:

— only 200 pumps are available, and each hot tub requires one pump:

x1 + 9 < 200;

— only 1,566 labor hours are available, and each Aqua-Spa requires 9 labor
hours while each Hydro-Lux requires 6 labor hours:

921 + 622 < 1,566:

— only 288 feet of tubing is available, and each Aqua-Spa requires 12 feet while
each Hydro-Lux requires 16 feet:

1221 + 162 < 2,880;

model
subject to ConstrAvail {i in Resources}: sum {j in Tubs} Requirement[i,j] * Quantity[j] <= Availabilities][i];

G. Lanza Course on mathematical modelling

35

A Simple LP Example: Non-Negativity
Constraints Definition (I/I1)

G. Lanza

e nonnegativity constraints: we cannot produce a negative number of hot tubs:

xr1 >0, 9 > 0.

model
subject to non-neg {j in Tubs}: Quantity[j] >=0;

Course on mathematical modelling

36

A Simple LP Example: Non-Negativity
Constraints Definition (I/I1)

G. Lanza

e nonnegativity constraints: we cannot produce a negative number of hot tubs:

xr1 >0, 9 > 0.

model
subject to non-neg {j in Tubs}: Quantity[j] >=0;

model
set Resources;
set Tubs;

param Availabilities {Resources};
param Requirement {Resources, Tubs};
param Profit{Tubs};

var Quantity {Tubs} >= 0;

Course on mathematical modelling

37

A Simple LP Example: Model and Data Files

set Resources;
set Tubs;

param Availabilities {Resources};
param Requirement {Resources, Tubs};
param Profit{Tubs};

var Quantity {Tubs} >= 0;

maximize Total_Profit: sum {j in Tubs} Profit[j] * Quantity]j];

subject to ConstrAvail {i in Resources}:
sum {j in Tubs} Requirement[i,j] * Quantity[j] <= Availabilities[i];

data;
set Tubs := aguaspa hydrolux;
set Resources := pumps tubing laborhours;
param Availabilities:=
pumps 200
tubing 1566
laborhours 2880;
param Requirement: aquaspa hydrolux :=
pumps 1 1
tubing 9 6
laborhours 12 16;
param Profit:=
aquaspa 350
hydrolux 300;

G. Lanza Course on mathematical modelling 38

A Simple LP Example: Launching with Specific
Solver (Cplex)

Console

ampl: model BlueRidge.mod;
ampl: data BlueRidge.dat;
ampl: option solver cplexamp;
ampl: solve;

A Simple LP Example: Launching with Specific

Solver (Cplex)

Solver message

G. Lanza

Console

ampl: model BlueRidge.mod;
ampl: data BlueRidge.dat;
ampl: option solver cplexamp;
ampl: solve;

CPLEX 12.6.1.0: optimal solution found.

2 iterations, objective 66100
2 MIP simplex iterations
0 branch-and-bound nodes

Course on mathematical modelling

40

A Simple LP Example: Launching with Specific

Solver (Cplex)

Solver message (algorithm used,

type of soluiton, obj value,
iterations of the algorithm)

G. Lanza

Console

ampl: model BlueRidge.mod;
ampl: data BlueRidge.dat;
ampl: option solver cplexamp;
ampl: solve;

CPLEX 12.6.1.0: optimal solution found.

2 iterations, objective 66100
2 MIP simplex iterations
0 branch-and-bound nodes

Course on mathematical modelling

41

A Simple LP Example: Launching with Default
Solver (Minos)

Console

ampl: model BlueRidge.mod;
ampl: data BlueRidge.dat;
ampl: solve;

MINQOS 5.51: optimal solution found.
2 iterations, objective 66100

A Simple LP Example: Display Solution

Console

ampl: model BlueRidge.mod;
ampl: data BlueRidge.dat;
ampl: option solver cplexamp;
ampl: solve;

CPLEX 12.6.1.0: optimal solution found.
2 iterations, objective 66100

2 MIP simplex iterations

0 branch-and-bound nodes

ampl: display Quantity;

A Simple LP Example: Display Solution

Values of Variables

G. Lanza

Console

ampl: model BlueRidge.mod;
ampl: data BlueRidge.dat;
ampl: option solver cplexamp;
ampl: solve;

CPLEX 12.6.1.0: optimal solution found.

2 iterations, objective 66100
2 MIP simplex iterations
0 branch-and-bound nodes

ampl: display Quantity;
Quantity [*] :=
aquaspa 118

hydrolux 76;

Course on mathematical modelling

44

A Simple LP Example: changing Parameters

max J20x; + 300x2
T + Ta < 200
9r1 + 6Gx2 < 1,566 (1.520)
12z1 + 162 < 2,880 (2.650)
T1 . xra2 =)

G. Lanza Course on mathematical modelling

45

A Simple LP Example: changing Parameters

set Resources;
set Tubs;

param Availabilities {Resources};
param Requirement {Resources, Tubs};
param Profit{Tubs};

var Quantity {Tubs} >= 0;

maximize Total_Profit: sum {j in Tubs} Profit[j] * Quantity]j];

subject to ConstrAvail {i in Resources}:

sum {j in Tubs} Requirement[i,j] * Quantity[j] <= Availabilities[i];

data;
set Tubs := aguaspa hydrolux;
set Resources := pumps tubing laborhours;

pumps 200
tubing 1520 #1556
borhours 2650; #2650

Fement: aquaspa hydrolux :=

pumps 1 1
tubing 9 6
laborhours 12 16;
param Profit:=
aquaspa 350
hydrolux 300;

G. Lanza Course on mathematical modelling 46

A Simple LP Example: Display Solution

Console

ampl: reset;

ampl: model BlueRidge.mod

ampl: data BlueRidge.dat

ampl: option solver cplexamp;

ampl: solve;

CPLEX 12.6.1.0: optimal solution; objective
64305.55556

3 dual simplex iterations (1 in phase |)
ampl: display Quantity;

Quantity [*] :=

aquaspa 116.944

hydrolux 77.9167;

A Simple LP Example: Integer Version

max 320z, + 300z
T1 + T < 200
9r1 + 6Gx2 < 1,566 (1.520)
12z1 + 162 < 2,880 (2.650)
T1 . x2 = ()

Ty . T2 Integer

G. Lanza Course on mathematical modelling

48

A Simple LP Example: Model and Data Files

set Resources;
set Tubs;

param Availabilities {Resources};
param Requirement {Resources, Tubs};
param Profit{Tubs};

var Quantity {Tu
maximize Total_Profit: sum {j in Tubs} Profit[j] * Quantity[j];

subject to ConstrAvail {i in Resources}:
sum {j in Tubs} Requirement[i,j] * Quantity[j] <= Availabilities[i];

data;
set Tubs := aguaspa hydrolux;
set Resources := pumps tubing laborhours;
param Availabilities:=
pumps 200
tubing 1520
laborhours 2650;
param Requirement: aquaspa hydrolux :=
pumps 1 1
tubing 9 6
laborhours 12 16;
param Profit:=
aquaspa 350
hydrolux 300;

G. Lanza Course on mathematical modelling 49

A Simple LP Example: Display Solution

Console

ampl: reset;

ampl: model BlueRidge.mod
ampl: data BlueRidge.dat
ampl: option solver cplexamp;
ampl: solve;

CPLEX 12.6.1.0: optimal integer solution;
objective 64100

2 MIP simplex iterations

0 branch-and-bound nodes
ampl: display Quantity;
Quantity [*] :=

aquaspa 118

hydrolux 76;

AMPL Main Commands:

* reset; # reset the environment
* model modelfilename.mod,; # model upload

 data datafilename.dat; # data upload

 option solver nameofsolver; # optimizer selection

* solve; # solve

* display nameofvariables; # displays variables

G. Lanza Course on mathematical modelling 51

