
Business Processes Modelling
MPB (6 cfu, 295AA)

Roberto Bruni
http://www.di.unipi.it/~bruni

06 - Event-driven Process Chains

 1

http://www.di.unipi.it/~bruni

Object

2

We overview the EPC notation

Ch.4.3 of Business Process Management: Concepts, Languages, Architectures

Petri Net Transformations for Business Processes – A Survey 53

Legend

Start u V

XOR

V

f

t

e

m

l

V

XOR

XOR

XOR

Finish
image

Create
thumbnail

Evaluate

Send
image

Send link

Image
sent

Link sent

redo

Image too big

Image small enough

thumbnail failed

finish failed

XOR

XOR

V

V V

VXOR-split –
Exclusive choice

XOR-join –
Simple merge

AND-split –
Parallel split

OR-split –
Multi-choice

AND-join –
Synchronization

OR-join –
Gen. Sync. Merge

Simple flow – Sequence

function functionevent

Start event End event

Fig. 4. The example process as an EPC

Three types of EPC objects can be used to model the control-flow aspect
of a process: functions, events, and connectors. In a natural way, these types
correspond to the BPMN activities, events, and gateways. However, EPCs do
not allow for exceptions, and it supports only a limited set of connectors, which
is shown by Fig. 4. Apart from the full set of connectors, this figure also shows an
the example process as an EPC, and it relates the object types to the workflow
patterns explained in Section 2.2.

4.2 Transformation Challenges

A main challenge in EPCs is the semantics of the constructs that support the
‘Simple Merge’ and ‘General Synchronizing Merge’ patterns, viz. the XOR-join
connector and the OR-join connector. Everybody agrees that the XOR-join con-
nector should be enabled if one of its inputs is enabled, but this agreement is
lacking in case more than one inputs is enabled. Some say that the XOR-join
should be executed for every single enabled input, while others say that the
connector should block if multiple inputs are enabled. An even bigger problem
is the OR-join connector, for which a definitive semantics has lead to exten-
sive discussions in literature and to different solutions, all of which fail for some
EPCs [17,18,19]. As a result, not everybody will agree on a given mapping, as
not everyone will agree with the semantics used by it.

Furthermore, an EPC allows for multiple start events and multiple final
events, but not all combinations of these events are possible. Although the pro-
cess designer might know the possible combinations, an EPC does not contain
this information.

Event-driven Process Chain

3

Definition: An Event-driven process chain (EPC)
is an ordered graph of events and functions.
It provides various connectors that allow alternative
and parallel execution of processes.
Furthermore it is specified by the usages of logical
operators, such as OR, AND, and XOR.

A major strength of EPC is claimed to be its
simplicity and easy-to-understand notation.
This makes EPC a widely acceptable technique to
denote business processes.

EPC in a nutshell

4

Flow-chart language that can be used:
to configure an Enterprise Resource Planning implementation
to drive the modelling, analysis, redesign of business process

Informal notation (no "legenda'' needed):
simple, minimal, intuitive and easy-to-understand

XML interchange format:
EPC Markup Language (.epml)

EPC origin (early 1990’s)

5

EPC method originally
developed as part of a holistic

modelling approach called
ARIS framework

(Architecture of Integrated
Information Systems)

by Wilhelm-August Scheer

EPC Diagrams

6

Why do we need diagrams?

7

Graphical languages communicate concepts

Careful selection of symbols
shapes, colors, arrows

(the alphabet is necessary for communication)

Greatest common denominator of the people involved

Intuitive meaning
(verbal description, no math involved)

8

Why do we need diagrams?

Keep it simple!

9 (OpenAI ChatGPT generated)

EPC informally

10

An EPC is a graph of events and functions

It provides some logical connectors that allow
alternative and parallel execution of processes

(AND, XOR, OR)

Events

11

Any EPC diagram must start / end with event(s)

Graphical representation: hexagons

Passive elements used to describe
under which circumstances a process (or a function) works

or which state a process (or a function) results in
(like pre- / post-conditions)

Functions

12

Any EPC diagram may involve several functions

Graphical representation: rounded rectangles

Active elements used to describe
the tasks or activities of a business process

Functions can be refined to other EPC diagrams

Logical connectors

13

Any EPC diagram may involve several connectors

Graphical representation: circles (or also octagons)

Elements used to describe
the logical relationships between split/join branches

AND ORXOR

Logical connectors:
logical symbols

14

∧

∨

X

AND

XOR

OR

=

=

=

Control flow

15

Any EPC diagram may involve several connections

Graphical representation: dashed arrows

Control flow is used to connect
events with functions and connectors
by expressing causal dependencies

Logical connectors:
splits and joins

16

Splits

AND
XOR
OR

AND
XOR
OR

Joins

EPC ingredients
at a glance

17

EPC Diagrams:
Requirements

18

EPC diagrams:
requirements

19

EPC elements can be combined in a fairly free manner
(possibly including cycles)

The graph must be weakly connected (e.g., no isolated nodes)

Events have at most one incoming and one outgoing arc
Events have at least one incident arc

There must be at least one start event and one end event

Functions have exactly one incoming and one outgoing arc

Connectors have either one incoming arc and multiple outgoing arcs
or viceversa (multiple incoming arcs and one outgoing arc)

Weak connectivity

20

Weakly connected Non weakly connected

Event connectivity

21

OK

OK

OK NO

NO

NO

Function connectivity

22

NO

OK

NO NO

NO

NO

Split/Join connectivity

23

NO

NO

NO OK

OK

NO

AND
XOR
OR

AND
XOR
OR

AND
XOR
OR

AND
XOR
OR

AND
XOR
OR

AND
XOR
OR

24

EPC: Example (yEd)

https://www.yworks.com/products/yed

EPC: Example (VP online)

25

Travel request

Receive dates

Book Hotel Book Flight

is car needed?

Book Car

Confirm Cancel

Change dates

Success Failure

∧

∨

X

AND

XOR

OR

=

=

=

https://online.visual-paradigm.com/diagrams/features/epc-diagram-tool/

26

EPC: Example (ARIS Express)
Purchase order process "MyFavoriteBookExpress.com"

http://www.ariscommunity.com/aris-express

A taste of EPML

27

that she wants to buy. This is modelled via a function element. It is a
syntactical constraint of EPCs that functions and events have to alternate.
The subsequent event triggers a loop that is modelled via a cycle between two
xor elements. The loop continues until all products of the list have been
found and added to the shopping cart. Finally, all products have been added
to the shopping cart. A processInterface element Continue with order
process points to a continuing process.

Figure 3 also illustrates the EPML representation of this EPC process.
The root tag of every EPML file is epml and it must belong to the EPML
namespace. In the example the directory tag contains one EPC model which
has the name Online shopping and the id attribute set to 1. The EPC element
serves as a container of an unordered set of EPC control flow elements. All

All
Products
in Cart

Not all
Products
in Cart

Add Product to
Shopping Cart

Online Shopping

Search
Product

Not all
Products
in Cart

Product
found

Determine
List of Products

Start Online
Shopping

<?xml version ="1.0" encoding ="UTF-8"?>
<epml:epml xmlns:epml ="http://www.epml.de">

<coordinates
xOrigin ="leftToRight"
yOrigin ="topToBottom "/>

<directory name ="Root">

<epc epcId ="1"
name ="Online Shopping ">

<event id ="1">
<name>Start Online Shopping</name>

</event>

<arc id ="10">
<flow source ="1" target ="2"/>

</arc>

<function id ="2">
<name>Determine List of Products</name>

</function >

<arc id ="11">
<flow source ="2" target ="3"/>

</arc>

<event id ="3">
<name>Not all Products in Cart</name>

</event>

<arc id ="12">
<flow source ="3" target ="4"/>

</arc>

<xor id ="4"/>

<arc id ="13">
<flow source ="4" target ="5"/>

</arc>

...

<processInterface id ="111">
<name>Continue with Order Process</name>

...

</processInterface >

</epc>

</directory>

</epml:epml>

Continue
with Order

Process

Fig. 3 Flat EPC in graphical and EPML representation

EPC markup language (EPML): an XML-based interchange format 253

Jan Mendling Æ Markus Nüttgens

EPC markup language (EPML): an XML-
based interchange format for event-driven
process chains (EPC)

Published online: 22 October 2005
! Springer-Verlag 2005

Abstract This article presents an XML-based interchange format for event-
driven process chains (EPC) that is called EPC markup language (EPML).
EPML builds on EPC syntax related work and is tailored to be a serializa-
tion format for EPC modelling tools. Design principles inspired by other
standardization efforts and XML design guidelines have governed the
specification of EPML. After giving an overview of EPML concepts we
present examples to illustrate its features including flat and hierarchical
EPCs, business views, graphical information, and syntactical correctness.

1 Introduction

Today business process modelling is mainly used in two different contexts:
business analysts use process models for documentation purposes, process
optimization and simulation; information system analysts use them on the
middleware tier in order to glue together heterogeneous systems. For both

J. Mendling (&)
Department of Information Systems and New Media,
Vienna University of Economics and Business Administration,
1180 Vienna, Austria
E-mail: jan.mendling@wu-wien.ac.at

M. Nüttgens
Chair of Information Systems, University of Hamburg,
20146 Hamburg, Germany
E-mail: Markus.Nuettgens@wiso.uni-hamburg.de

ISeB (2006) 4: 245–263
DOI 10.1007/s10257-005-0026-1

ORIGINAL PAPER

EPC Diagrams:
Guidelines

28

EPC Diagrams: guidelines

29

Other constraints are sometimes imposed

Unique start / end event

No direct flow between two events
No direct flow between two functions

No event is followed by a decision node
(i.e. (X)OR-split)

EPC guidelines: Example

30

multiple end events

direct flow between
functions

Problem with guidelines

31

From empirical studies:
guidelines are too restrictive and people ignore them

(otherwise diagrams would get unnecessarily complicated,
more difficult to read and understand)

Solution:
It is safe to drop most constraints

(implicit dummy nodes might always be added later, if needed)

EPC: repairing alternation

32

add dummy
functions

to guarantee
alternation

EPC: repairing alternation

33

add dummy
events

to guarantee
alternation

34

XOR

add dummy nodes
to guarantee

no event be followed
by a decision node

((X)OR-split)

EPC: repairing decisions

XOR

EPC: repairing multiple
start events

35

A start event is an event with no incoming arc
it invokes a new instance of the process template

Start events are mutually exclusive

Start1 Start2

XOR

assume an
implicit

XOR split
is present

Start1 Start2

EPC: repairing multiple
end events

36

An end event is an event with no outgoing arc
it indicates completion of some activities

What if multiple end events occur? No unanimity!
they are followed by an implicit join connector

(typically a XOR… but not necessarily so)

End1 End2

AND?
XOR?
OR?

assume an
implicit

join
is present

End1 End2

Other ingredients:
function annotations

37

Organization unit:
determines the person or organization
responsible for a specific function
(ellipses with a vertical line)

Supporting system: technical support
(rectangles with vertical lines on its sides)

Information, material, resource object:
represents objects in the real world
e.g. input data or output data for a function
(rectangles linked to function boxes)
angles with vertical lines on its sides)

Question time:
which connectors?

38

?

?

Question time:
which connectors?

39

?

?

Question time: what's wrong?

40

EPC Semantics

41

EPC intuitive semantics

42

A process starts when some initial event(s) occurs

The activities are executed according to the
constraints in the diagram

When the process is finished,
only final events have not been dealt with

If this is always the case, then the EPC is “correct”

Folder-passing semantics

43

The current state of the process is determined by
placing folders over the diagram

A transition relation explains how to move from one
state to the next state

The transition relation is possibly nondeterministic

Folder-passing
semantics: events

44

an event an event

Folder-passing
semantics: functions

45

a function a function

Folder-passing
semantics: AND-split

46

AND AND

Folder-passing
semantics: AND-join

47

AND AND

Folder-passing
semantics: XOR-split

48

XOR

XOR

XOR

XOR join: intended meaning

49

XOR

if both inputs arrive,
it should block the flow

if one input arrives,
it cannot proceed unless

it is informed that
the other input will never arrive

Folder-passing
semantics: XOR-join

50

XOR XOR

XOR XOR

Folder-passing semantics?

51

How can we infer the absence of folders?

When and how should such information be
propagated?

Absence of folders:
creation

52

XOR

XOR

XOR

53

a function a function

Absence of folders:
propagation (example)

Folder-passing
semantics: OR-split

54

OR OR

OR

OR

OR join: intended meaning

55

OR

if only one input arrives,
it should release the flow

if both inputs arrive,
it should release only one output

if one input arrives,
it must wait until the other arrives or

it is guaranteed that the other will never arrive

Folder-passing
semantics: OR-join?

56

OR OR

A vicious circle?

57

4 A conceptual problem

Figure 2 shows another EPC3 with two OR-joins in a feedback loop, which is a vicious

circle, as we will see. With the above mentioned fixed-point interpretation, the semantics

of [NR02] is that the process folders are stuck at f1 and f2. The two OR-joins will not

propagate the process folders to the Inner events.

Start1

Stop1

Inner2

Start2

Stop2

Inner1

f1

f’1 f’2

f2

Figure 2: A vicious circle

Is this the intended semantics of this EPC? We will argue that it is not. To this end, we

consider the OR-join above the Inner1 event. Since the Inner2 event will never occur, we

know that no process folder will ever arrive at the other incoming arc of the OR-join. So,

according to the informal semantics, the OR-join should propagate the process folder from

f1 to the event Inner1. Symmetrically, we can argue that the process folder from f2 should

be propagated to Inner2. So, we have shown that the process folders should not be delayed

at f1 and f2 according to the informal semantics of EPCs.

Is this the intended semantics of this EPCs? Again, we will argue that it is not. We will

argue that the OR-joins should not propagate the process folders from f1 and f2. To this

end, we consider the OR-join before the Inner1 event again. Since Inner2 will eventually

occur, we know that eventually there will be a process folder arriving at the second incom-

ing arc. According to the informal semantics, this implies that the OR-join should wait

with the propagation of the process folder until the second folder arrives. Symmetrically,

we can argue that the process folder from f2 should not be propagated. So, we know that

the process folders should be delayed at f1 and f2 according to the informal semantics of

EPCs.

3Rump [Rum99] gives a similar example. But his point is that, in some situations, OR-joins may result in a

deadlock. Here, we argue that the situation is much worse: the intuitive semantics of EPCs fails.

4

Decorated EPC

58

To remove ambiguous behaviour for join connectors,
designers can further annotate EPC diagrams

In particular we require to know:

corresponding split
which node separated the flows we are joining

(in the case of XOR/OR join)

applicable policy
how to trigger outgoing flow

(avoid OR join ambiguous behaviour)

Candidate split

59

A candidate split for a join node is any split node
whose outputs are connected to the inputs of the join

XOR

OR

XOR

XOR

s1

s2

j1

j2

s1

s1 is a candidate split for j1

s1 and s2 are candidate splits for j2

Corresponding split

60

A corresponding split for a join node
is a chosen candidate split

we choose s1 as a
corresponding split for j1

we choose s2 as a
corresponding split for j2

XOR

OR

XOR

XOR

s1

s2

j1 (s1)

j2 (s2) (we tag each join
with its corresponding split)

Matching split

61

A corresponding split for a join node is called matching
if it has the same type as the join node

s1 is a matching split for j1

s2 is not a matching split for j2

XOR

OR

XOR

XOR

s1

s2

j1 (s1)

j2 (s2)

OR join: policies

62

If an OR join has a matching split, its semantics is
wait-for-all: wait for the completion of all activated paths

Otherwise, also other policies can be chosen:

every-time: trigger the outgoing path on each input

first-come: wait for the first input and ignore the second

Assumption: every OR join is tagged with a policy
(some suggested to have different trapezoid symbols)

Example

63

two OR joins
but no OR split

Example

64

only one
candidate split

Example

65

two candidate
splits

Example

66

assign corresponding splits

Example

67

assign policies

wfa

fc

Assumption

68

An OR join with matching split uses wfa

If an OR join has non-matching corresponding split
it is decorated with a policy (wfa, fc, et)

wfa: wait-for-all
works well with any corresponding split

et: every-time
fc: first-come

work well with corresponding XOR split

XOR join: assumption

69

If a XOR join has a matching split, the semantics is:
“it blocks if both paths are activated and
it is triggered by a unique activated path”

Any policy (wait-for-all, first-come, every-time)
contradicts the exclusivity of XOR

(a token from one path can be accepted only if we make
sure that no second token will arrive via the other path)

Assumption: every XOR join has a matching split
(the implicit start split is allowed as a valid match)

EPC Sample Diagrams

70

Example: any comment?

71

Petri Net Transformations for Business Processes – A Survey 53

Legend

Start u V
XOR

V

f

t

e

m

l

V

XOR

XOR

XOR

Finish
image

Create
thumbnail

Evaluate

Send
image

Send link

Image
sent

Link sent

redo

Image too big

Image small enough

thumbnail failed

finish failed

XOR

XOR

V

V V

VXOR-split –
Exclusive choice

XOR-join –
Simple merge

AND-split –
Parallel split

OR-split –
Multi-choice

AND-join –
Synchronization

OR-join –
Gen. Sync. Merge

Simple flow – Sequence

function functionevent

Start event End event

Fig. 4. The example process as an EPC

Three types of EPC objects can be used to model the control-flow aspect
of a process: functions, events, and connectors. In a natural way, these types
correspond to the BPMN activities, events, and gateways. However, EPCs do
not allow for exceptions, and it supports only a limited set of connectors, which
is shown by Fig. 4. Apart from the full set of connectors, this figure also shows an
the example process as an EPC, and it relates the object types to the workflow
patterns explained in Section 2.2.

4.2 Transformation Challenges

A main challenge in EPCs is the semantics of the constructs that support the
‘Simple Merge’ and ‘General Synchronizing Merge’ patterns, viz. the XOR-join
connector and the OR-join connector. Everybody agrees that the XOR-join con-
nector should be enabled if one of its inputs is enabled, but this agreement is
lacking in case more than one inputs is enabled. Some say that the XOR-join
should be executed for every single enabled input, while others say that the
connector should block if multiple inputs are enabled. An even bigger problem
is the OR-join connector, for which a definitive semantics has lead to exten-
sive discussions in literature and to different solutions, all of which fail for some
EPCs [17,18,19]. As a result, not everybody will agree on a given mapping, as
not everyone will agree with the semantics used by it.

Furthermore, an EPC allows for multiple start events and multiple final
events, but not all combinations of these events are possible. Although the pro-
cess designer might know the possible combinations, an EPC does not contain
this information.

Example:
comments?

72

Example:
comments?

73

Example:
comments?

74

Example:
comments?

75

4.3 Event-driven Process Chains 163

Order is
received

Analyze
order

XOR

Order is
accepted

Order is
rejected

Check Stock

XOR

Products in
stock

Products not
in stock

XOR

Ship
products

Products
are shipped

Send bill

Bill is sent

Check for
open bills

XOR

Open bills
present

V

Purchase
raw material

Raw
material is
available

Plan
production

Production
plan

available

V

Manufacture
products

Products
are

available

Open bills
not present

XOR

Get
payment

Process
completed

Fig. 4.35. Example event-driven process chain

While most constructs of event-driven process chains can be explained in this
example, the process is a severe simplification of real-world ordering processes.

While the process aspect in terms of the functions and events that occur in
business processes is well captured by event-driven process chains, there are
other types of diagrams that abstract from the relatively fine-granular level
of event-driven process chains.

Example: any comment?

76

166 4 Process Orchestrations

Customer

Enter order

Marketing and
Sales

Analyze order

V

Incoming
Logistics

Enter raw
material order

Supplier

Process
order

V

Operations

Plan
Manufacturing

V

Incoming
Logistics

Pay

Supplier

Receive
payment

Operations

Manufacture
item

Outgoing
Logistics

Ship item

Customer

Accept item

Customer

Ship amount

Marketing and
Sales

Receive
payment

Receive
material Operations

Fig. 4.38. Sample function flow

products are in stock or the products are not in stock and need to be manu-
factured.

Order is
accepted

Check Stock

Order
Document

Stock
status

Check
Result

Operations

XOR

Products in
stock

Products not
in stock

Data or
material

Organizational
entity responsible

Fig. 4.39. Example of extended event-driven process chain

Example:
comments?

77
subsequent process; hierarchical functions point from a function to a refining
sub-process. Keller and Teufel (1998), Rump (1999), and van der Aalst
(1999) provide formal approaches towards EPC syntax definition. Building
on this work, Nüttgens and Rump (2002) introduce the concepts of a flat

Event

Function

Process Interface

Connectors

Control Flow Arc

EPC Symbols

Participant

Application

Data

Relation

St art

List
requirements

Requirements
verified

Specification

Specification
verified

Additional
Requirements

found

Design

Design
verified

Ne w
Design Aspect

found

Implementation

Implementation
tested

New
Implementation
aspect found

Integration

Integration
tested

New
Integration

aspect found

Start

Interview
Potential

User

Requirements
verified

Further
Interviews

needed

Analyst

Minute

Waterfall Model EPC List Requirements EPC

Fig. 1 Event-driven process chains representing the waterfall model for software engi-
neering

EPC markup language (EPML): an XML-based interchange format 247

Jan Mendling Æ Markus Nüttgens

EPC markup language (EPML): an XML-
based interchange format for event-driven
process chains (EPC)

Published online: 22 October 2005
! Springer-Verlag 2005

Abstract This article presents an XML-based interchange format for event-
driven process chains (EPC) that is called EPC markup language (EPML).
EPML builds on EPC syntax related work and is tailored to be a serializa-
tion format for EPC modelling tools. Design principles inspired by other
standardization efforts and XML design guidelines have governed the
specification of EPML. After giving an overview of EPML concepts we
present examples to illustrate its features including flat and hierarchical
EPCs, business views, graphical information, and syntactical correctness.

1 Introduction

Today business process modelling is mainly used in two different contexts:
business analysts use process models for documentation purposes, process
optimization and simulation; information system analysts use them on the
middleware tier in order to glue together heterogeneous systems. For both

J. Mendling (&)
Department of Information Systems and New Media,
Vienna University of Economics and Business Administration,
1180 Vienna, Austria
E-mail: jan.mendling@wu-wien.ac.at

M. Nüttgens
Chair of Information Systems, University of Hamburg,
20146 Hamburg, Germany
E-mail: Markus.Nuettgens@wiso.uni-hamburg.de

ISeB (2006) 4: 245–263
DOI 10.1007/s10257-005-0026-1

ORIGINAL PAPER

Exercises

78

Search for EPC diagram drawing software products.
For each product found, annotate the following features:

1) which OS is supported? (Windows, Apple, Linux,...)

2) is it free? if not, describe its pricing.

3) is .epml format supported?

4) if you install the product, rate your user experience / usability
 (on the scale 1-5 stars)

Send your findings to: bruni@di.unipi.it

mailto:bruni@di.unipi.it

Exercises

79

Transfer the following verbal description into an EPC diagram

You are tasked with modeling the Customer Order Process of a small
e-commerce company.
The process starts when a customer places an order online and ends
when the order is successfully delivered.
The process must involves at least the following activities:
checking if the items are available in stock,
a notification to the customer if the items are not available,
the preparation of the order for shipment,
and the processing of the payment.

Send your solutions to: bruni@di.unipi.it

mailto:bruni@di.unipi.it

