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Object
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We give a matrix-based representation of Petri 
nets and their computations 



Key point
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The change of the numbers of tokens on a place p 
caused by the firing of the transition t does not 

depend on the current marking 
!

It is entirely determined by the net 
(i.e., by the flow relation) 

!
Let us have a look at the relative changes for 

every place and transition...



How p relates to t
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(p, t) 62 F and (t, p) 62 F

Place p and transition t are completely unrelated:

• p has no influence on the enabling of t

• firing t does not change the number of tokens in p

p

t



How p relates to t
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(p, t) 2 F and (t, p) 62 F

• one token in p is needed to enable t

• firing t reduces by one the number of tokens in p

p

t



How p relates to t
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(p, t) 62 F and (t, p) 2 F

• firing t increases by one the number of tokens in p

p

t



How p relates to t
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(p, t) 2 F and (t, p) 2 F

• one token in p is needed to enable t

• firing t does not change the number of tokens in p

p

t



Incidence matrix
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Let N = (P, T, F ) be a net.

Its incidence matrix N : (P ⇥ T ) ! {�1, 0, 1} is defined as:

N(p, t) =

8
<

:

0 if (p, t) 62 F ^ (t, p) 62 F or (p, t) 2 F ^ (t, p) 2 F
�1 if (p, t) 2 F ^ (t, p) 62 F
+1 if (p, t) 62 F ^ (t, p) 2 F



Matrix view
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Column vector tj
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Row vector pi
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Example: vending 
machine
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Example: vending 
machine
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!
refill 

dispense 
candy 

insert 
coin 

accept 
coin 

reject 
coin 

candy storage 1 -1

request for refill -1 1

ready for coin 1 -1 1

holding 1 -1 -1

ready to dispense -1 1

t1

p1

p2

p3

p4

p5

t2 t3 t4 t5



Vectors: notation
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Let E = {e1, e2, ..., en} be a finite set of elements.

Any mapping v : E � Q (or to N, Z,...) can be regarded as a vector:

v = [ v(e1), v(e2), ..., v(en) ]

We do not use di�erent symbols for row and columns vectors:

v =

�

⇧⇧⇧⇤

v(e1)
v(e2)
...

v(en)

⇥

⌃⌃⌃⌅



Marking as a vector
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Any marking M : P � N corresponds to a vector:

M = [ M(p1) M(p2) ... M(pn) ]

M0 = [ 4  0  1  0  0 ]



Firing, in vector notation
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M0
t3�⇥ M1 = 4p1 + p4

M0�

⇧⇧⇧⇧⇤

4
0
1
0
0

⇥

⌃⌃⌃⌃⌅
+

t3�

⇧⇧⇧⇧⇤

0
0

�1
1
0

⇥

⌃⌃⌃⌃⌅
=

M1�

⇧⇧⇧⇧⇤

4
0
0
1
0

⇥

⌃⌃⌃⌃⌅



Firing, in vector notation
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M0
t3�⇥ M1

t4�⇥ M2
t2�⇥ M3

M0�

⇧⇧⇧⇧⇤

4
0
1
0
0

⇥

⌃⌃⌃⌃⌅
+

t3�

⇧⇧⇧⇧⇤

0
0

�1
1
0

⇥

⌃⌃⌃⌃⌅
=

M1�

⇧⇧⇧⇧⇤

4
0
0
1
0

⇥

⌃⌃⌃⌃⌅
+

t4�

⇧⇧⇧⇧⇤

0
0
0

�1
1

⇥

⌃⌃⌃⌃⌅
=

M2�

⇧⇧⇧⇧⇤

4
0
0
0
1

⇥

⌃⌃⌃⌃⌅
+

t2�

⇧⇧⇧⇧⇤

�1
1
1
0

�1

⇥

⌃⌃⌃⌃⌅
=

M3�

⇧⇧⇧⇧⇤

3
1
1
0
0

⇥

⌃⌃⌃⌃⌅



Vectors: notation
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Let v,w be two vectors over E

We write v � w if v(e) � w(e) for any e ⇥ E

We write v < w if v � w and v(e) < w(e) for some e ⇥ E

We let 0 denote any vector of any length whose entries are all 0

We write v � w if v(e) < w(e) for any e ⇥ E



Products

22

Let x,y be two vectors of equal length n (written |x| = |y| = n)

We define their scalar product by

x · y =
n⌥

i=1

xiyi

[x1 x2 ... xn ] ·

�

⇧⇧⇧⇤

y1
y2
...
yn

⇥

⌃⌃⌃⌅
= x1y1 + x2y2 + ...+ xnyn



Products: example
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�
0 1 �1 0 1

⇥
·

⇤

⌥⌥⌥⌥⇧

1
1
2
0
1

⌅

����⌃
= (0·1)+(1·1)+(�1·2)+(0·0)·(1·1) = 0+1�2+0+1 = 0+



Products
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Let x1,x2, ...,xk,y be all vectors of equal length

Let X be a (k � n)-matrix whose i-th row is xi

We define the product X · y as the (column) vector where

(X · y)i = xi · y

�

⇧⇧⇧⇤

x1

x2
...
xk

⇥

⌃⌃⌃⌅
·

�

⇧⇧⇧⇤

y1
y2
...
yn

⇥

⌃⌃⌃⌅
=

�

⇧⇧⇧⇤

x1 · y
x2 · y

...
xk · y

⇥

⌃⌃⌃⌅



Products: example
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�

⇧⇧⇧⇧⇤

1 �1 0 0 0
�1 1 0 0 0
0 1 �1 0 1
0 0 1 �1 �1
0 �1 0 1 0

⇥

⌃⌃⌃⌃⌅
·

�

⇧⇧⇧⇧⇤

1
1
2
0
1

⇥

⌃⌃⌃⌃⌅
=

�

⇧⇧⇧⇧⇤

1� 1
�1 + 1
1� 2 + 1
2� 1
�1

⇥

⌃⌃⌃⌃⌅
=

�

⇧⇧⇧⇧⇤

0
0
0
1

�1

⇥

⌃⌃⌃⌃⌅



Products
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Let x,y1,y2, ...,yk be all vectors of equal length

Let Y be a (n� k)-matrix whose i-th column is yi

We define the product x · Y as the (row) vector where

(x · Y )i = x · yi

[x1 x2 ... xn ] · [y1 y2 ... yk ] = [ x · y1 x · y2 ... x · yk ]



Products
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Let x1,x2, ...,xk,y1,y2, ...,yh be all vectors of equal length

Let X be a (k � n)-matrix whose i-th row is xi

Let Y be a (n� h)-matrix whose j-th column is yj

We define the product X · Y as the (k � h)-matrix where

(X · Y )i,j = xi · yj

�

⇧⇧⇧⇤

x1

x2
...
xk

⇥

⌃⌃⌃⌅
· [y1 y2 ... yh ] =

�

⇧⇧⇧⇤

x1 · y1 x1 · y2 ... x1 · yh

x2 · y1 x2 · y2 ... x2 · yh
...

...
...

xk · y1 xk · y2 ... xk · yh

⇥

⌃⌃⌃⌅



Vector perspective
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Let P = { p1, ..., pn } and T = { t1, ..., tm } 
!

The net (P,T,F) can be seen as a matrix (n x m) 
!

A marking is a vector of length n 
!

But we miss an ingredient: 
can a firing be seen as a vector? 

can a firing sequence be seen as a vector? 
(of limited length)



Parikh vectors of 
transition sequences
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Let N = (P, T, F ) be a net and � 2 T ⇤
a finite sequence of transitions.

The Parikh vector

~� : T ! N

of � maps every t 2 T to the number of its occurrences in �.



Parikh vector of a firing
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As a special case, for a sequence � = t (one single transition):

⇥t = [ 0 ... 0 1 0 ... 0 ]
t1 t tm



Parikh vector: example
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M0 = 4p1 + p3

M0
�=t3t5t3t4t2���������⇥ 3p1 + p2 + p3 ⇥� = [ 0 1 2 1 1 ]

M0
��=t3t4t2t3t4t2t3t5t3��������������⇥2p1 + 2p2 + p4 ⇥�� = [ 0 2 4 2 1 ]



First fact
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0
0
1
0
0

N · �tj = tj

�tjt1
p1

pn

t1

tm

tm

tj

tj



Second fact
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N · �tj = tj

If M
t�⇥ M � then M � = M + t

If M
t�⇥ M � then M � = M +N · �t



Third fact
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N · �tj = tj

If M
t�⇥ M � then M � = M + t

If M
t�⇥ M � then M � = M +N · �t



Marking equation lemma
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Lemma: If M
��⇥ M � then M � = M +N · ⇥�

The proof is by induction on the length of ⇥

base (⇥ = �): and therefore M � = M . The equality hold trivially, because ⇤⇥ = 0

induction (⇥ = ⇥�t for some sequence ⇥� and transition t):

Let M
��
�⇥ M �� t�⇥ M �. We have: M � = M �� + t

= M �� +N · ⇤t
= M +N · ⇤⇥� +N · ⇤t
= M +N · (⇤⇥� + ⇤t)

= M +N · (
�⇥
⇥�t)

= M +N · ⇤⇥

s



Marking equation: 
example
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M0 = [ 4 0 1 0 0 ] � = t3t5t3t4t2 ⇥� = [ 0 1 2 1 1 ]

�

⇧⇧⇧⇧⇤

4
0
1
0
0

⇥

⌃⌃⌃⌃⌅
+

�

⇧⇧⇧⇧⇤

1 �1 0 0 0
�1 1 0 0 0
0 1 �1 0 1
0 0 1 �1 �1
0 �1 0 1 0

⇥

⌃⌃⌃⌃⌅
·

�

⇧⇧⇧⇧⇤

0
1
2
1
1

⇥

⌃⌃⌃⌃⌅
=

�

⇧⇧⇧⇧⇤

3
1
1
0
0

⇥

⌃⌃⌃⌃⌅



Marking equation 
lemma: consequences
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The marking reached by any occurrence 
sequence only depends on the number of 

occurrences of each transition 
!

It does not depend on the order in which 
transitions occur 

!
Every fireable permutation of the same 
transitions leads to the same marking 



Monotonicity lemma (1)
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The proof is by induction on the length of ⇥

base (⇥ = �): the empty sequence is always enabled, at any marking

induction (⇥ = ⇥�t for some sequence ⇥� and transition t):

Let M
��
�⇥ M �� t�⇥ M �.

By the marking equation lemma: M � = M �� +N · ⇤t

By the induction hypothesis M + L
��
�⇥ M �� + L

Moreover, M �� + L
t�⇥ because M �� t�⇥.

By the marking equation lemma: M �� + L
t�⇥ M �� + L+N · ⇤t = M � + L

Lemma: If M
��⇥ M � then M + L

��⇥ M � + L for any L



(from previous slides) 
Enabledness
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Proposition: M
��! i↵ M

�0
�! for every prefix �0

of �

()) immediate from definition

(() trivial if � is finite (� itself is a prefix of �)

When � is infinite: taken any i 2 N we need to prove that ti = �(i) is enabled
after the firing of the prefix �0 = t1t2...ti�1 of �.

But this is obvious, because

M
t1�! M1

t2�! ...
ti�1�! Mi�1

ti�! Mi

is also a finite prefix of � and therefore Mi�1
ti�!



Monotonicity lemma (2)

40

Lemma: If M
��⇥ then M + L

��⇥ for any L

If � is finite then the thesis follows from monotonicity lemma 1

If � is infinite, then it su�ces to prove that:

M + L
��
�⇥ for any finite prefix �� of �

Take any such prefix ��. Then, M
��
�⇥ (because M

��⇥)

By the marking equation lemma, M
��
�⇥ M +N · ⇥��.

By monotonicity lemma 1, M + L
��
�⇥ M +N · ⇥�� + L

Hence M + L
��
�⇥



Boundedness Lemma
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Lemma: If a system is bounded and M 2 [M0i with M ◆ M0,

then M = M0.

Let M0
��! M .

By M ◆ M0, there exists a marking L with M = M0 + L.

Let Mk = M0 + k · L for every k 2 N.

By the Monotonicity Lemma, we have:

M0
��! M1

��! M2 · · ·
i.e., Mk 2 [M0i for any k 2 N.

Since the system is bounded, it must be L = ;.



Repetition Lemma
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Lemma: If M
��! M 0 and M

��···���!, then M ✓ M 0.

We proceed by contradiction.

Suppose M 6✓ M 0
, i.e., there exist k > 0, p 2 P such that M 0(p) = M(p)� k.

By the Marking Equation Lemma we have M 0 = M +N · ~�.
Therefore (N · ~�)(p) = �k.

Let n = M(p) + 1 and �0 = � · · ·�| {z }
n

.

By hypothesis we have M
�0
�! M 00

,

and by the Marking Equation Lemma M 00(p) = M(p)� nk < 0, which is absurd.


