Methods for the specification and verification of business processes MPB (6 cfu, 295AA)

Roberto Bruni **<http://www.di.unipi.it/~bruni>**

09 - Incidence matrices

Object

We give a matrix-based representation of Petri nets and their computations

Key point

The change of the numbers of tokens on a place p caused by the firing of the transition t does not depend on the current marking

> It is entirely determined by the net (i.e., by the flow relation)

Let us have a look at the relative changes for every place and transition...

 $(p, t) \notin F$ and $(t, p) \notin F$

Place *p* and transition *t* are completely unrelated:

- *• p* has no influence on the enabling of *t*
- *•* firing *t* does not change the number of tokens in *p*

 $(p, t) \in F$ and $(t, p) \notin F$

- *•* one token in *p* is needed to enable *t*
- *•* firing *t* reduces by one the number of tokens in *p*

 $(p, t) \not\in F$ and $(t, p) \in F$

• firing *t* increases by one the number of tokens in *p*

- *•* one token in *p* is needed to enable *t*
- *•* firing *t* does not change the number of tokens in *p*

Incidence matrix

Let $N = (P, T, F)$ be a net.

Its incidence matrix $N : (P \times T) \rightarrow \{-1, 0, 1\}$ is defined as:

$$
\mathbf{N}(p,t) = \begin{cases}\n0 & \text{if } (p,t) \notin F \land (t,p) \notin F \text{ or } (p,t) \in F \land (t,p) \in F \\
-1 & \text{if } (p,t) \in F \land (t,p) \notin F \\
+1 & \text{if } (p,t) \notin F \land (t,p) \in F\n\end{cases}
$$

Matrix view

m columns, one for each transition

n rows, one for each place

Column vector tj

 $\mathbf{t_j}: P \to \{-1,0,1\}$ such that $\mathbf{t_j}(p) = \mathbf{N}(p,t_j)$

Row vector pi

Example: vending machine

Example: vending machine insert coin $\left(\begin{matrix}4\end{matrix}\right)$

candy storage

ready for coin

Vectors: notation

Let $E = \{e_1, e_2, ..., e_n\}$ be a finite set of elements.

Any mapping $v: E \to \mathbb{Q}$ (or to N, Z,...) can be regarded as a vector:

$$
\mathbf{v} = [v(e_1), v(e_2), ..., v(e_n)]
$$

We do not use different symbols for row and columns vectors:

$$
\mathbf{v} = \begin{bmatrix} v(e_1) \\ v(e_2) \\ \vdots \\ v(e_n) \end{bmatrix}
$$

Marking as a vector

Any marking $M: P \to \mathbb{N}$ corresponds to a vector:

 $M = [M(p_1) \quad M(p_2) \quad ... \quad M(p_n)]$

 $M_0 = [4 \ 0 \ 1 \ 0 \ 0]$

Firing, in vector notation

Firing, in vector notation

Vectors: notation

Let v*,* w be two vectors over *E*

We write $v \le w$ if $v(e) \le w(e)$ for any $e \in E$

We write $v < w$ if $v \leq w$ and $v(e) < w(e)$ for some $e \in E$

We write $v \prec w$ if $v(e) < w(e)$ for any $e \in E$

We let 0 denote any vector of any length whose entries are all 0

Products

Let x, y be two vectors of equal length n (written $|\mathbf{x}| = |\mathbf{y}| = n$)

We define their scalar product by

$$
\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{n} x_i y_i
$$

$$
\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n
$$

$$
\begin{bmatrix} 0 & 1 & -1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} = (0 \cdot 1) + (1 \cdot 1) + (-1 \cdot 2) + (0 \cdot 0) + (1 \cdot 1) = 0 + 1 - 2 + 0 + 1 = 0
$$

Products

Let $x_1, x_2, ..., x_k, y$ be all vectors of equal length

Let X be a $(k \times n)$ -matrix whose *i*-th row is $\mathbf{x_i}$

We define the product $X \cdot y$ as the (column) vector where

$$
(X \cdot \mathbf{y})_i = \mathbf{x_i} \cdot \mathbf{y}
$$

Products: example

Products

Let $x, y_1, y_2, ..., y_k$ be all vectors of equal length

Let *Y* be a $(n \times k)$ -matrix whose *i*-th column is y_i

We define the product $x \cdot Y$ as the (row) vector where

 $(\mathbf{x} \cdot Y)_i = \mathbf{x} \cdot \mathbf{y_i}$

$$
[x_1 x_2 ... x_n] \cdot [\mathbf{y_1 y_2 ... y_k}] = [\mathbf{x} \cdot \mathbf{y_1} \quad \mathbf{x} \cdot \mathbf{y_2} \quad ... \quad \mathbf{x} \cdot \mathbf{y_k}]
$$

Products

Let $x_1, x_2, ..., x_k, y_1, y_2, ..., y_h$ be all vectors of equal length

Let X be a $(k \times n)$ -matrix whose *i*-th row is $\mathbf{x_i}$

Let *Y* be a $(n \times h)$ -matrix whose *j*-th column is y_i

We define the product $X \cdot Y$ as the $(k \times h)$ -matrix where

$$
(X \cdot Y)_{i,j} = \mathbf{x_i} \cdot \mathbf{y_j}
$$

$$
\left[\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_k \end{array}\right] \cdot \left[\,y_1 \; y_2 \; \ldots \; y_h \,\right] = \left[\begin{array}{cccc} x_1 \cdot y_1 & x_1 \cdot y_2 & \ldots & x_1 \cdot y_h \\ x_2 \cdot y_1 & x_2 \cdot y_2 & \ldots & x_2 \cdot y_h \\ \vdots & \vdots & & \vdots \\ x_k \cdot y_1 & x_k \cdot y_2 & \ldots & x_k \cdot y_h \end{array}\right]
$$

Vector perspective

Let $P = \{p_1, ..., p_n\}$ and $T = \{t_1, ..., t_m\}$

The net (P,T,F) can be seen as a matrix (n x m)

A marking is a vector of length n

But we miss an ingredient: can a firing be seen as a vector? can a firing sequence be seen as a vector? (of limited length)

Parikh vectors of transition sequences

Let $N = (P, T, F)$ be a net and $\sigma \in T^*$ a finite sequence of transitions.

The Parikh vector

$$
\vec{\sigma}:T\to\mathbb{N}
$$

of σ maps every $t \in T$ to the number of its occurrences in σ .

Parikh vector of a firing

As a special case, for a sequence $\sigma = t$ (one single transition):

$$
\vec{t} = \begin{bmatrix} 0 & \dots & 0 & 1 & 0 & \dots & 0 \\ t_1 & & & t & & t_m \end{bmatrix}
$$

Parikh vector: example

 $M_0 = 4p_1 + p_3$

$$
M_0 \xrightarrow{\sigma = t_3 t_5 t_3 t_4 t_2} 3p_1 + p_2 + p_3 \qquad \vec{\sigma} = \begin{bmatrix} 0 & 1 & 2 & 1 & 1 \end{bmatrix}
$$

$$
M_0 \xrightarrow{\sigma' = t_3 t_4 t_2 t_3 t_4 t_2 t_3 t_5 t_3} 2p_1 + 2p_2 + p_4 \qquad \vec{\sigma'} = \begin{bmatrix} 0 & 2 & 4 & 2 & 1 \end{bmatrix}
$$

First fact

$$
\mathbf{N}\cdot\vec{t}_j=\mathbf{t_j}
$$

Second fact

$$
\mathbf{N} \cdot \vec{t}_j = \mathbf{t}_j
$$

If
$$
M \xrightarrow{t} M'
$$
 then $M' = M + t$

Third fact

$$
\mathbf{N} \cdot \vec{t}_j = \mathbf{t}_j
$$

If
$$
M \xrightarrow{t} M'
$$
 then $M' = M + t$
If $M \xrightarrow{t} M'$ then $M' = M + N \cdot \vec{t}$

Marking equation lemma

Lemma: If $M \stackrel{\sigma}{\rightharpoonup}$ $\rightarrow M'$ then $M' = M + N \cdot \vec{\sigma}$

The proof is by induction on the length of σ

 \mathbf{base} $(\sigma = \epsilon)$: and therefore $M' = M$. The equality holdstrivially, because $\vec{\sigma} = \mathbf{0}$ $\mathbf i$ nduction $(\sigma = \sigma' t \text{ for some sequence } \sigma' \text{ and transition } t)$:

Let
$$
M \xrightarrow{\sigma'} M'' \xrightarrow{t} M'
$$
. We have: $M' = M'' + t$
\n
$$
= M'' + N \cdot \vec{t}
$$
\n
$$
= M + N \cdot \vec{\sigma'} + N \cdot \vec{t}
$$
\n
$$
= M + N \cdot (\vec{\sigma'} + \vec{t})
$$
\n
$$
= M + N \cdot (\vec{\sigma'}t)
$$
\n
$$
= M + N \cdot \vec{\sigma}
$$

Marking equation: example

 $M_0 = [4 \ 0 \ 1 \ 0 \ 0]$ $\sigma = t_3 t_5 t_3 t_4 t_2$ $\vec{\sigma} = [0 \ 1 \ 2 \ 1 \ 1]$

Marking equation lemma: consequences

The marking reached by any occurrence sequence only depends on the number of occurrences of each transition

It does not depend on the order in which transitions occur

Every fireable permutation of the same transitions leads to the same marking

Monotonicity lemma (1)

Lemma: If $M \stackrel{\sigma}{\longrightarrow} M'$ then $M + L \stackrel{\sigma}{\longrightarrow} M' + L$ for any L

The proof is by induction on the length of σ

base $(\sigma = \epsilon)$: the empty sequence is always enabled, at any marking $\mathbf i$ nduction $(\sigma = \sigma' t \text{ for some sequence } \sigma' \text{ and transition } t)$: Let $M \stackrel{\sigma'}{\longrightarrow} M'' \stackrel{t}{\longrightarrow} M'$. By the marking equation lemma: $M' = M'' + N \cdot \bar{t}$ By the induction hypothesis $M + L \stackrel{\sigma'}{=}$ $\longrightarrow M'' + L$ Moreover, $M'' + L \stackrel{t}{\longrightarrow}$ because $M'' \stackrel{t}{\longrightarrow}$. By the marking equation lemma: $M'' + L \stackrel{t}{\longrightarrow} M'' + L + N \cdot \vec{t} = M' + L$

(from previous slides) Enabledness **Proposition**: $M \stackrel{\sigma}{\longrightarrow}$ iff $M \stackrel{\sigma'}{\longrightarrow}$ \longrightarrow for every prefix σ' of σ

 (\Rightarrow) immediate from definition

 (\Leftarrow) trivial if σ is finite (σ itself is a prefix of σ)

When σ is infinite: taken any $i \in \mathbb{N}$ we need to prove that $t_i = \sigma(i)$ is enabled after the firing of the prefix $\sigma' = t_1 t_2 ... t_{i-1}$ of σ .

But this is obvious, because

$$
M \xrightarrow{t_1} M_1 \xrightarrow{t_2} \dots \xrightarrow{t_{i-1}} M_{i-1} \xrightarrow{t_i} M_i
$$

is also a finite prefix of σ and therefore $M_{i-1} \stackrel{t_i}{\longrightarrow}$

Monotonicity lemma (2)

Lemma: If $M \stackrel{\sigma}{\longrightarrow}$ then $M + L \stackrel{\sigma}{\longrightarrow}$ for any L

If σ is finite then the thesis follows from monotonicity lemma 1

If σ is infinite, then it suffices to prove that: $M + L \stackrel{\sigma'}{=}$ \longrightarrow for any finite prefix σ' of σ

Take any such prefix σ' . Then, $M \stackrel{\sigma'}{\longrightarrow}$ (because $M \stackrel{\sigma}{\longrightarrow}$) By the marking equation lemma, $M \stackrel{\sigma'}{\equiv}$ $\frac{\partial}{\partial t} M + \mathbf{N} \cdot \sigma$ $\vec{\sigma'}$. By monotonicity lemma 1, $M + L \stackrel{\sigma'}{=}$ \longrightarrow $M + N \cdot \sigma$ ⇥ $^{\prime}$ + L Hence $M + L \stackrel{\sigma'}{=}$ \longrightarrow

Boundedness Lemma

Lemma: If a system is bounded and $M \in [M_0]$ with $M \supseteq M_0$, then $M = M_0$.

Let M_0 σ $\stackrel{\sigma}{\rightarrow} M$.

By $M \supseteq M_0$, there exists a marking L with $M = M_0 + L$.

Let $M_k = M_0 + k \cdot L$ for every $k \in \mathbb{N}$.

By the Monotonicity Lemma, we have: *M*⁰ σ $\xrightarrow{o} M_1$ σ $\stackrel{\sigma}{\rightarrow} M_2 \cdots$ i.e., $M_k \in [M_0$ for any $k \in \mathbb{N}$.

Since the system is bounded, it must be $L = \emptyset$.

Repetition Lemma

Lemma: If $M \xrightarrow{\sigma} M'$ and $M \xrightarrow{\sigma \sigma \cdots}$, then $M \subseteq M'$.

We proceed by contradiction. $\textsf{Suppose}\,\,M\not\subseteq M'$, i.e., there exist $k>0, p\in P$ such that $M'(p)=M(p)-k.$

By the Marking Equation Lemma we have $M' = M + \mathbf{N} \cdot \vec{\sigma}$. Therefore $(\mathbf{N} \cdot \vec{\sigma})(p) = -k$.

Let $n = M(p) + 1$ and $\sigma' = \sigma \cdots \sigma$ \bigvee_n *n* . By hypothesis we have $M \stackrel{\sigma'}{=}$ $\stackrel{\circ}{\longrightarrow}$ M'', and by the Marking Equation Lemma $M''(p) = M(p) - nk < 0$, which is absurd.