
Methods for the specification and
verification of business processes

MPB (6 cfu, 295AA)

Roberto Bruni
http://www.di.unipi.it/~bruni

09 - Incidence matrices

1

http://www.di.unipi.it/~bruni

Object

2

We give a matrix-based representation of Petri
nets and their computations

Free Choice Nets (book, optional reading)
https://www7.in.tum.de/~esparza/bookfc.html

https://www7.in.tum.de/~esparza/bookfc.html

Key point

3

The change of the numbers of tokens on a place p
caused by the firing of the transition t does not

depend on the current marking

It is entirely determined by the net
(i.e., by the flow relation)

Let us have a look at the relative changes for
every place and transition...

How p relates to t

4

(p, t) 62 F and (t, p) 62 F

Place p and transition t are completely unrelated:

• p has no influence on the enabling of t

• firing t does not change the number of tokens in p

p

t

How p relates to t

5

(p, t) 2 F and (t, p) 62 F

• one token in p is needed to enable t

• firing t reduces by one the number of tokens in p

p

t

How p relates to t

6

(p, t) 62 F and (t, p) 2 F

• firing t increases by one the number of tokens in p

p

t

How p relates to t

7

(p, t) 2 F and (t, p) 2 F

• one token in p is needed to enable t

• firing t does not change the number of tokens in p

p

t

Incidence matrix

8

Let N = (P, T, F) be a net.

Its incidence matrix N : (P ⇥ T) ! {�1, 0, 1} is defined as:

N(p, t) =

8
<

:

0 if (p, t) 62 F ^ (t, p) 62 F or (p, t) 2 F ^ (t, p) 2 F
�1 if (p, t) 2 F ^ (t, p) 62 F
+1 if (p, t) 62 F ^ (t, p) 2 F

Matrix view

9

-1

...

+1

n rows,
one for

each place

m columns, one for each transition

t1
p1
p2
p3

pn

Matrix view

10

+1

-1

+1

...

+1

-1

n rows,
one for

each place

m columns, one for each transition

t1
p1
p2
p3

pn

t2

Matrix view

11

...

+1 -1

-1 +1

+1

+1

... ...

+1

-1

-1 +1

n rows,
one for

each place

m columns, one for each transition

t1
p1
p2
p3

pn

t2 t3

Matrix view

12

...

+1 -1 -1

-1 +1

+1

+1

... ... +1

+1

-1

+1

-1 +1 -1

n rows,
one for

each place

m columns, one for each transition

t1
p1
p2
p3

pn

t2 t3 tm

Column vector tj

13

...

+1 -1 -1

-1 +1

+1

+1

... ... +1

+1

-1

+1

-1 +1 -1

tj : P ! {�1, 0, 1} such that tj(p) = N(p, tj)

t1
p1
p2
p3

pn

t2 t3 tm

Row vector pi

14

...

+1 -1 -1

-1 +1

+1

+1

... ... +1

+1

-1

+1

-1 +1 -1

pi : T ! {�1, 0, 1}
such that

pi(t) = N(pi, t)

t1
p1
p2
p3

pn

t2 t3 tm

Example: vending
machine

15

Example: vending
machine

21

refill
dispense

candy
insert
coin

accept
coin

reject
coin

candy storage 1 -1

request for refill -1 1

ready for coin 1 -1 1

holding 1 -1 -1

ready to dispense -1 1

t1

p1

p2

p3

p4

p5

t2 t3 t4 t5

Vectors: notation

22

Let E = {e1, e2, ..., en} be a finite set of elements.

Any mapping v : E � Q (or to N, Z,...) can be regarded as a vector:

v = [v(e1), v(e2), ..., v(en)]

We do not use di�erent symbols for row and columns vectors:

v =

�

⇧⇧⇧⇤

v(e1)
v(e2)
...

v(en)

⇥

⌃⌃⌃⌅

Marking as a vector

23

Any marking M : P � N corresponds to a vector:

M = [M(p1) M(p2) ... M(pn)]

M0 = [4 0 1 0 0]

Firing, in vector notation

24

M0
t3�⇥ M1 = 4p1 + p4

M0�

⇧⇧⇧⇧⇤

4
0
1
0
0

⇥

⌃⌃⌃⌃⌅
+

t3�

⇧⇧⇧⇧⇤

0
0

�1
1
0

⇥

⌃⌃⌃⌃⌅
=

M1�

⇧⇧⇧⇧⇤

4
0
0
1
0

⇥

⌃⌃⌃⌃⌅

Firing, in vector notation

25

M0
t3�⇥ M1

t4�⇥ M2
t2�⇥ M3

M0�

⇧⇧⇧⇧⇤

4
0
1
0
0

⇥

⌃⌃⌃⌃⌅
+

t3�

⇧⇧⇧⇧⇤

0
0

�1
1
0

⇥

⌃⌃⌃⌃⌅
=

M1�

⇧⇧⇧⇧⇤

4
0
0
1
0

⇥

⌃⌃⌃⌃⌅
+

t4�

⇧⇧⇧⇧⇤

0
0
0

�1
1

⇥

⌃⌃⌃⌃⌅
=

M2�

⇧⇧⇧⇧⇤

4
0
0
0
1

⇥

⌃⌃⌃⌃⌅
+

t2�

⇧⇧⇧⇧⇤

�1
1
1
0

�1

⇥

⌃⌃⌃⌃⌅
=

M3�

⇧⇧⇧⇧⇤

3
1
1
0
0

⇥

⌃⌃⌃⌃⌅

Firing, in vector notation

26

M0
t3�⇥ M1

t4�⇥ M2
t2�⇥ M3

M0�

⇧⇧⇧⇧⇤

4
0
1
0
0

⇥

⌃⌃⌃⌃⌅
+

t3�

⇧⇧⇧⇧⇤

0
0

�1
1
0

⇥

⌃⌃⌃⌃⌅
=

M1�

⇧⇧⇧⇧⇤

4
0
0
1
0

⇥

⌃⌃⌃⌃⌅
+

t4�

⇧⇧⇧⇧⇤

0
0
0

�1
1

⇥

⌃⌃⌃⌃⌅
=

M2�

⇧⇧⇧⇧⇤

4
0
0
0
1

⇥

⌃⌃⌃⌃⌅
+

t2�

⇧⇧⇧⇧⇤

�1
1
1
0

�1

⇥

⌃⌃⌃⌃⌅
=

M3�

⇧⇧⇧⇧⇤

3
1
1
0
0

⇥

⌃⌃⌃⌃⌅

Firing, in vector notation

27

M0
t3�⇥ M1

t4�⇥ M2
t2�⇥ M3

M0�

⇧⇧⇧⇧⇤

4
0
1
0
0

⇥

⌃⌃⌃⌃⌅
+

t3�

⇧⇧⇧⇧⇤

0
0

�1
1
0

⇥

⌃⌃⌃⌃⌅
=

M1�

⇧⇧⇧⇧⇤

4
0
0
1
0

⇥

⌃⌃⌃⌃⌅
+

t4�

⇧⇧⇧⇧⇤

0
0
0

�1
1

⇥

⌃⌃⌃⌃⌅
=

M2�

⇧⇧⇧⇧⇤

4
0
0
0
1

⇥

⌃⌃⌃⌃⌅
+

t2�

⇧⇧⇧⇧⇤

�1
1
1
0

�1

⇥

⌃⌃⌃⌃⌅
=

M3�

⇧⇧⇧⇧⇤

3
1
1
0
0

⇥

⌃⌃⌃⌃⌅

Vectors: notation

28

Let v,w be two vectors over E

We write v � w if v(e) � w(e) for any e ⇥ E

We write v < w if v � w and v(e) < w(e) for some e ⇥ E

We let 0 denote any vector of any length whose entries are all 0

We write v � w if v(e) < w(e) for any e ⇥ E

Products

29

Let x,y be two vectors of equal length n (written |x| = |y| = n)

We define their scalar product by

x · y =
n⌥

i=1

xiyi

[x1 x2 ... xn] ·

�

⇧⇧⇧⇤

y1
y2
...
yn

⇥

⌃⌃⌃⌅
= x1y1 + x2y2 + ...+ xnyn

Products: example

30

[0 1 �1 0 1]·

2

66664

1
1
2
0
1

3

77775
= (0·1)+(1·1)+(�1·2)+(0·0)+(1·1) = 0+1�2+0+1 = 0

Products: example

31

[0 1 �1 0 1]·

2

66664

1
1
2
0
1

3

77775
= (0·1)+(1·1)+(�1·2)+(0·0)+(1·1) = 0+1�2+0+1 = 0

Products: example

32

[0 1 �1 0 1]·

2

66664

1
1
2
0
1

3

77775
= (0·1)+(1·1)+(�1·2)+(0·0)+(1·1) = 0+1�2+0+1 = 0

Products: example

33

[0 1 �1 0 1]·

2

66664

1
1
2
0
1

3

77775
= (0·1)+(1·1)+(�1·2)+(0·0)+(1·1) = 0+1�2+0+1 = 0

Products: example

34

[0 1 �1 0 1]·

2

66664

1
1
2
0
1

3

77775
= (0·1)+(1·1)+(�1·2)+(0·0)+(1·1) = 0+1�2+0+1 = 0

Products: example

35

[0 1 �1 0 1]·

2

66664

1
1
2
0
1

3

77775
= (0·1)+(1·1)+(�1·2)+(0·0)+(1·1) = 0+1�2+0+1 = 0

Products: example

36

[0 1 �1 0 1]·

2

66664

1
1
2
0
1

3

77775
= (0·1)+(1·1)+(�1·2)+(0·0)+(1·1) = 0+1�2+0+1 = 0

Products: example

37

[0 1 �1 0 1]·

2

66664

1
1
2
0
1

3

77775
= (0·1)+(1·1)+(�1·2)+(0·0)+(1·1) = 0+1�2+0+1 = 0

Products

38

Let x1,x2, ...,xk,y be all vectors of equal length

Let X be a (k � n)-matrix whose i-th row is xi

We define the product X · y as the (column) vector where

(X · y)i = xi · y

�

⇧⇧⇧⇤

x1

x2
...
xk

⇥

⌃⌃⌃⌅
·

�

⇧⇧⇧⇤

y1
y2
...
yn

⇥

⌃⌃⌃⌅
=

�

⇧⇧⇧⇤

x1 · y
x2 · y

...
xk · y

⇥

⌃⌃⌃⌅

Products: example

40

�

⇧⇧⇧⇧⇤

1 �1 0 0 0
�1 1 0 0 0
0 1 �1 0 1
0 0 1 �1 �1
0 �1 0 1 0

⇥

⌃⌃⌃⌃⌅
·

�

⇧⇧⇧⇧⇤

1
1
2
0
1

⇥

⌃⌃⌃⌃⌅
=

�

⇧⇧⇧⇧⇤

1� 1
�1 + 1
1� 2 + 1
2� 1
�1

⇥

⌃⌃⌃⌃⌅
=

�

⇧⇧⇧⇧⇤

0
0
0
1

�1

⇥

⌃⌃⌃⌃⌅

Products

41

Let x,y1,y2, ...,yk be all vectors of equal length

Let Y be a (n� k)-matrix whose i-th column is yi

We define the product x · Y as the (row) vector where

(x · Y)i = x · yi

[x1 x2 ... xn] · [y1 y2 ... yk] = [x · y1 x · y2 ... x · yk]

Products

42

Let x1,x2, ...,xk,y1,y2, ...,yh be all vectors of equal length

Let X be a (k � n)-matrix whose i-th row is xi

Let Y be a (n� h)-matrix whose j-th column is yj

We define the product X · Y as the (k � h)-matrix where

(X · Y)i,j = xi · yj

�

⇧⇧⇧⇤

x1

x2
...
xk

⇥

⌃⌃⌃⌅
· [y1 y2 ... yh] =

�

⇧⇧⇧⇤

x1 · y1 x1 · y2 ... x1 · yh

x2 · y1 x2 · y2 ... x2 · yh
...

...
...

xk · y1 xk · y2 ... xk · yh

⇥

⌃⌃⌃⌅

Vector perspective

43

Let P = { p1, ..., pn } and T = { t1, ..., tm }

The net (P,T,F) can be seen as a matrix (n x m)

A marking is a vector of length n

But we miss an ingredient:

can a firing sequence be seen as a vector?
(of limited length)

Parikh vectors of
transition sequences

44

Let N = (P, T, F) be a net and � 2 T ⇤
a finite sequence of transitions.

The Parikh vector

~� : T ! N

of � maps every t 2 T to the number of its occurrences in �.

Parikh vector of a firing

45

As a special case, for a sequence � = t (one single transition):

⇥t = [0 ... 0 1 0 ... 0]
t1 t tm

Parikh vector: example

46

M0 = 4p1 + p3

M0
�=t3t5t3t4t2���������⇥ 3p1 + p2 + p3 ⇥� = [0 1 2 1 1]

M0
��=t3t4t2t3t4t2t3t5t3��������������⇥2p1 + 2p2 + p4 ⇥�� = [0 2 4 2 1]

First fact

47

0
0
1
0
0

N · �tj = tj

�tjt1
p1

pn

t1

tm

tm

tj

tj

Second fact

48

N · �tj = tj

If M
t�⇥ M � then M � = M + t

If M
t�⇥ M � then M � = M +N · �t

Third fact

49

N · �tj = tj

If M
t�⇥ M � then M � = M + t

If M
t�⇥ M � then M � = M +N · �t

Marking equation lemma

50

Lemma: If M
��⇥ M � then M � = M +N · ⇥�

The proof is by induction on the length of �

base (� = ✏): and therefore M 0 = M . The equality holds trivially, because ~� = 0

induction (� = �0t for some sequence �0
and transition t):

Let M
�0
�! M 00 t�! M 0

. We have: M 0 = M 00 + t

= M 00 +N · ~t
= M +N · ~�0 +N · ~t
= M +N · (~�0 + ~t)

= M +N · (
�!
�0t)

= M +N · ~�

Marking equation:
example

51

M0 = [4 0 1 0 0] � = t3t5t3t4t2 ⇥� = [0 1 2 1 1]

�

⇧⇧⇧⇧⇤

4
0
1
0
0

⇥

⌃⌃⌃⌃⌅
+

�

⇧⇧⇧⇧⇤

1 �1 0 0 0
�1 1 0 0 0
0 1 �1 0 1
0 0 1 �1 �1
0 �1 0 1 0

⇥

⌃⌃⌃⌃⌅
·

�

⇧⇧⇧⇧⇤

0
1
2
1
1

⇥

⌃⌃⌃⌃⌅
=

�

⇧⇧⇧⇧⇤

3
1
1
0
0

⇥

⌃⌃⌃⌃⌅

M0 N ~�

Marking equation
lemma: consequences

52

The marking reached by any occurrence
sequence only depends on the number of

occurrences of each transition

It does not depend on the order in which
transitions occur

Every fireable permutation of the same
transitions leads to the same marking

Monotonicity lemma (1)

53

The proof is by induction on the length of ⇥

base (⇥ = �): the empty sequence is always enabled, at any marking

induction (⇥ = ⇥�t for some sequence ⇥� and transition t):

Let M
��
�⇥ M �� t�⇥ M �.

By the marking equation lemma: M � = M �� +N · ⇤t

By the induction hypothesis M + L
��
�⇥ M �� + L

Moreover, M �� + L
t�⇥ because M �� t�⇥.

By the marking equation lemma: M �� + L
t�⇥ M �� + L+N · ⇤t = M � + L

Lemma: If M
��⇥ M � then M + L

��⇥ M � + L for any L

(from previous slides)
Enabledness

54

Proposition: M
��! i↵ M

�0
�! for every prefix �0

of �

()) immediate from definition

(() trivial if � is finite (� itself is a prefix of �)

When � is infinite: taken any i 2 N we need to prove that ti = �(i) is enabled
after the firing of the prefix �0 = t1t2...ti�1 of �.

But this is obvious, because

M
t1�! M1

t2�! ...
ti�1�! Mi�1

ti�! Mi

is also a finite prefix of � and therefore Mi�1
ti�!

Monotonicity lemma (2)

55

Lemma: If M
��⇥ then M + L

��⇥ for any L

If � is finite then the thesis follows from monotonicity lemma 1

If � is infinite, then it su�ces to prove that:

M + L
��
�⇥ for any finite prefix �� of �

Take any such prefix ��. Then, M
��
�⇥ (because M

��⇥)

By the marking equation lemma, M
��
�⇥ M +N · ⇥��.

By monotonicity lemma 1, M + L
��
�⇥ M +N · ⇥�� + L

Hence M + L
��
�⇥

Monotonicity lemma,
intuitively

56

If some activities can be done with less (resources),
then the same activities can be done with more (resources)

If we perform activities with more resources than needed,
then the additional resources are preserved

Boundedness Lemma

57

Lemma: If a system is bounded and M 2 [M0i with M ◆ M0,

then M = M0.

Let M0
��! M .

By M ◆ M0, there exists a marking L with M = M0 + L.

Let Mk = M0 + k · L for every k 2 N.

By the Monotonicity Lemma, we have:

M0
��! M1

��! M2 · · ·
i.e., Mk 2 [M0i for any k 2 N.

Since the system is bounded, it must be L = ;.

Boundedness lemma:
consequences

58

If we show that a marking M is reachable with

then the system is not bounded

M � M0

Repetition Lemma

59

Lemma: If M
��! M 0 and M

��···���!, then M ✓ M 0.

We proceed by contradiction.

Suppose M 6✓ M 0
, i.e., there exist k > 0, p 2 P such that M 0(p) = M(p)� k.

By the Marking Equation Lemma we have M 0 = M +N · ~�.
Therefore (N · ~�)(p) = �k.

Let n = M(p) + 1 and �0 = � · · ·�| {z }
n

.

By hypothesis we have M
�0
�! M 00

,

and by the Marking Equation Lemma M 00(p) = M(p)� nk < 0, which is absurd.

