
Methods for the specification and 
verification of business processes 

MPB (6 cfu, 295AA) 

Roberto Bruni 
http://www.di.unipi.it/~bruni 

09 - Incidence matrices

1

http://www.di.unipi.it/~bruni


Object

2

We give a matrix-based representation of Petri 
nets and their computations 

Free Choice Nets (book, optional reading) 
https://www7.in.tum.de/~esparza/bookfc.html 

https://www7.in.tum.de/~esparza/bookfc.html


Key point
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The change of the numbers of tokens on a place p 
caused by the firing of the transition t does not 

depend on the current marking 

It is entirely determined by the net 
(i.e., by the flow relation) 

Let us have a look at the relative changes for 
every place and transition...



How p relates to t
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(p, t) 62 F and (t, p) 62 F

Place p and transition t are completely unrelated:

• p has no influence on the enabling of t

• firing t does not change the number of tokens in p

p

t



How p relates to t
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(p, t) 2 F and (t, p) 62 F

• one token in p is needed to enable t

• firing t reduces by one the number of tokens in p

p

t



How p relates to t
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(p, t) 62 F and (t, p) 2 F

• firing t increases by one the number of tokens in p

p

t



How p relates to t
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(p, t) 2 F and (t, p) 2 F

• one token in p is needed to enable t

• firing t does not change the number of tokens in p

p

t



Incidence matrix
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Let N = (P, T, F ) be a net.

Its incidence matrix N : (P ⇥ T ) ! {�1, 0, 1} is defined as:

N(p, t) =

8
<

:

0 if (p, t) 62 F ^ (t, p) 62 F or (p, t) 2 F ^ (t, p) 2 F
�1 if (p, t) 2 F ^ (t, p) 62 F
+1 if (p, t) 62 F ^ (t, p) 2 F



Matrix view
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Matrix view
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Matrix view
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Matrix view

12

...

+1 -1 -1

-1 +1

+1

+1

... ... +1

+1

-1

+1

-1 +1 -1

n rows, 
one for 

each place

m columns, one for each transition

t1
p1
p2
p3

pn

t2 t3 tm



Column vector tj
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Row vector pi
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Example: vending 
machine
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Example: vending 
machine

21

refill 
dispense 

candy 
insert 
coin 

accept 
coin 

reject 
coin 

candy storage 1 -1

request for refill -1 1

ready for coin 1 -1 1

holding 1 -1 -1

ready to dispense -1 1

t1

p1

p2

p3

p4

p5

t2 t3 t4 t5



Vectors: notation

22

Let E = {e1, e2, ..., en} be a finite set of elements.

Any mapping v : E � Q (or to N, Z,...) can be regarded as a vector:

v = [ v(e1), v(e2), ..., v(en) ]

We do not use di�erent symbols for row and columns vectors:

v =

�

⇧⇧⇧⇤

v(e1)
v(e2)
...

v(en)

⇥

⌃⌃⌃⌅



Marking as a vector
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Any marking M : P � N corresponds to a vector:

M = [ M(p1) M(p2) ... M(pn) ]

M0 = [ 4  0  1  0  0 ]



Firing, in vector notation
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M0
t3�⇥ M1 = 4p1 + p4

M0�

⇧⇧⇧⇧⇤

4
0
1
0
0

⇥

⌃⌃⌃⌃⌅
+

t3�

⇧⇧⇧⇧⇤

0
0

�1
1
0

⇥

⌃⌃⌃⌃⌅
=

M1�

⇧⇧⇧⇧⇤

4
0
0
1
0

⇥

⌃⌃⌃⌃⌅



Firing, in vector notation
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M0
t3�⇥ M1

t4�⇥ M2
t2�⇥ M3

M0�

⇧⇧⇧⇧⇤

4
0
1
0
0

⇥

⌃⌃⌃⌃⌅
+

t3�

⇧⇧⇧⇧⇤

0
0

�1
1
0

⇥

⌃⌃⌃⌃⌅
=

M1�

⇧⇧⇧⇧⇤

4
0
0
1
0

⇥

⌃⌃⌃⌃⌅
+

t4�

⇧⇧⇧⇧⇤

0
0
0

�1
1

⇥

⌃⌃⌃⌃⌅
=

M2�

⇧⇧⇧⇧⇤

4
0
0
0
1

⇥

⌃⌃⌃⌃⌅
+

t2�

⇧⇧⇧⇧⇤

�1
1
1
0

�1

⇥

⌃⌃⌃⌃⌅
=

M3�

⇧⇧⇧⇧⇤

3
1
1
0
0

⇥

⌃⌃⌃⌃⌅



Firing, in vector notation
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M0
t3�⇥ M1

t4�⇥ M2
t2�⇥ M3

M0�

⇧⇧⇧⇧⇤
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⇧⇧⇧⇧⇤

4
0
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1
0
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+

t4�

⇧⇧⇧⇧⇤

0
0
0

�1
1

⇥
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=

M2�

⇧⇧⇧⇧⇤

4
0
0
0
1

⇥

⌃⌃⌃⌃⌅
+

t2�

⇧⇧⇧⇧⇤

�1
1
1
0

�1

⇥
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=
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3
1
1
0
0

⇥

⌃⌃⌃⌃⌅



Firing, in vector notation
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⇧⇧⇧⇧⇤
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⇧⇧⇧⇧⇤
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Vectors: notation
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Let v,w be two vectors over E

We write v � w if v(e) � w(e) for any e ⇥ E

We write v < w if v � w and v(e) < w(e) for some e ⇥ E

We let 0 denote any vector of any length whose entries are all 0

We write v � w if v(e) < w(e) for any e ⇥ E



Products
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Let x,y be two vectors of equal length n (written |x| = |y| = n)

We define their scalar product by

x · y =
n⌥

i=1

xiyi

[x1 x2 ... xn ] ·

�

⇧⇧⇧⇤

y1
y2
...
yn

⇥

⌃⌃⌃⌅
= x1y1 + x2y2 + ...+ xnyn



Products: example
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[ 0 1 �1 0 1 ]·

2

66664

1
1
2
0
1

3

77775
= (0·1)+(1·1)+(�1·2)+(0·0)+(1·1) = 0+1�2+0+1 = 0



Products: example
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[ 0 1 �1 0 1 ]·

2

66664

1
1
2
0
1

3

77775
= (0·1)+(1·1)+(�1·2)+(0·0)+(1·1) = 0+1�2+0+1 = 0



Products: example
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Products: example
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[ 0 1 �1 0 1 ]·

2

66664

1
1
2
0
1

3

77775
= (0·1)+(1·1)+(�1·2)+(0·0)+(1·1) = 0+1�2+0+1 = 0



Products
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Let x1,x2, ...,xk,y be all vectors of equal length

Let X be a (k � n)-matrix whose i-th row is xi

We define the product X · y as the (column) vector where

(X · y)i = xi · y

�

⇧⇧⇧⇤

x1

x2
...
xk

⇥

⌃⌃⌃⌅
·

�

⇧⇧⇧⇤

y1
y2
...
yn

⇥

⌃⌃⌃⌅
=

�

⇧⇧⇧⇤

x1 · y
x2 · y

...
xk · y

⇥

⌃⌃⌃⌅



Products: example
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�

⇧⇧⇧⇧⇤

1 �1 0 0 0
�1 1 0 0 0
0 1 �1 0 1
0 0 1 �1 �1
0 �1 0 1 0

⇥

⌃⌃⌃⌃⌅
·

�

⇧⇧⇧⇧⇤

1
1
2
0
1

⇥

⌃⌃⌃⌃⌅
=

�

⇧⇧⇧⇧⇤

1� 1
�1 + 1
1� 2 + 1
2� 1
�1

⇥

⌃⌃⌃⌃⌅
=

�

⇧⇧⇧⇧⇤

0
0
0
1

�1

⇥

⌃⌃⌃⌃⌅



Products
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Let x,y1,y2, ...,yk be all vectors of equal length

Let Y be a (n� k)-matrix whose i-th column is yi

We define the product x · Y as the (row) vector where

(x · Y )i = x · yi

[x1 x2 ... xn ] · [y1 y2 ... yk ] = [ x · y1 x · y2 ... x · yk ]



Products
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Let x1,x2, ...,xk,y1,y2, ...,yh be all vectors of equal length

Let X be a (k � n)-matrix whose i-th row is xi

Let Y be a (n� h)-matrix whose j-th column is yj

We define the product X · Y as the (k � h)-matrix where

(X · Y )i,j = xi · yj

�

⇧⇧⇧⇤

x1

x2
...
xk

⇥

⌃⌃⌃⌅
· [y1 y2 ... yh ] =

�

⇧⇧⇧⇤

x1 · y1 x1 · y2 ... x1 · yh

x2 · y1 x2 · y2 ... x2 · yh
...

...
...

xk · y1 xk · y2 ... xk · yh

⇥

⌃⌃⌃⌅



Vector perspective
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Let P = { p1, ..., pn } and T = { t1, ..., tm } 

The net (P,T,F) can be seen as a matrix (n x m) 

A marking is a vector of length n 

But we miss an ingredient: 

can a firing sequence be seen as a vector? 
(of limited length)



Parikh vectors of 
transition sequences
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Let N = (P, T, F ) be a net and � 2 T ⇤
a finite sequence of transitions.

The Parikh vector

~� : T ! N

of � maps every t 2 T to the number of its occurrences in �.



Parikh vector of a firing
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As a special case, for a sequence � = t (one single transition):

⇥t = [ 0 ... 0 1 0 ... 0 ]
t1 t tm



Parikh vector: example
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M0 = 4p1 + p3

M0
�=t3t5t3t4t2���������⇥ 3p1 + p2 + p3 ⇥� = [ 0 1 2 1 1 ]

M0
��=t3t4t2t3t4t2t3t5t3��������������⇥2p1 + 2p2 + p4 ⇥�� = [ 0 2 4 2 1 ]



First fact
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0
0
1
0
0

N · �tj = tj

�tjt1
p1

pn

t1

tm

tm

tj

tj



Second fact
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N · �tj = tj

If M
t�⇥ M � then M � = M + t

If M
t�⇥ M � then M � = M +N · �t



Third fact
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N · �tj = tj

If M
t�⇥ M � then M � = M + t

If M
t�⇥ M � then M � = M +N · �t



Marking equation lemma
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Lemma: If M
��⇥ M � then M � = M +N · ⇥�

The proof is by induction on the length of �

base (� = ✏): and therefore M 0 = M . The equality holds trivially, because ~� = 0

induction (� = �0t for some sequence �0
and transition t):

Let M
�0
�! M 00 t�! M 0

. We have: M 0 = M 00 + t

= M 00 +N · ~t
= M +N · ~�0 +N · ~t
= M +N · (~�0 + ~t)

= M +N · (
�!
�0t)

= M +N · ~�



Marking equation: 
example
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M0 = [ 4 0 1 0 0 ] � = t3t5t3t4t2 ⇥� = [ 0 1 2 1 1 ]

�

⇧⇧⇧⇧⇤

4
0
1
0
0

⇥

⌃⌃⌃⌃⌅
+

�

⇧⇧⇧⇧⇤

1 �1 0 0 0
�1 1 0 0 0
0 1 �1 0 1
0 0 1 �1 �1
0 �1 0 1 0

⇥

⌃⌃⌃⌃⌅
·

�

⇧⇧⇧⇧⇤

0
1
2
1
1

⇥

⌃⌃⌃⌃⌅
=

�

⇧⇧⇧⇧⇤

3
1
1
0
0

⇥

⌃⌃⌃⌃⌅

M0 N ~�



Marking equation 
lemma: consequences
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The marking reached by any occurrence 
sequence only depends on the number of 

occurrences of each transition 

It does not depend on the order in which 
transitions occur 

Every fireable permutation of the same 
transitions leads to the same marking 



Monotonicity lemma (1)
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The proof is by induction on the length of ⇥

base (⇥ = �): the empty sequence is always enabled, at any marking

induction (⇥ = ⇥�t for some sequence ⇥� and transition t):

Let M
��
�⇥ M �� t�⇥ M �.

By the marking equation lemma: M � = M �� +N · ⇤t

By the induction hypothesis M + L
��
�⇥ M �� + L

Moreover, M �� + L
t�⇥ because M �� t�⇥.

By the marking equation lemma: M �� + L
t�⇥ M �� + L+N · ⇤t = M � + L

Lemma: If M
��⇥ M � then M + L

��⇥ M � + L for any L



(from previous slides) 
Enabledness
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Proposition: M
��! i↵ M

�0
�! for every prefix �0

of �

()) immediate from definition

(() trivial if � is finite (� itself is a prefix of �)

When � is infinite: taken any i 2 N we need to prove that ti = �(i) is enabled
after the firing of the prefix �0 = t1t2...ti�1 of �.

But this is obvious, because

M
t1�! M1

t2�! ...
ti�1�! Mi�1

ti�! Mi

is also a finite prefix of � and therefore Mi�1
ti�!



Monotonicity lemma (2)
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Lemma: If M
��⇥ then M + L

��⇥ for any L

If � is finite then the thesis follows from monotonicity lemma 1

If � is infinite, then it su�ces to prove that:

M + L
��
�⇥ for any finite prefix �� of �

Take any such prefix ��. Then, M
��
�⇥ (because M

��⇥)

By the marking equation lemma, M
��
�⇥ M +N · ⇥��.

By monotonicity lemma 1, M + L
��
�⇥ M +N · ⇥�� + L

Hence M + L
��
�⇥



Monotonicity lemma, 
intuitively
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If some activities can be done with less (resources),  
then the same activities can be done with more (resources) 

If we perform activities with more resources than needed, 
then the additional resources are preserved



Boundedness Lemma
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Lemma: If a system is bounded and M 2 [M0i with M ◆ M0,

then M = M0.

Let M0
��! M .

By M ◆ M0, there exists a marking L with M = M0 + L.

Let Mk = M0 + k · L for every k 2 N.

By the Monotonicity Lemma, we have:

M0
��! M1

��! M2 · · ·
i.e., Mk 2 [M0i for any k 2 N.

Since the system is bounded, it must be L = ;.



Boundedness lemma: 
consequences
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If we show that a marking M is reachable with 

then the system is not bounded 

M � M0



Repetition Lemma
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Lemma: If M
��! M 0 and M

��···���!, then M ✓ M 0.

We proceed by contradiction.

Suppose M 6✓ M 0
, i.e., there exist k > 0, p 2 P such that M 0(p) = M(p)� k.

By the Marking Equation Lemma we have M 0 = M +N · ~�.
Therefore (N · ~�)(p) = �k.

Let n = M(p) + 1 and �0 = � · · ·�| {z }
n

.

By hypothesis we have M
�0
�! M 00

,

and by the Marking Equation Lemma M 00(p) = M(p)� nk < 0, which is absurd.


