Methods for the specification and verification of business processes MPB (6 cfu, 295AA)

Roberto Bruni **<http://www.di.unipi.it/~bruni>**

10 - Invariants

Object

We introduce two relevant kinds of invariants for Petri nets

Free Choice Nets (book, optional reading) <https://www7.in.tum.de/~esparza/bookfc.html>

Puzzle time: tiling a chessboard with dominoes

Invariant

An invariant of a dynamic system is an assertion that holds at every reachable state

> Examples: liveness of a transition t deadlock freedom boundedness

Puzzle: from MI to MU

You can compose words using symbols **M**, **I**, **U**

Given the initial word **MI**, you can apply the following transformations, in any order, as many times as you like:

1. Add a **U** to the end of any string ending in **I** (e.g., **MI** to **MIU**). 2. Double the string after the **M** (e.g., **MIU** to **MIUIU**). 3. Replace any **III** with a **U** (e.g., **MUIIIU** to **MUUU**). 4. Remove any **UU** (e.g., **MUUU** to **MU**).

Can you transform **MI** to **MU**?

Structural invariants

In the case of Petri nets, it is possible to compute certain vectors of **rational** numbers(*) (directly from the structure of the net) (independently from the initial marking) which induce nice invariants, called

S-invariants

T-invariants

(*) it is not necessary to consider real-valued solutions, because incidence matrices only have integer entries

Why invariants?

Can be calculated efficiently (polynomial time for a basis)

Independent of initial marking

However, the main reason is didactical! You only truly understand a model if you think about it in terms of invariants!

S-invariants

S-invariant (aka place-invariant)

Definition: An **S-invariant** of a net N=(P,T,F) is a rational-valued solution **x** of the equation

$$
\mathbf{x}\cdot\mathbf{N}=\mathbf{0}
$$

Fundamental property of S-invariants

Proposition: Let I be an invariant of *N*.

For any $M \in [M_0 \rangle$ we have $I \cdot M = I \cdot M_0$

Fundamental property of S-invariants

Proposition: Let I be an invariant of *N*.

For any $M \in [M_0 \rangle$ we have $I \cdot M = I \cdot M_0$

 $\textsf{Since }M\in\lbrack M_{0}\text{ }\rangle\text{, there is }\sigma\text{ s.t. }M_{0}\text{,}$ σ $\longrightarrow M$ By the marking equation: $M = M_0 + \mathbf{N} \cdot \vec{\sigma}$

$$
\begin{array}{lcl} \text{Therefore:} & {\mathbf{I}} \cdot M &=& {\mathbf{I}} \cdot (M_0 + {\mathbf{N}} \cdot \vec{\sigma}) \\ &=& {\mathbf{I}} \cdot M_0 + {\mathbf{I}} \cdot {\mathbf{N}} \cdot \vec{\sigma} \\ &=& {\mathbf{I}} \cdot M_0 + {\mathbf{0}} \cdot \vec{\sigma} \\ &=& {\mathbf{I}} \cdot M_0 \end{array}
$$

Place-invariant, intuitively

A place-invariant assigns a **weight to each place** such that the weighted token sum remains constant during any computation

For example, you can imagine that tokens are coins, places are the different kinds of available coins, the S-invariant assigns a value to each coin: the value of a marking is the sum of the values of the tokens/coins in it and it is not changed by firings

Place-invariant, intuitively

A place-invariant assigns a **weight to each place** such that the weighted token sum remains constant during any computation

For example, you can imagine that tokens are molecules, places are different kinds of molecules, the S-invariant assigns the number of atoms needed to

form each molecule:

the overall number of atoms is not changed by firings

Alternative definition of S-invariant

Proposition:

A mapping $I: P \to \mathbb{Q}$ is an S-invariant of N iff for any $t \in T$:

$$
\sum_{p \in \bullet t} \mathbf{I}(p) = \sum_{p \in t \bullet} \mathbf{I}(p)
$$

Exercise

Prove the proposition about the alternative characterization of S-invariants

Consequence of alternative definition

Very useful in proving S-invariance!

The check is possible without constructing the incidence matrix

Question time

Which of the following are S-invariants?

Question time

Which of the following are S-invariants?

Exercises

Do S-invariants depend on the initial marking?

Can the two nets below have different S-invariants?

Exercises

Define two (linearly independent) S-invariants for each of the nets below

S-invariants and system properties

Semi-positive S-invariants

The S-invariant I is semi-positive if $I > 0$ (i.e. $I \geq 0$ and $I \neq 0$)

The support of I is: $\langle I \rangle = \{ p | I(p) > 0 \}$

The S-invariant I is **positive** if $I \succ 0$ (i.e. $I(p) > 0$ for any place $p \in P$) (i.e. $\langle I \rangle = P$)

A (semi-positive) S-invariant whose coefficients are all 0 and 1 is called **uniform**

Note

Notation:
$$
\bullet S = \bigcup_{s \in S} \bullet s
$$

Every semi-positive invariant satisfies the equation

$$
\bullet \langle \mathbf{I} \rangle = \langle \mathbf{I} \rangle \bullet
$$

(the result holds for both S-invariant and T-invariant)

(**pre-sets of support equal post-sets of support**)

A sufficient condition for boundedness

Theorem:

If (P, T, F, M_0) has a positive S-invariant then it is bounded

Let $M \in [M_0 \rangle$ and let I be a positive S-invariant.

Let $p \in P$. Then $I(p)M(p) \leq I \cdot M = I \cdot M_0$

Since I is positive, we can divide by I(*p*): $M(p) \leq (\mathbf{I} \cdot M_0)/\mathbf{I}(p)$

 $\mathbf{I} \cdot M = \sum \mathbf{I}(q) M(q)$ *q*∈*P*

Consequence of previous theorem

By exhibiting a positive S-invariant we can prove that the system is **bounded for any initial marking**

Example

To prove that the system is bounded we can just exhibit a positive S-invariant

$$
I = [1 \ 1 \ 2]
$$

Exercises

Find a positive S-invariant for the net below

A necessary condition for liveness

Theorem:

If (P, T, F, M_0) is live then for every semi-positive invariant I :

$$
\mathbf{I} \cdot M_0 > 0
$$

Let $p \in \langle I \rangle$ and take any $t \in \bullet p \cup p \bullet$.

By liveness, there are $M, M' \in [M_0\,$ with $M \stackrel{t}{\longrightarrow} M'$

 T hen, $M(p) > 0$ (if $t \in p\bullet$) or $M'(p) > 0$ (if $t \in \bullet p$)

If $M(p) > 0$, then $I \cdot M \ge I(p)M(p) > 0$ If $M'(p) > 0$, then $\mathbf{I} \cdot M' \ge \mathbf{I}(p)M'(p) > 0$

In any case, $\mathbf{I} \cdot M_0 = \mathbf{I} \cdot M = \mathbf{I} \cdot M' > 0$

Consequence of previous theorem

If we find a semi-positive invariant such that

$$
\mathbf{I} \cdot M_0 = 0
$$

Then we can conclude that the system **is not live**

Example

It is immediate to check the counter-example

Markings that agree on all S-invariant

Definition: M and M' **agree on all S-invariants** if for every S-invariant **I** we have **I**⋅M = **I**⋅M'

> **Note**: by properties of linear algebra, this corresponds to require that the equation on **y** M + **N**⋅**y** = M' has some rational-valued solution

Remark: In general, there exist M and M' that agree an all S-invariants but such that none of them is reachable from the other

A necessary condition for reachability

Reachability is decidable, but EXPSPACE-hard

S-invariants provide a preliminary check that can be computed efficiently

Let (P, T, F, M_0) be a system.

If there is an S-invariant I s.t. $\mathbf{I} \cdot M \neq \mathbf{I} \cdot M_0$ then $M \not\in M_0$ \rangle

If the equation $\mathbf{N}\cdot\mathbf{y}=M\!-\!M_0$ has no rational-valued solution, then $M\not\in\lbrack M_0\rbrack$

S-invariants: recap

Positive S-invariant \Rightarrow boundedness Unboundedness \implies no positive S-invariant

Semi-positive S-invariant **I** and liveness => **I**⋅M0 > 0 Semi-positive S-invariant **I** and **I**⋅M₀ = 0 => non-live

S-invariant **I** and M reachable => **I**⋅M = **I**⋅M0 S-invariant I and $I \cdot M \neq I \cdot M_0$ => M not reachable

Exercises

Can you find a positive S-invariant?

Exercises

Prove that the system is not live by exhibiting a suitable S-invariant

T-invariants

Dual reasoning

The S-invariants of a net N are vectors satisfying the equation

 $\mathbf{x} \cdot \mathbf{N} = 0$

It seems natural to ask if we can find some interesting properties also for the vectors satisfying the equation

$$
\mathbf{N}\cdot\mathbf{y}=\mathbf{0}
$$

T-invariant (aka transition-invariant)

Definition: A **T-invariant** of a net N=(P,T,F) is a rational-valued solution **y** of the equation

$$
\mathbf{N}\cdot\mathbf{y}=\mathbf{0}
$$

Fundamental property of T-invariants

Proposition: Let $M \stackrel{\sigma}{\rightharpoonup}$ $\longrightarrow M'.$

The Parikh vector $\vec{\sigma}$ is a T-invariant iff $M'=M$

 \Rightarrow) By the marking equation lemma $M' = M + {\bf N} \cdot \vec{\sigma}$ Since $\vec{\sigma}$ is a T-invariant $\mathbf{N} \cdot \vec{\sigma} = \mathbf{0}$, thus $M' = M$.

 \leftarrow) If $M \stackrel{\sigma}{\longrightarrow} M$, by the marking equation lemma $M = M + \mathbf{N} \cdot \vec{\sigma}$ Thus $\mathbf{N} \cdot \vec{\sigma} = M - M = \mathbf{0}$ and $\vec{\sigma}$ is a T-invariant

Transition-invariant, intuitively

A transition-invariant assigns a **number of occurrences to each transition** such that any occurrence sequence comprising exactly those transitions leads to the same marking where it started (independently from the order of execution)

Alternative definition of T-invariant

Proposition:

A mapping $J: T \to \mathbb{Q}$ is a T-invariant of N iff for any $p \in P$:

$$
\sum_{t \in \bullet p} \mathbf{J}(t) = \sum_{t \in p\bullet} \mathbf{J}(t)
$$

Question time

Which of the following are T-invariants?

$$
\begin{array}{cccccc}\n t_1 & t_2 & t_3 & t_4 & t_5 \\
[1 & 0 & 0 & 1 & 1] \\
[1 & 1 & 2 & 1 & 2] \\
[1 & 1 & 2 & 0 & 2] \\
[1 & 1 & 1 & 1 & 2] \\
[0 & 1 & 1 & 0 & 1]\n \end{array}
$$

$$
\forall p \in P, \sum_{t \in \bullet p} \mathbf{J}(t) \stackrel{?}{=} \sum_{t \in p\bullet} \mathbf{J}(t)
$$

T-invariants and system properties

Pigeonhole principle

If n items are put into m containers, with $n > m$, then at least one container must contain more than one item

Reproduction lemma

Lemma: Let (P, T, F, M_0) be a bounded system. If M_0 σ \longrightarrow for some infinite sequence σ , then there is a semi-positive T-invariant J such that $\langle J \rangle \subseteq \{ t | t \in \sigma \}$.

Assume
$$
\sigma = t_1 t_2 t_3 ...
$$
 and $M_0 \xrightarrow{t_1} M_1 \xrightarrow{t_2} M_2 \xrightarrow{t_3} ...$

By boundedness: $[M_0\rangle$ is finite.

By the pigeonhole principle, there are $0 \leq i < j$ s.t. $M_i = M_j$ Let $\sigma' = t_{i+1}...t_j$. Then M_i σ' \longrightarrow $M_j = M_i$

By the marking equation lemma: $\vec{\sigma'}$ is a T-invariant. (fund. prop. of T-inv.) It is semi-positive, because σ' is not empty $(i < j)$. Clearly, $\langle J \rangle$ only includes transitions in σ .

Boundedness, liveness and positive T-invariant

Theorem: If a bounded system is live, then it has a positive T-invariant

By boundedness: $|M_0\rangle$ is finite and we let $k = |[M_0\rangle|$.

By liveness: $M_0 \stackrel{\sigma_1}{\longrightarrow} M_1$ with $\vec{\sigma_1}(t) > 0$ for any $t \in T$ Similarly: $M_1 \stackrel{\sigma_2}{\longrightarrow} M_2$ with $\vec{\sigma_2}(t) > 0$ for any $t \in T$ $\mathsf{Similarly:}\;\, M_0 \stackrel{\sigma_1}{\longrightarrow} M_1 \stackrel{\sigma_2}{\longrightarrow} M_2...\stackrel{\sigma_k}{\longrightarrow} M_k$

By the pigeonhole principle, there are $0 \leq i < j \leq k$ s.t. $M_i = M_j$ Let $\sigma = \sigma_{i+1}... \sigma_j$. Then M_i σ \longrightarrow $M_j = M_i$

By the marking equation lemma: $\vec{\sigma}$ is a T-invariant. (fund. prop. of T-inv.) It is positive, because $\vec{\sigma}(t) \geq \vec{\sigma}_i(t) > 0$ for any $t \in T$.

Corollary of previous theorem

Every live and bounded system has:

a reachable marking *M* and an occurrence sequence *M* $\longrightarrow M$

such that all transitions of N occur in σ .

Question time

Can you prove that a system is live and bounded by exhibiting a positive T-invariant?

Can you disprove that a system is live and bounded by showing that no positive T-invariant can be found?

Can you prove that a live system is bounded by exhibiting a positive T-invariant?

Exercises

Exhibit a system that has a positive T-invariant but is not live and bounded

Exhibit a live system that has a positive T-invariant but is not bounded