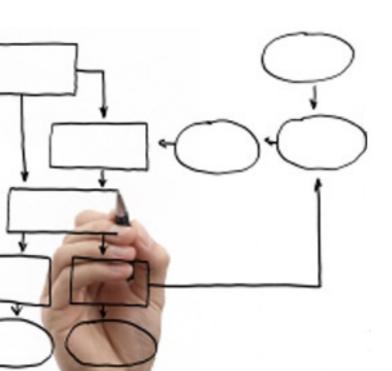
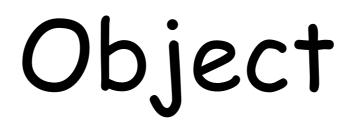
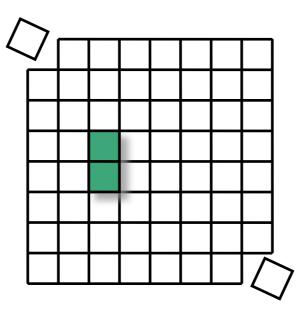
Business Processes Modelling MPB (6 cfu, 295AA)



Roberto Bruni http://www.di.unipi.it/~bruni

11 - Invariants

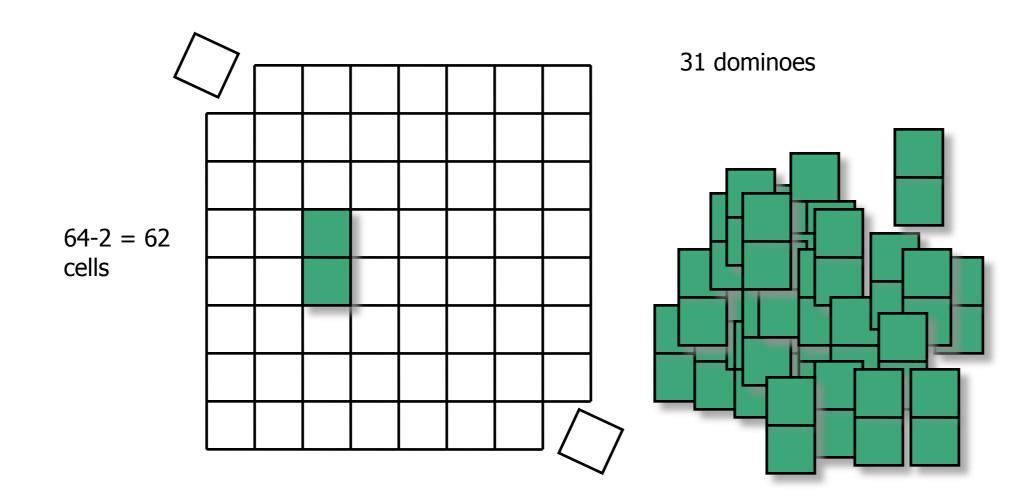




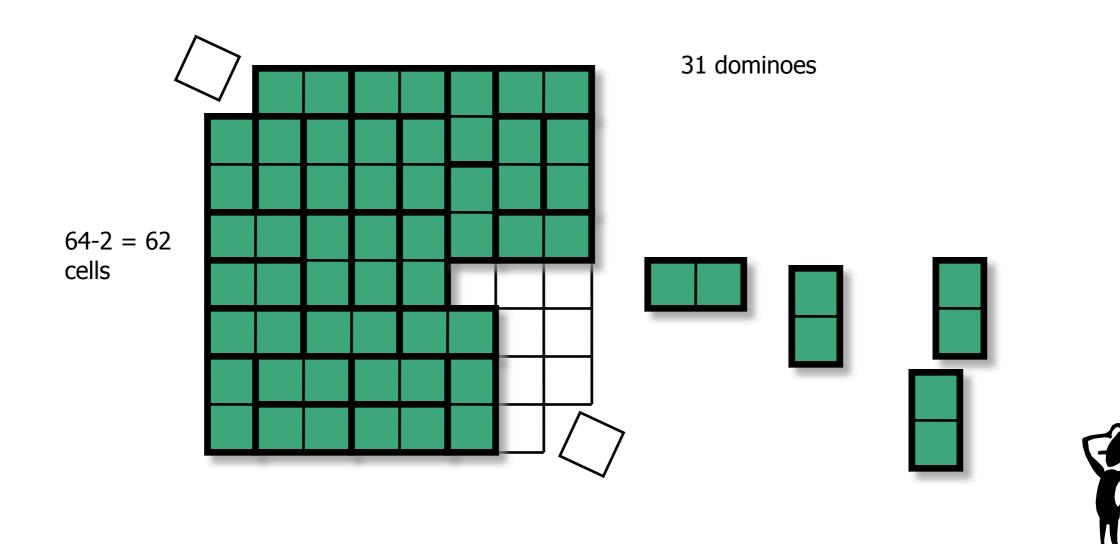
We introduce two relevant kinds of invariants for Petri nets

Free Choice Nets (book, optional reading) https://www7.in.tum.de/~esparza/bookfc.html

Puzzle time: tiling a chessboard with dominoes

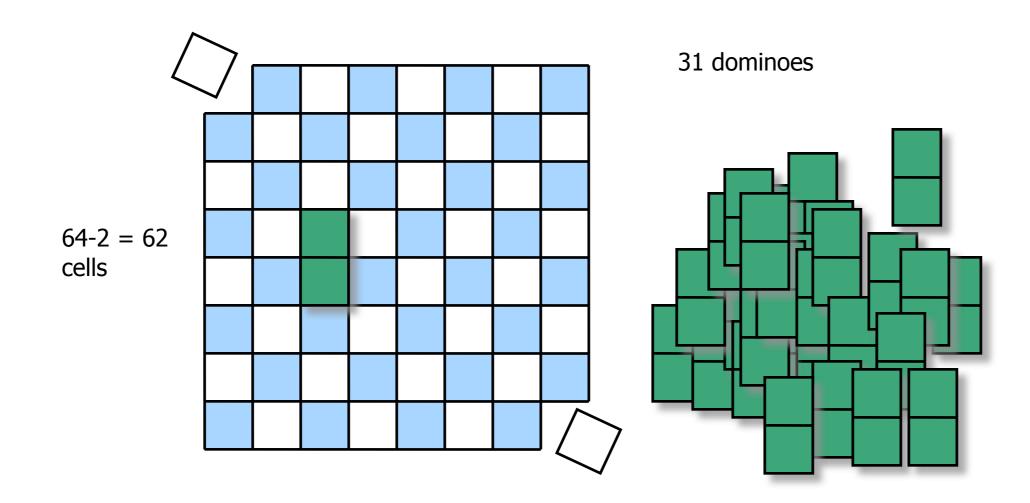


Puzzle time: tiling a chessboard with dominoes



4

Puzzle time: tiling a chessboard with dominoes



Invariant

An invariant of a dynamic system is an assertion that holds at every reachable state

Examples: liveness of a transition t deadlock freedom boundedness

Recall: Liveness, formally

(P, T, F, M_0)

 $\forall t \in T, \quad \forall M \in [M_0\rangle, \quad \exists M' \in [M\rangle, \quad M' \stackrel{t}{\longrightarrow}$

Liveness as invariant

Lemma

If (P, T, F, M_0) is live and $M \in [M_0)$, then (P, T, F, M) is live.

Let
$$t \in T$$
 and $M' \in [M\rangle$.

Since $M \in [M_0\rangle$, then $M' \in [M_0\rangle$.

Since (P, T, F, M_0) is live, $\exists M'' \in [M'\rangle$ with $M'' \stackrel{t}{\longrightarrow}$.

Therefore (P, T, F, M) is live.

Recall: Deadlock freedom, formally

(P, T, F, M_0)

 $\forall M \in [M_0\rangle, \quad \exists t \in T, \quad M \xrightarrow{t}$

Deadlock freedom as invariant

Lemma: If (P, T, F, M_0) is deadlock-free and $M \in [M_0\rangle$, then (P, T, F, M) is deadlock-free.

Let $M' \in [M\rangle$.

Since $M \in [M_0\rangle$, then $M' \in [M_0\rangle$.

Since (P, T, F, M_0) is deadlock-free, $\exists t \in T$ with $M' \stackrel{t}{\longrightarrow}$.

Therefore (P, T, F, M) is deadlock-free.

Exercise

Give the formal definition of Boundedness

Then prove that Boundedness is an invariant

Or give a counter-example

Exercise

Give the formal definition of Cyclicity

Then prove that Cyclicity is an invariant

Or give a counter-example

Puzzle: from MI to MU

You can compose words using symbols M, I, U

Given the initial word **MI**, you can apply the following transformations, in any order, as many times as you like:

Add a U to the end of any string ending in I (e.g., MI to MIU).
 Double the string after the M (e.g., MIU to MIUIU).
 Replace any III with a U (e.g., MUIIIU to MUUU).
 Remove any UU (e.g., MUUU to MU).

Can you transform **MI** to **MU**? (*Hint*: count the **I**s modulo 3)

Structural invariants

In the case of Petri nets, it is possible to compute certain vectors of **rational** numbers^(*) (directly from the structure of the net) (independently from the initial marking) which induce nice invariants, called

S-invariants

T-invariants

(*) it is not necessary to consider real-valued solutions, because incidence matrices only have integer entries

Why invariants?

Can be calculated efficiently (polynomial time for a basis)

Independent of initial marking

Structural property with behavioural consequences

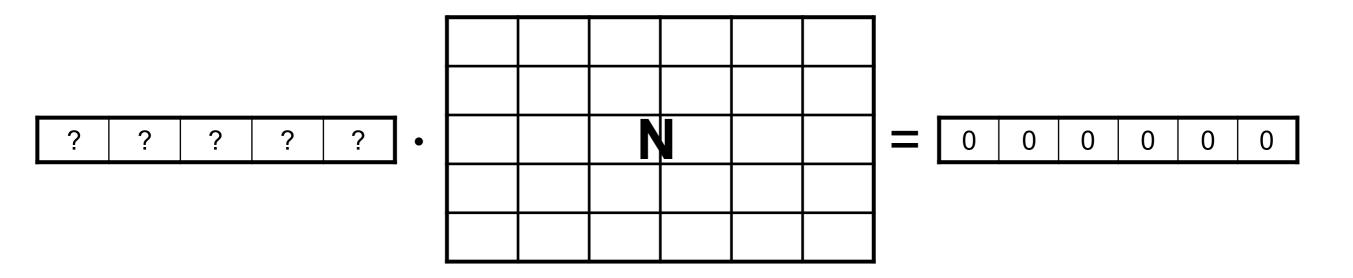
However, the main reason is didactical! You only truly understand a model if you think about it in terms of invariants!

S-invariants

S-invariant (aka place-invariant)

Definition: An **S-invariant** of a net N=(P,T,F) is a rational-valued solution **x** of the equation

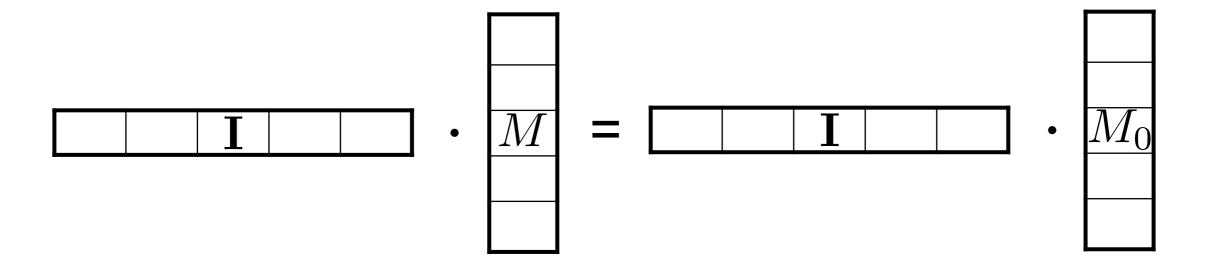
$$\mathbf{x} \cdot \mathbf{N} = \mathbf{0}$$



Fundamental property of S-invariants

Proposition: Let I be an invariant of N.

For any $M \in [M_0]$ we have $\mathbf{I} \cdot M = \mathbf{I} \cdot M_0$



Fundamental property of S-invariants

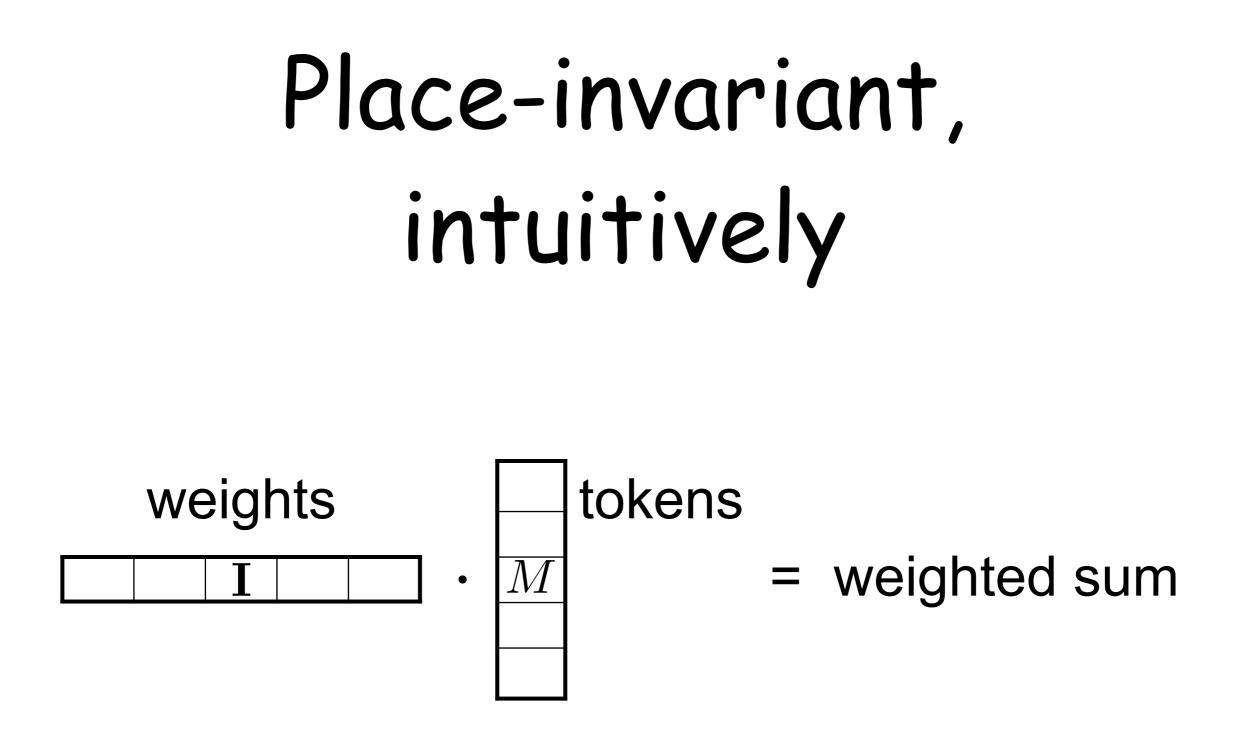
Proposition: Let I be an invariant of N.

For any $M \in [M_0]$ we have $\mathbf{I} \cdot M = \mathbf{I} \cdot M_0$

Since $M \in [M_0]$, there is σ s.t. $M_0 \xrightarrow{\sigma} M$ By the marking equation: $M = M_0 + \mathbf{N} \cdot \vec{\sigma}$

Therefore:
$$\mathbf{I} \cdot M = \mathbf{I} \cdot (M_0 + \mathbf{N} \cdot \vec{\sigma})$$

 $= \mathbf{I} \cdot M_0 + \mathbf{I} \cdot \mathbf{N} \cdot \vec{\sigma}$
 $= \mathbf{I} \cdot M_0 + \mathbf{0} \cdot \vec{\sigma}$
 $= \mathbf{I} \cdot M_0$



Place-invariant, intuitively

A place-invariant assigns a **weight to each place** such that the weighted token sum remains constant during any computation

For example, you can imagine that tokens are coins, places are the different kinds of available coins, the S-invariant assigns a value to each coin: the value of a marking is the sum of the values of the tokens/coins in it and it is not changed by firings

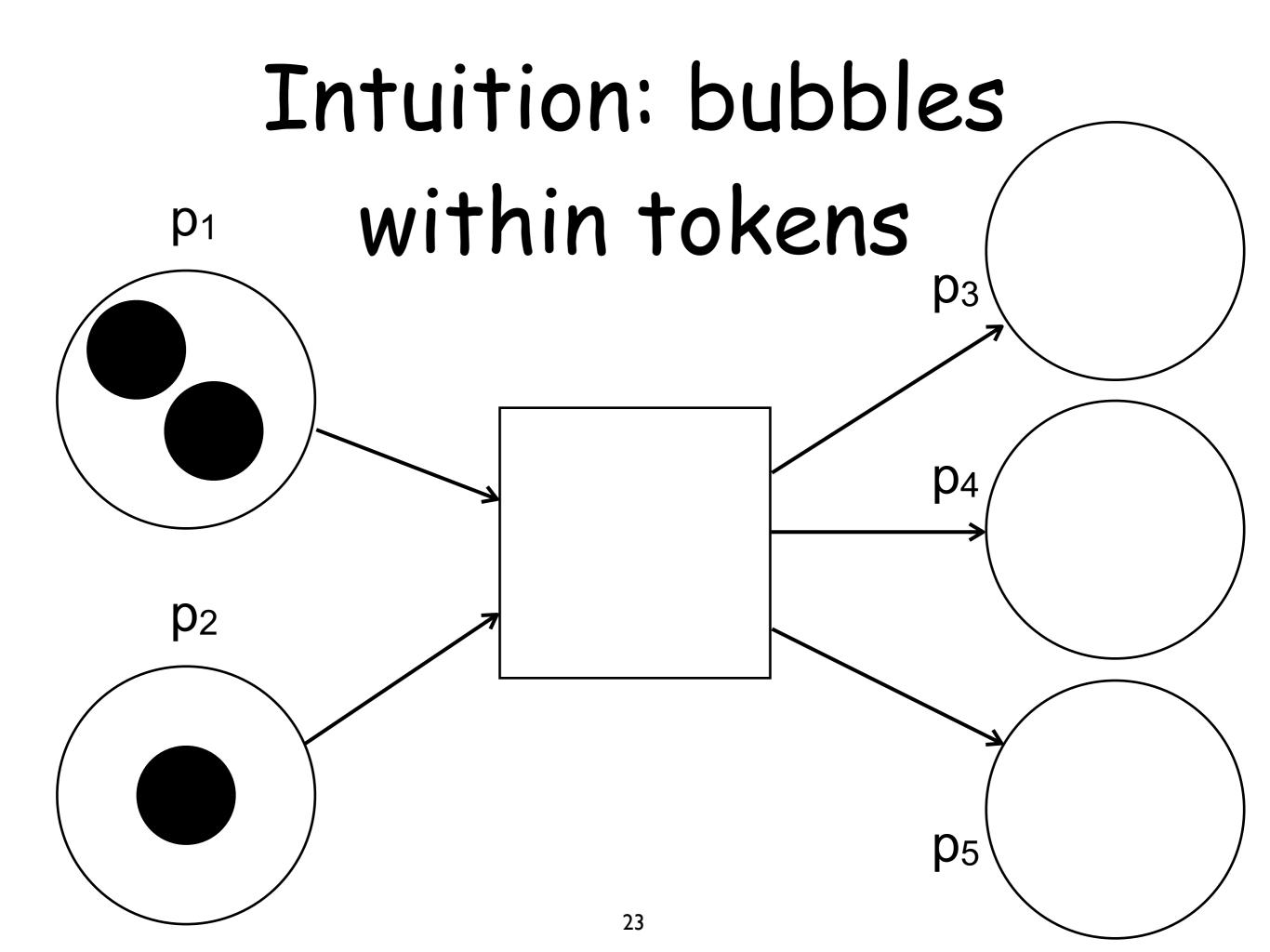
Place-invariant, intuitively

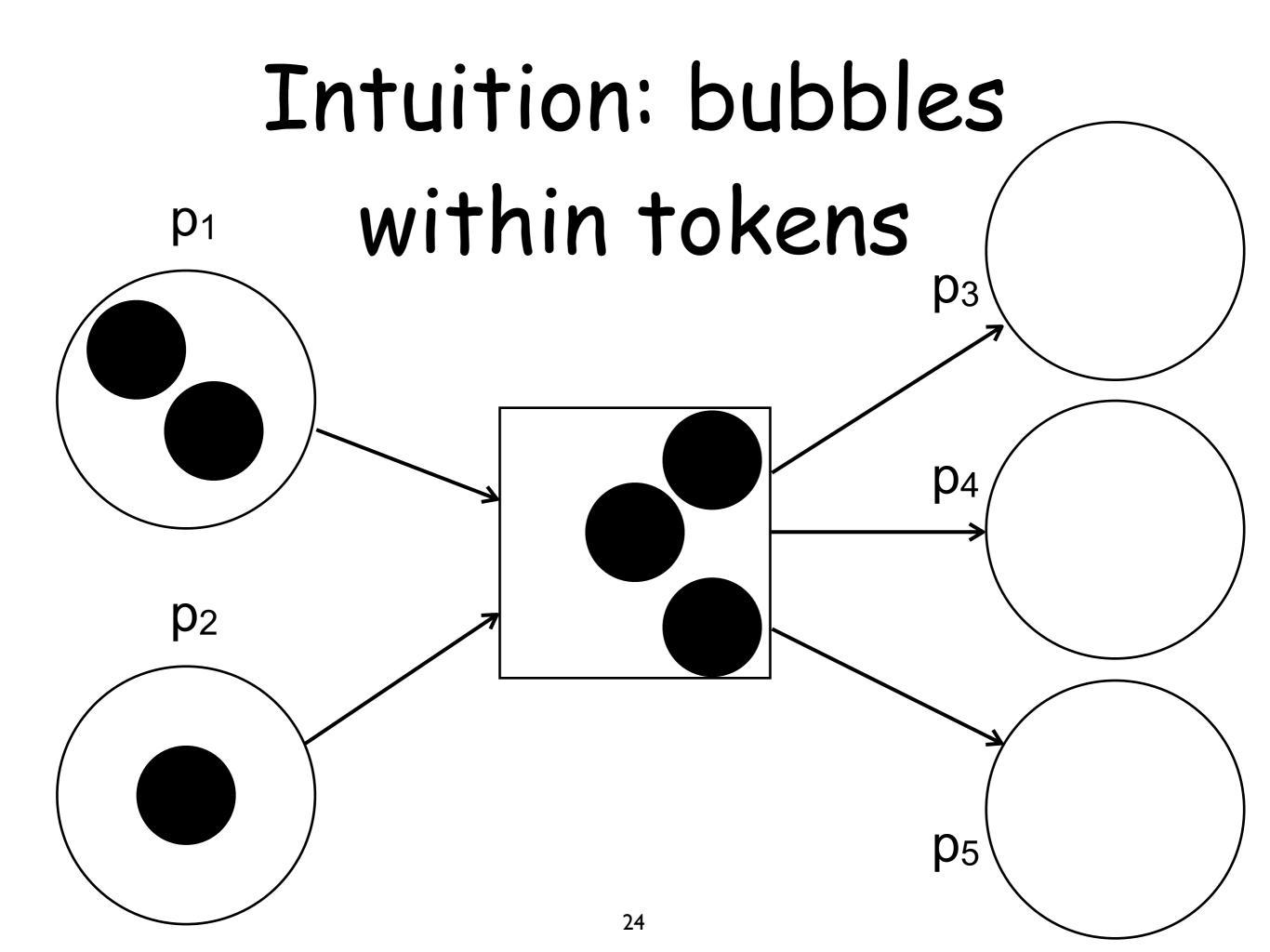
A place-invariant assigns a **weight to each place** such that the weighted token sum remains constant during any computation

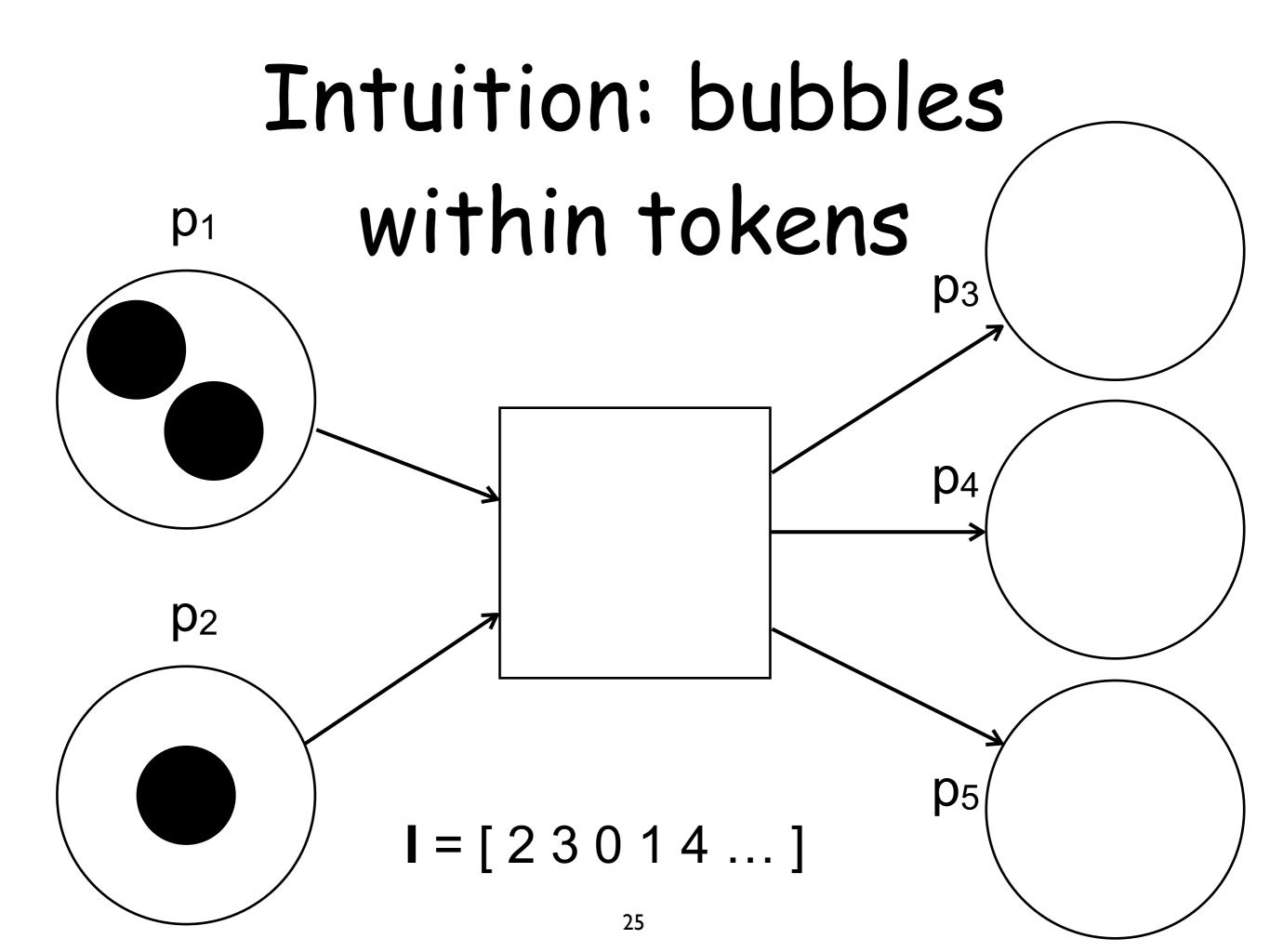
For example, you can imagine that tokens are molecules, places are different kinds of molecules,

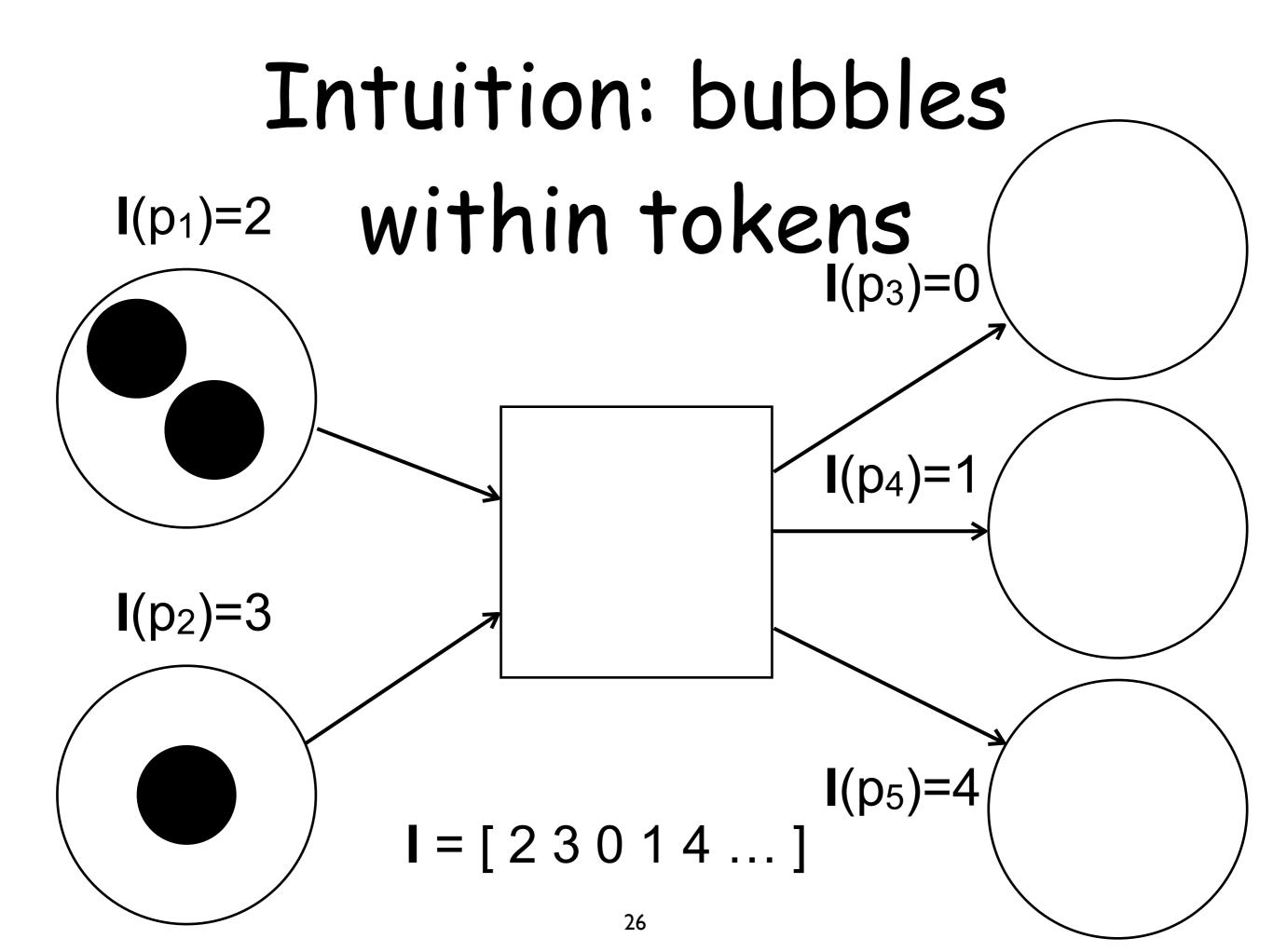
the S-invariant assigns the number of atoms needed to form each molecule:

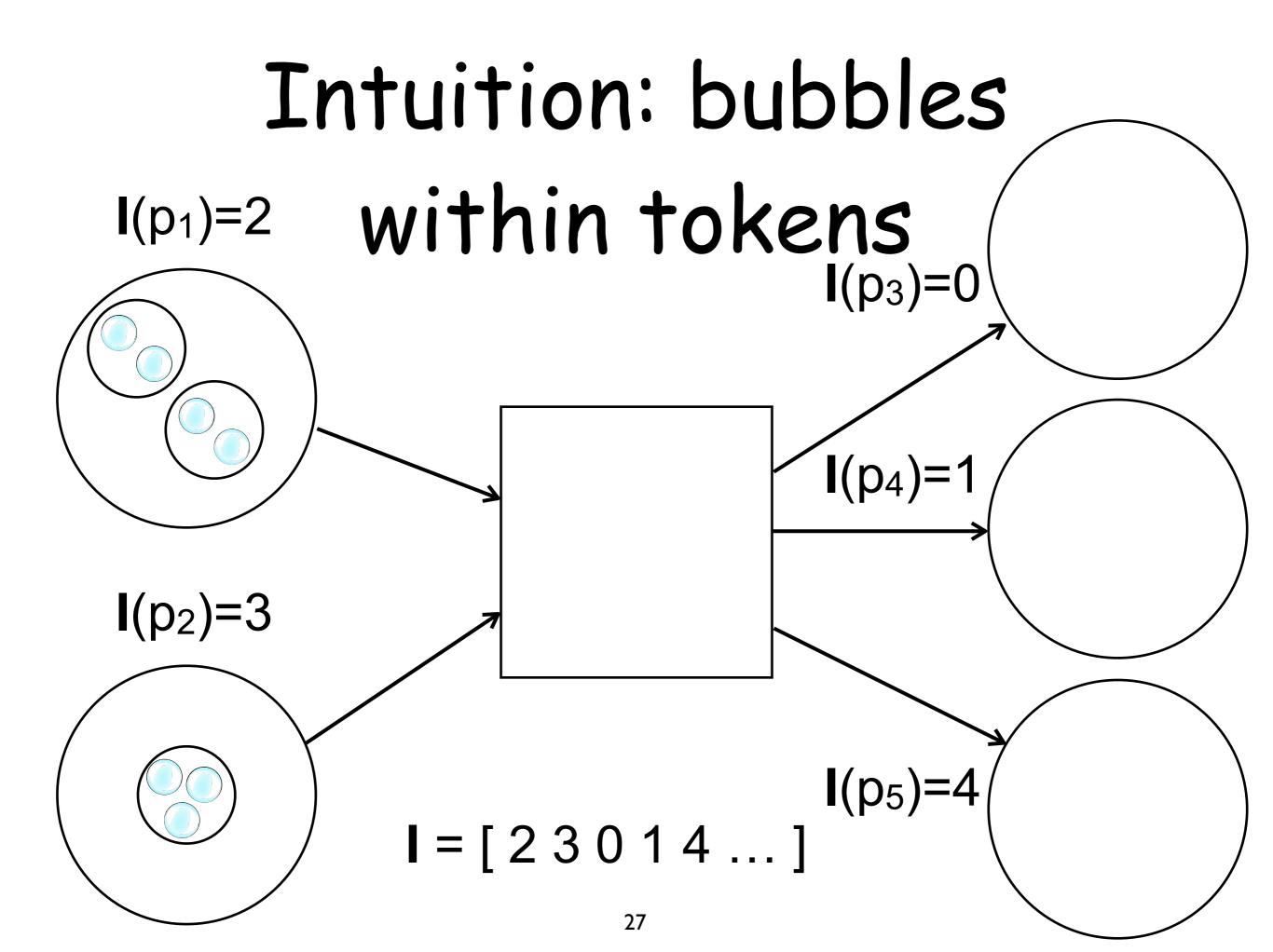
the overall number of atoms is not changed by firings

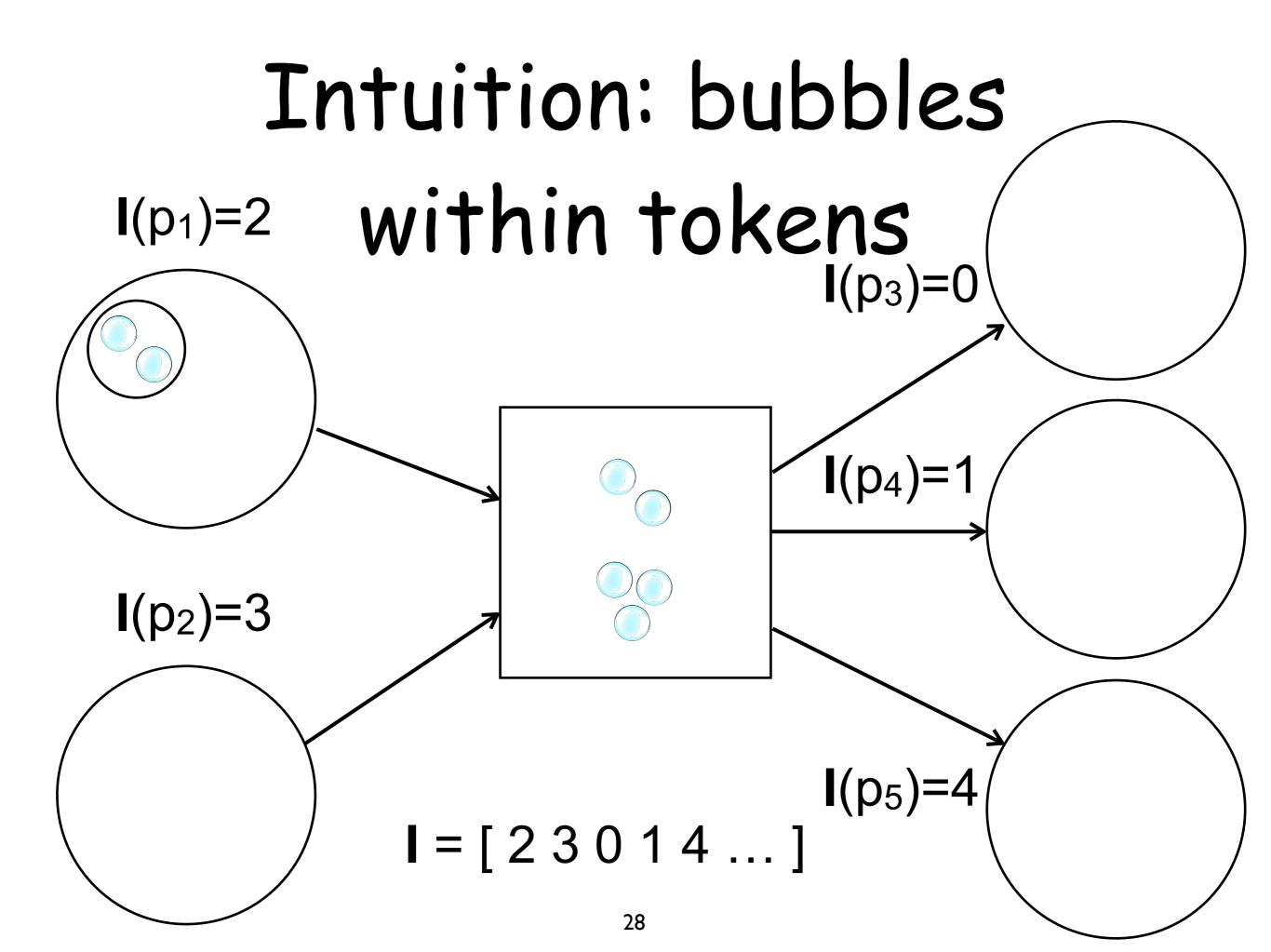


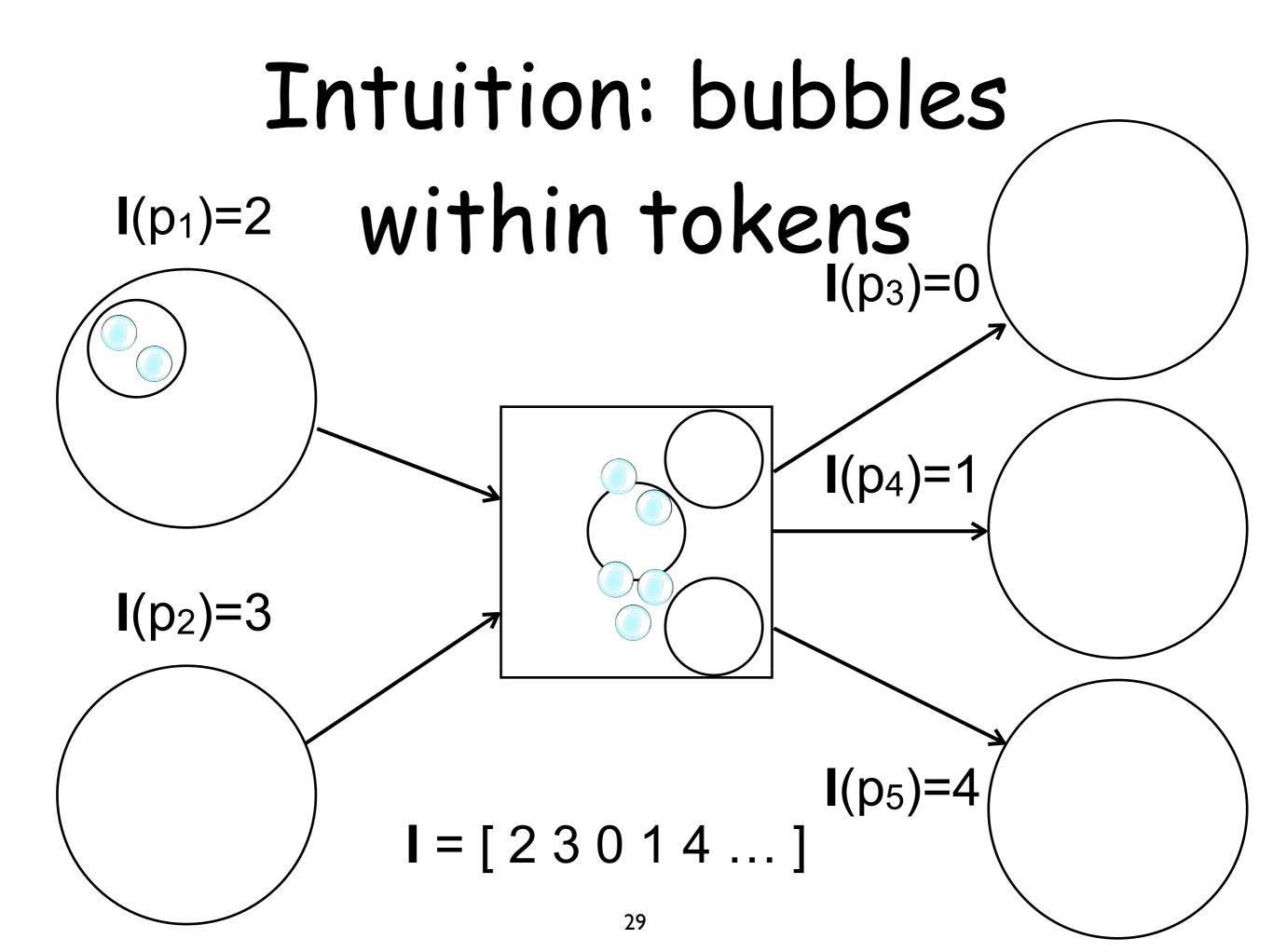


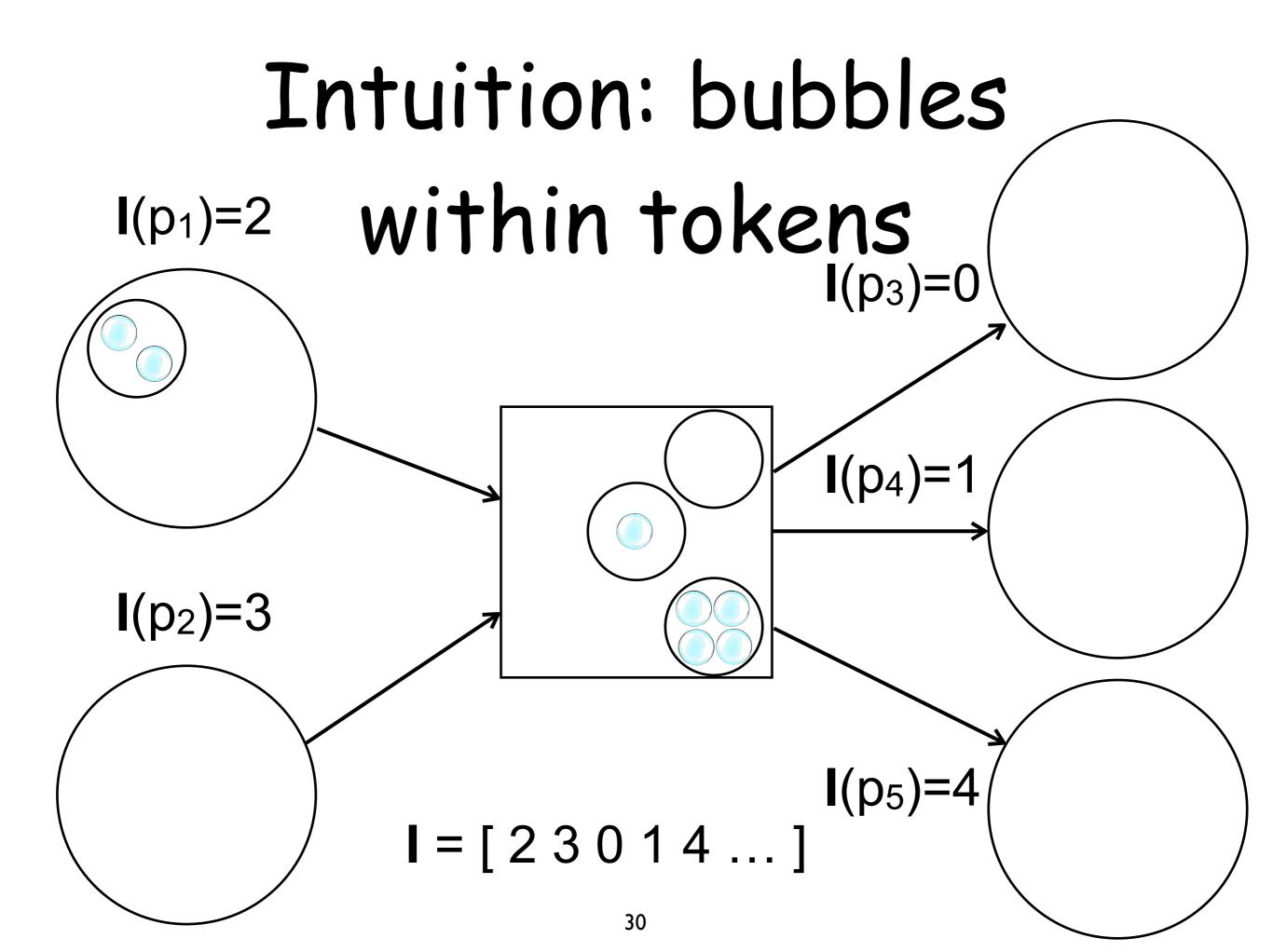


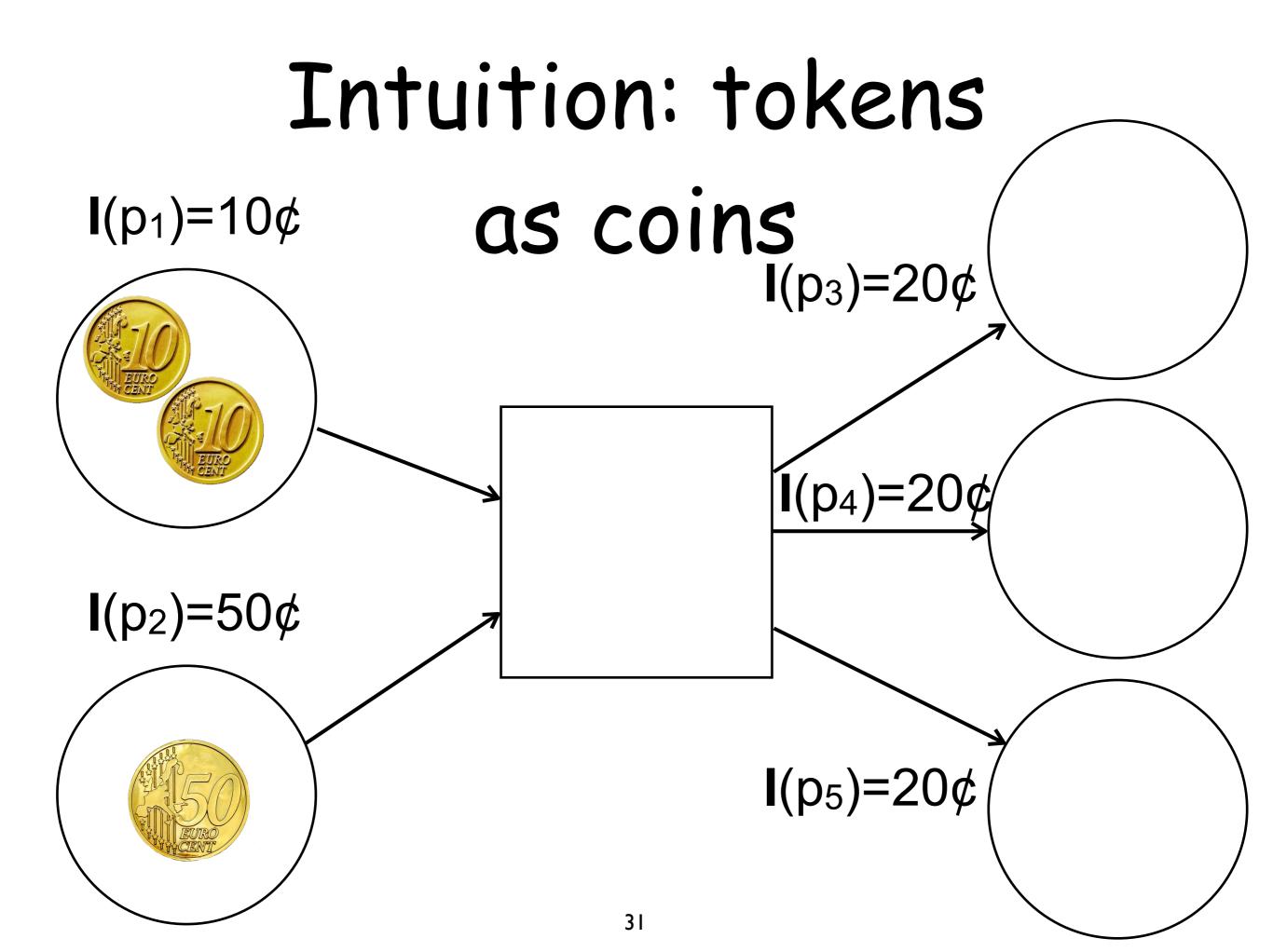


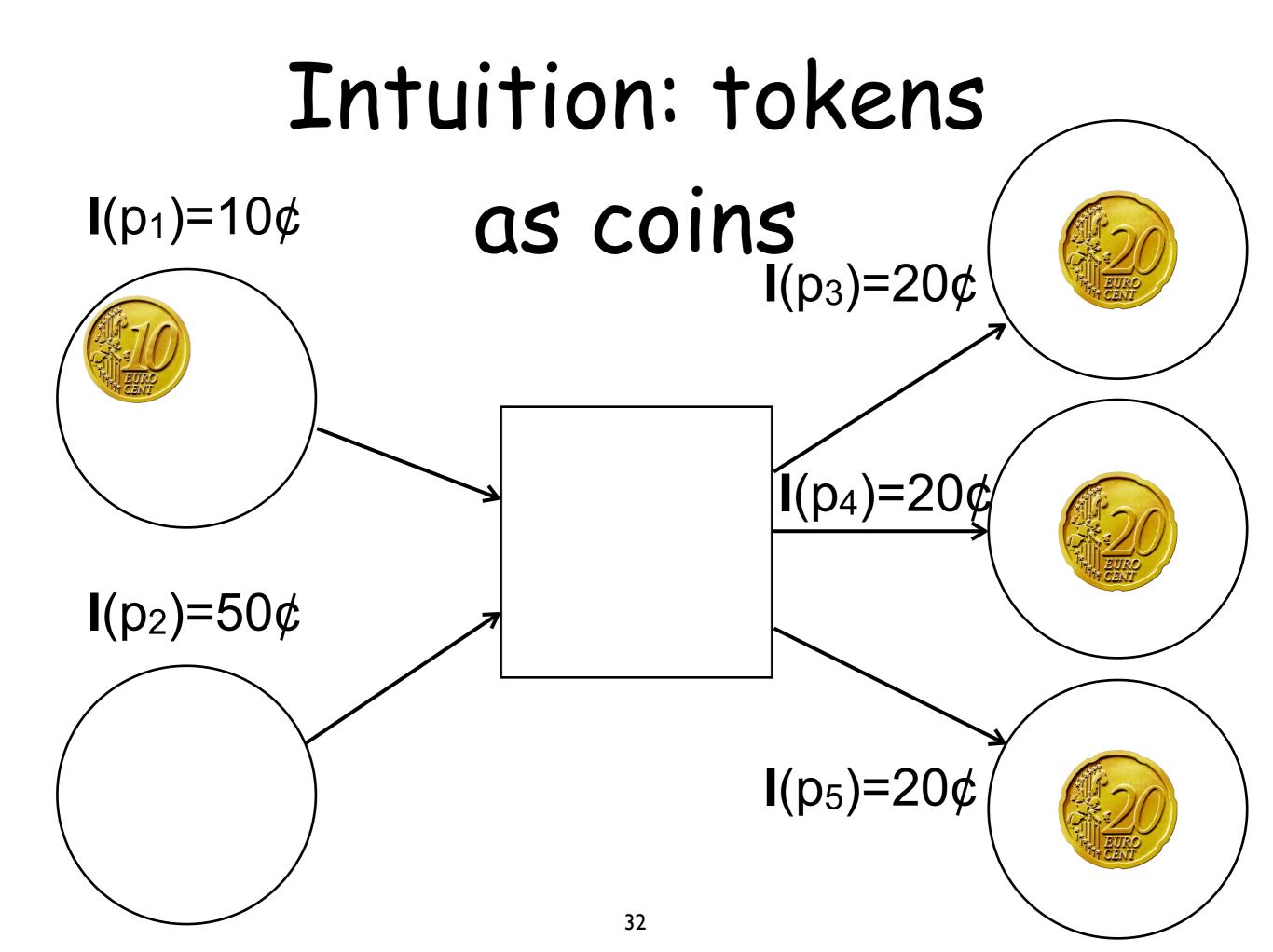












Linear combination

Proposition:

Any linear combination of S-invariants is an S-invariant

Take any two S-Invariants I_1 and I_2 and any two values k_1, k_2 . We want to prove that $k_1 I_1 + k_2 I_2$ is an S-invariant.

$$(k_1 \mathbf{I}_1 + k_2 \mathbf{I}_2) \cdot \mathbf{N} = k_1 \mathbf{I}_1 \cdot \mathbf{N} + k_2 \mathbf{I}_2 \cdot \mathbf{N}$$
$$= k_1 \mathbf{0} + k_2 \mathbf{0}$$
$$= \mathbf{0}$$

Alternative definition of S-invariant

Proposition:

A mapping $\mathbf{I}: P \to \mathbb{Q}$ is an S-invariant of N iff for any $t \in T$:

$$\sum_{p \in \bullet t} \mathbf{I}(p) = \sum_{p \in t \bullet} \mathbf{I}(p)$$

Exercise

Prove the proposition about the alternative characterization of S-invariants

Consequence of alternative definition

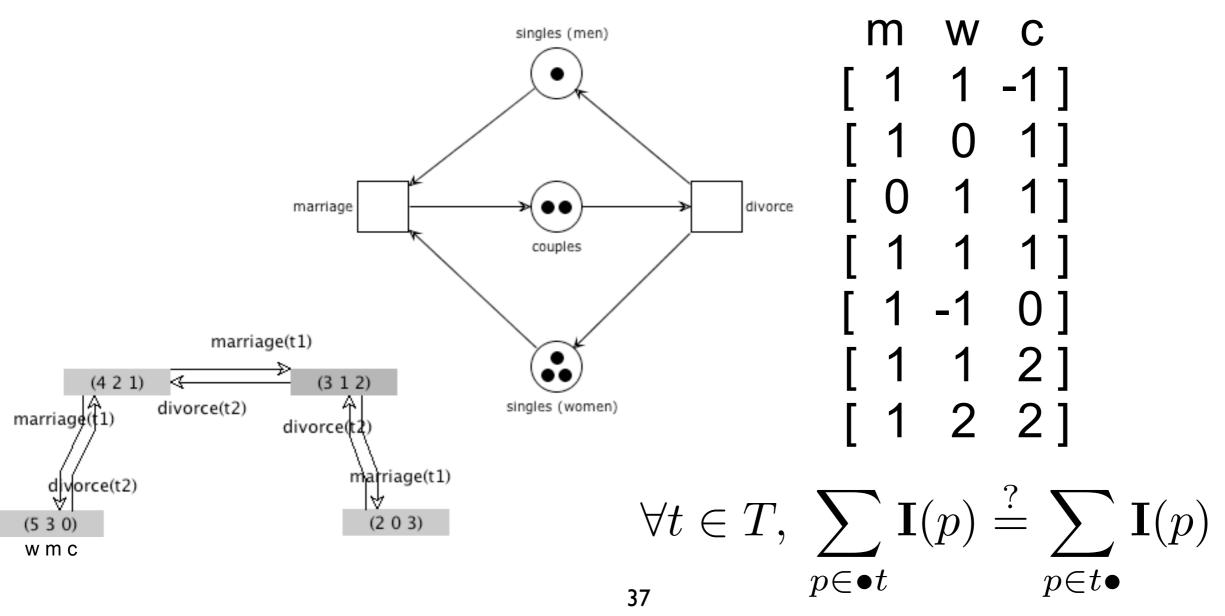
Very useful in proving S-invariance!

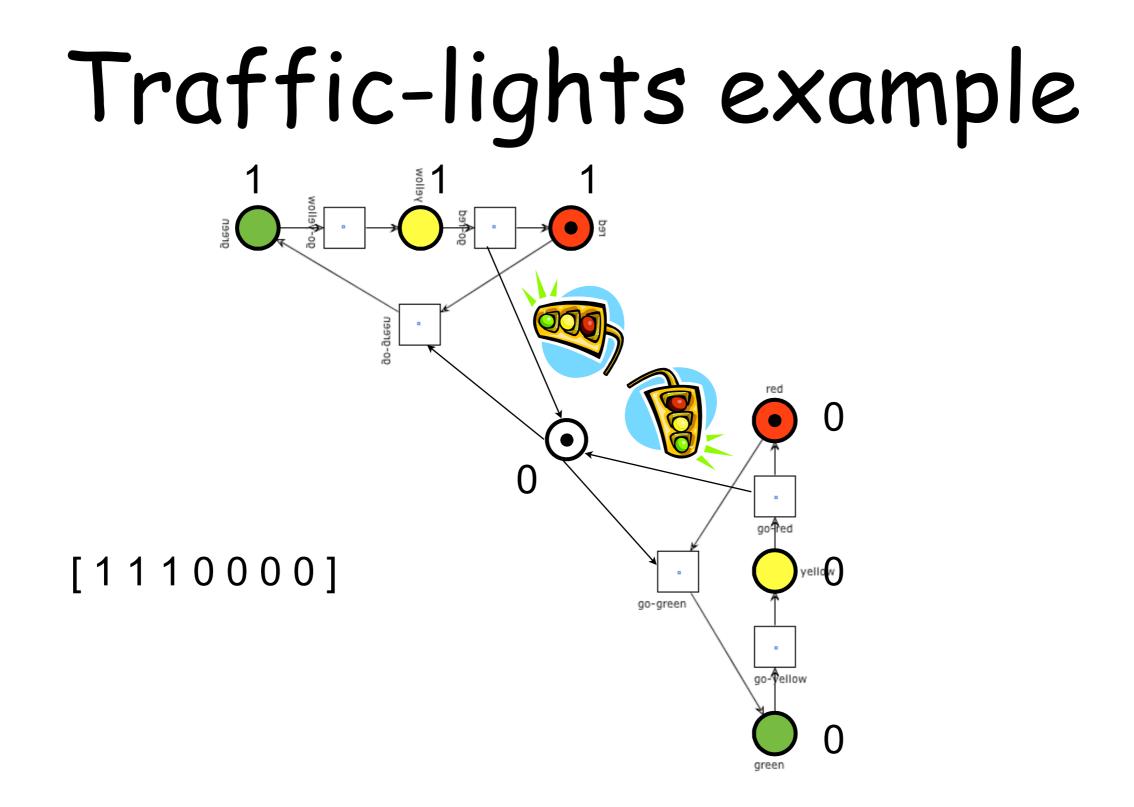
The check is possible without constructing the incidence matrix

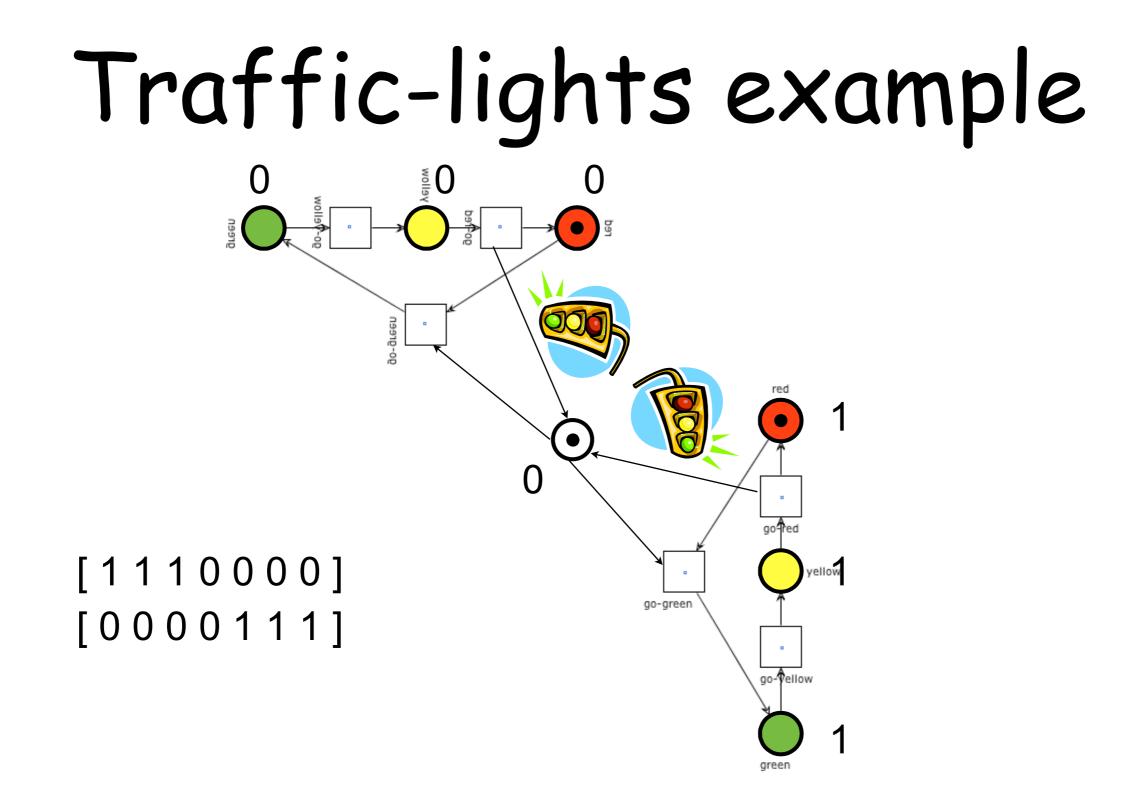
It can also help to build S-invariants directly over the picture

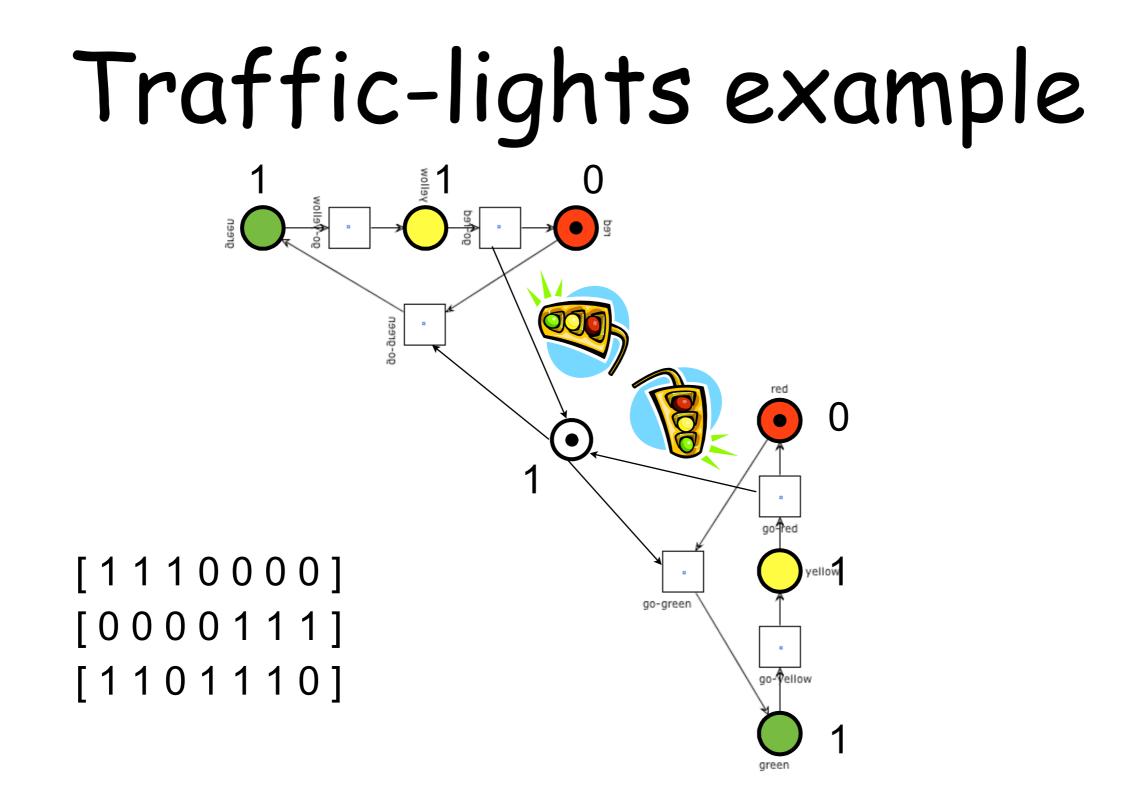
Question time

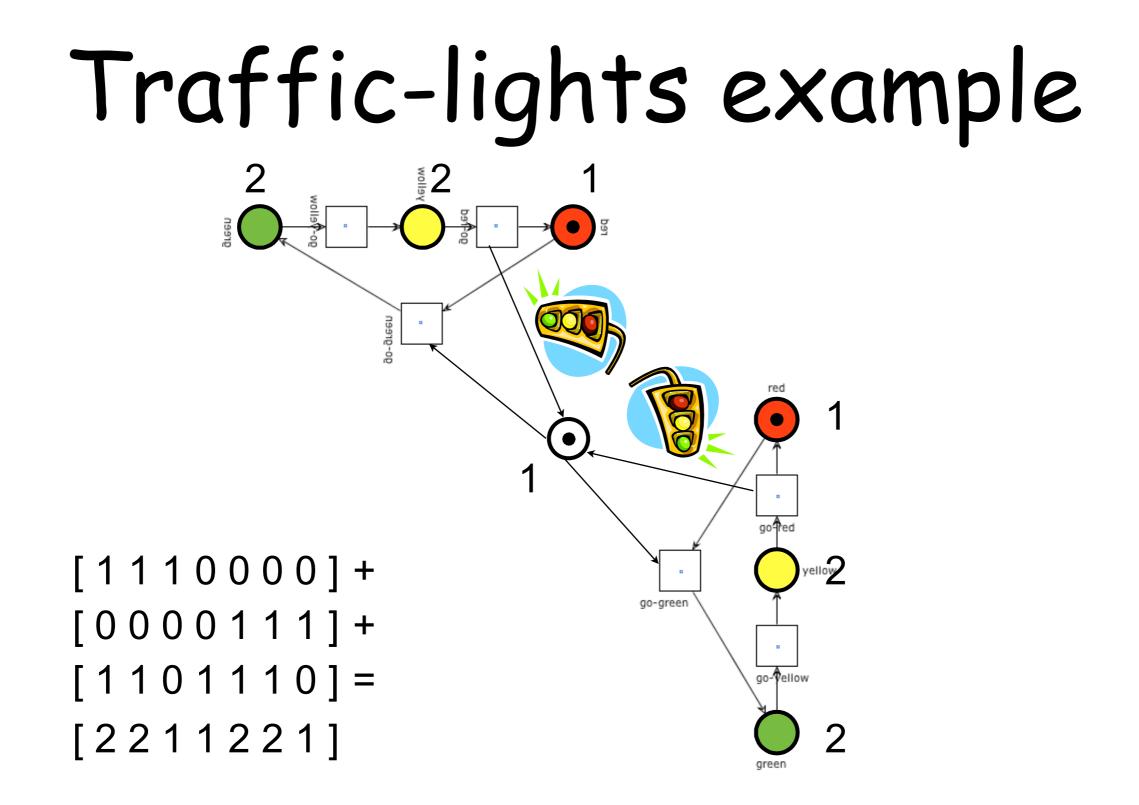
Which of the following are S-invariants?





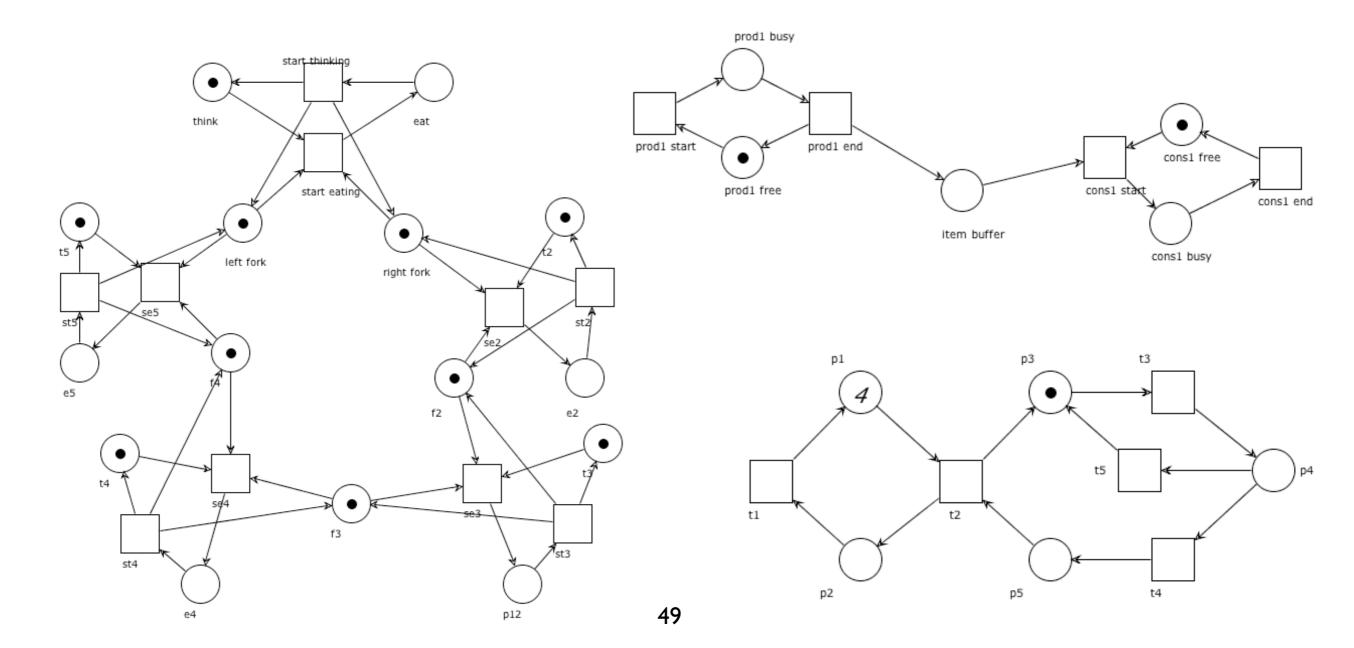






Exercises

Define two (linearly independent) S-invariants for each of the nets below



S-invariants and system properties

Semi-positive S-invariants

The support of I is: $\langle \mathbf{I} \rangle = \{ p \mid \mathbf{I}(p) > 0 \}$

The S-invariant I is **positive** if $\mathbf{I} \succ \mathbf{0}$ all entries are positive (i.e. $\mathbf{I}(p) > 0$ for any place $p \in P$) (i.e. $\langle \mathbf{I} \rangle = P$)

A (semi-positive) S-invariant whose coefficients are all 0 and 1 is called **uniform**

Note

Notation:
$$\bullet S = \bigcup_{s \in S} \bullet s$$

Every semi-positive invariant satisfies the equation

transitions that produce tokens in some places of the support $|\bullet\langle I\rangle = \langle I\rangle |\bullet\rangle$ transitions that consume tokens from some places of the support

pre-sets of support equal post-sets of support

(the result holds for both S-invariant and T-invariant)

A sufficient condition for boundedness

Theorem:

If (P, T, F, M_0) has a positive S-invariant then it is bounded

Let $M \in [M_0\rangle$ and let I be a positive S-invariant.

Let $p \in P$. Then $\mathbf{I}(p)M(p) \leq \mathbf{I} \cdot M = \mathbf{I} \cdot M_0$

Since I is positive, we can divide by I(p): $M(p) \leq (I \cdot M_0)/I(p)$

 $\mathbf{I} \cdot M = \sum_{q \in P} \mathbf{I}(q) M(q)$

Consequences of previous theorem

By exhibiting a positive S-invariant we can prove that the system is **bounded for any initial marking**

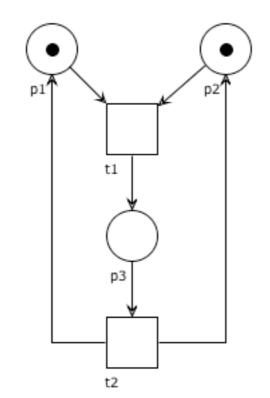
Note that all places in the support of a semi-positive S-invariant are **bounded for any initial marking**

$$M(p) \le rac{\mathbf{I} \cdot M_0}{\mathbf{I}(p)}$$

this value is independent from the reachable marking M

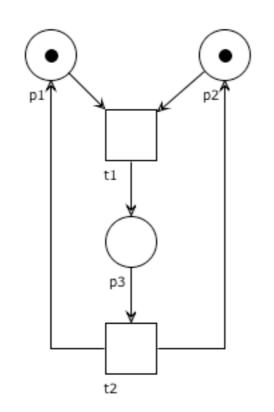
Example

To prove that the system is bounded we can just exhibit a positive S-invariant



Example

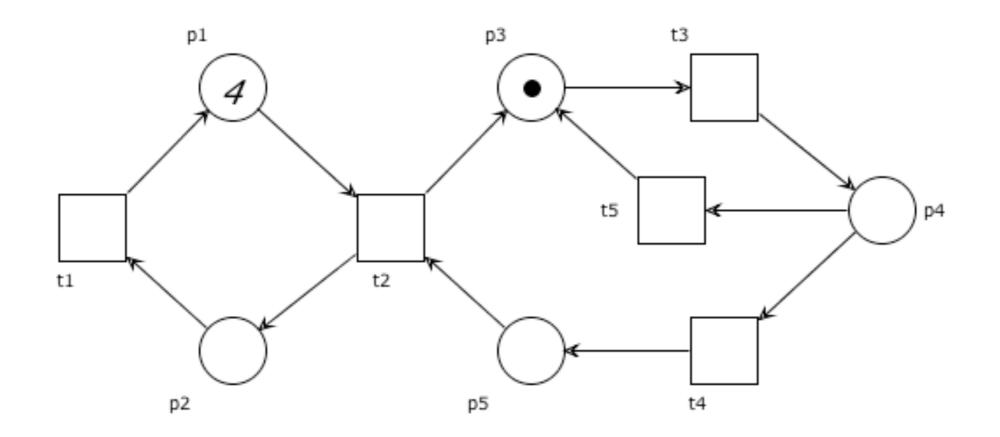
How many tokens are at most in p₃?



$$I = [1 \ 1 \ 2]$$
$$\frac{\mathbf{I} \cdot M_0}{\mathbf{I}(p_3)} = \frac{2}{2} = 1$$

Exercises

Find a positive S-invariant for the net below



A necessary condition for liveness

Theorem:

If (P, T, F, M_0) is live then for every semi-positive invariant I:

$$\mathbf{I} \cdot M_0 > 0$$

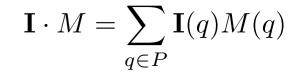
Let $p \in \langle \mathbf{I} \rangle$ and take any $t \in \bullet p \cup p \bullet$.

By liveness, there are $M, M' \in [M_0\rangle$ with $M \xrightarrow{t} M'$

Then, M(p) > 0 (if $t \in p\bullet$) or M'(p) > 0 (if $t \in \bullet p$)

If M(p) > 0, then $\mathbf{I} \cdot M \ge \mathbf{I}(p)M(p) > 0$ If M'(p) > 0, then $\mathbf{I} \cdot M' \ge \mathbf{I}(p)M'(p) > 0$

In any case, $\mathbf{I} \cdot M_0 = \mathbf{I} \cdot M = \mathbf{I} \cdot M' > 0$



Consequence of previous theorem

If we find a semi-positive invariant such that

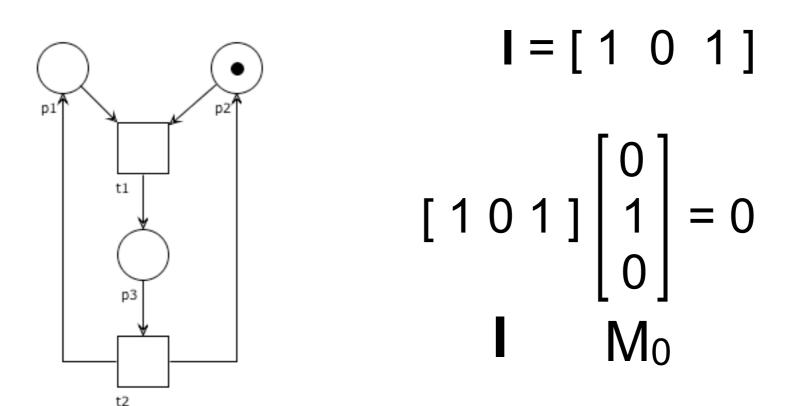
$$\mathbf{I} \cdot M_0 = 0$$

Then we can conclude that the system is not live

Example

the system is not live

It is immediate to check the counter-example



Markings that agree on all S-invariant

Definition: M and M' agree on all S-invariants if for every S-invariant I we have $I \cdot M = I \cdot M'$

> **Note**: by properties of linear algebra, this corresponds to require that the equation on \mathbf{y} $M + \mathbf{N} \cdot \mathbf{y} = M'$ has some rational-valued solution

Remark: In general, there can exist M and M' that agree on all S-invariants but such that none of them is reachable from the other

A necessary condition for reachability

Reachability is decidable, but computationally expensive (EXPSPACE-hard)

S-invariants provide a preliminary check that can be computed efficiently

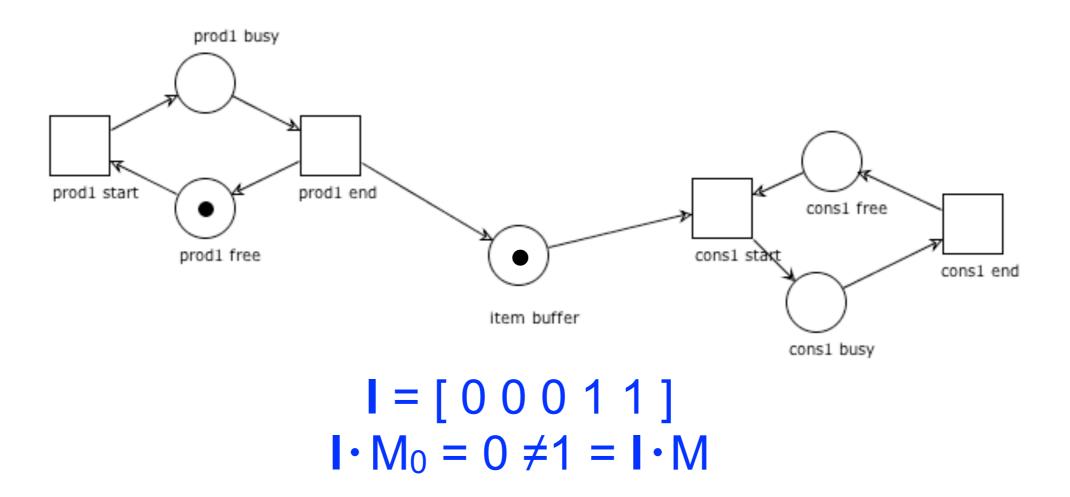
Let (P, T, F, M_0) be a system.

If there is an S-invariant I s.t. $\mathbf{I} \cdot M \neq \mathbf{I} \cdot M_0$ then $M \notin [M_0 \rangle$

If the equation $\mathbf{N} \cdot \mathbf{y} = M - M_0$ has no rational-valued solution, then $M \notin [M_0]$

Example

Prove that the marking M = prod1free + cons1busy is not reachable



S-invariants: recap

Positive S-invariant => boundedness Unboundedness => no positive S-invariant

Semi-positive S-invariant I and liveness $=> I \cdot M_0 > 0$ Semi-positive S-invariant I and $I \cdot M_0 = 0$ => non-live

S-invariant I and M reachable $= I \cdot M = I \cdot M_0$ S-invariant I and I $\cdot M \neq I \cdot M_0$ = M not reachable

S-invariants: pay attention to implication

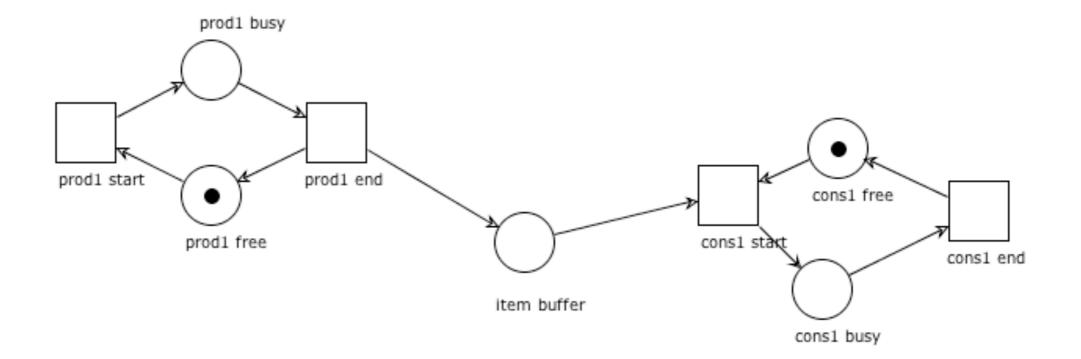
No positive S-invariant => maybe unbounded

Semi-positive S-invariant I and $I \cdot M_0 > 0 =>$ maybe live

S-invariant I and I \cdot M = I \cdot M₀ => maybe M reachable

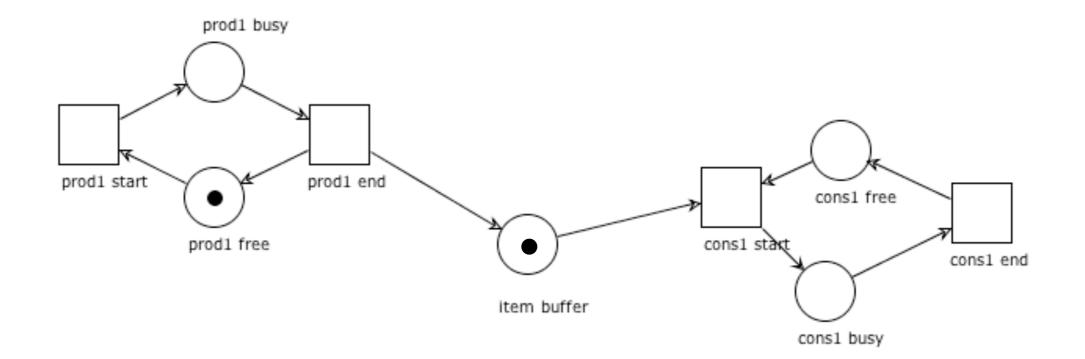
Exercises

Can you find a positive S-invariant?



Exercises

Prove that the system is not live by exhibiting a suitable S-invariant



T-invariants

Dual reasoning

The S-invariants of a net N are vectors satisfying the equation

 $\mathbf{x}\cdot\mathbf{N}=\mathbf{0}$

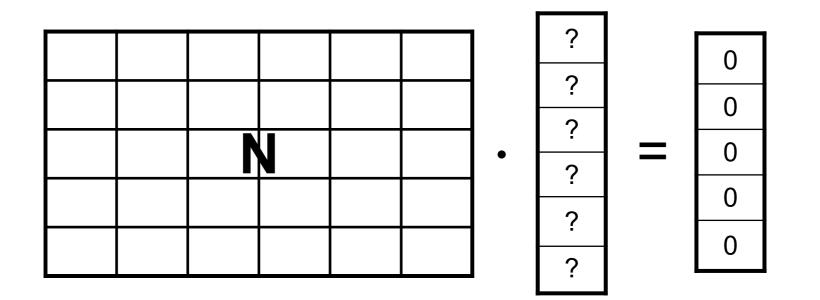
It seems natural to ask if we can find some interesting properties also for the vectors satisfying the equation

$$\mathbf{N} \cdot \mathbf{y} = \mathbf{0}$$

T-invariant (aka transition-invariant)

Definition: A **T-invariant** of a net N=(P,T,F) is a rational-valued solution **y** of the equation

$$\mathbf{N} \cdot \mathbf{y} = \mathbf{0}$$



Fundamental property of T-invariants

Proposition: Let $M \xrightarrow{\sigma} M'$.

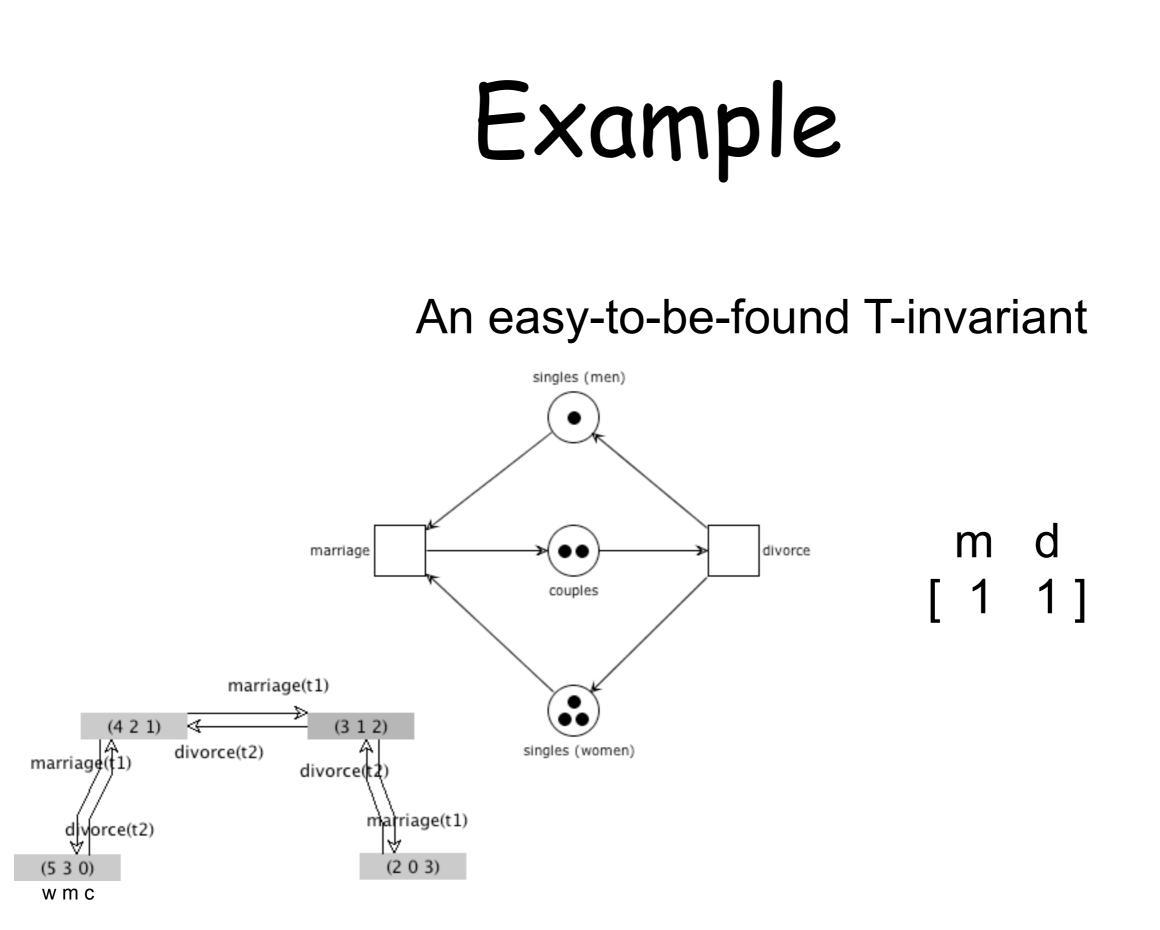
The Parikh vector $\vec{\sigma}$ is a T-invariant iff M' = M

 \Rightarrow) By the marking equation lemma $M' = M + \mathbf{N} \cdot \vec{\sigma}$ Since $\vec{\sigma}$ is a T-invariant $\mathbf{N} \cdot \vec{\sigma} = \mathbf{0}$, thus M' = M.

 $\Leftarrow) \text{ If } M \xrightarrow{\sigma} M, \text{ by the marking equation lemma } M = M + \mathbf{N} \cdot \vec{\sigma}$ Thus $\mathbf{N} \cdot \vec{\sigma} = M - M = \mathbf{0}$ and $\vec{\sigma}$ is a T-invariant

Transition-invariant, intuitively

A transition-invariant assigns a **number of occurrences to each transition** such that any occurrence sequence comprising exactly those transitions leads to the same marking where it started (independently from the order of execution)



Alternative definition of T-invariant

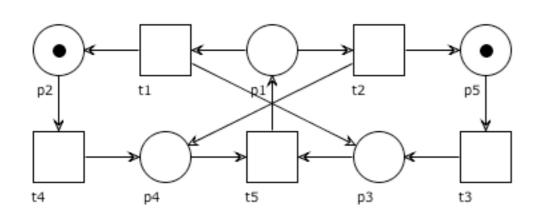
Proposition:

A mapping $\mathbf{J}: T \to \mathbb{Q}$ is a T-invariant of N iff for any $p \in P$:

$$\sum_{t \in \bullet p} \mathbf{J}(t) = \sum_{t \in p \bullet} \mathbf{J}(t)$$

Question time

Which of the following are T-invariants?



$$\forall p \in P, \ \sum_{t \in \bullet p} \mathbf{J}(t) \stackrel{?}{=} \sum_{t \in p \bullet} \mathbf{J}(t)$$

T-invariants and system properties

Pigeonhole principle

If n items are put into m slots, with n > m, then at least one slot must contain more than one item

Reproduction lemma

Lemma: Let (P, T, F, M_0) be a bounded system. If $M_0 \xrightarrow{\sigma}$ for some infinite sequence σ , then there is a semi-positive T-invariant J such that $\langle \mathbf{J} \rangle \subseteq \{ t \mid t \in \sigma \}$.

Assume
$$\sigma = t_1 t_2 t_3 \dots$$
 and $M_0 \xrightarrow{t_1} M_1 \xrightarrow{t_2} M_2 \xrightarrow{t_3} \dots$

By boundedness: $[M_0\rangle$ is finite.

By the pigeonhole principle, there are $0 \le i < j$ s.t. $M_i = M_j$ Let $\sigma' = t_{i+1}...t_j$. Then $M_i \xrightarrow{\sigma'} M_j = M_i$

By the marking equation lemma: $\vec{\sigma'}$ is a T-invariant. (fund. prop. of T-inv.) It is semi-positive, because σ' is not empty (i < j). Clearly, $\langle \mathbf{J} \rangle$ only includes transitions in σ .

Boundedness, liveness and positive T-invariant

Theorem: If a bounded system is live, then it has a positive T-invariant

By boundedness: $[M_0\rangle$ is finite and we let $k = |[M_0\rangle|$.

By liveness: $M_0 \xrightarrow{\sigma_1} M_1$ with $\vec{\sigma_1}(t) > 0$ for any $t \in T$ Similarly: $M_1 \xrightarrow{\sigma_2} M_2$ with $\vec{\sigma_2}(t) > 0$ for any $t \in T$ Similarly: $M_0 \xrightarrow{\sigma_1} M_1 \xrightarrow{\sigma_2} M_2 \dots \xrightarrow{\sigma_k} M_k$

By the pigeonhole principle, there are $0 \le i < j \le k$ s.t. $M_i = M_j$ Let $\sigma = \sigma_{i+1}...\sigma_j$. Then $M_i \xrightarrow{\sigma} M_j = M_i$

By the marking equation lemma: $\vec{\sigma}$ is a T-invariant. (fund. prop. of T-inv.) It is positive, because $\vec{\sigma}(t) \ge \vec{\sigma_j}(t) > 0$ for any $t \in T$.

Corollary of previous theorem

Every live and bounded system has:

a reachable marking M and an occurrence sequence $M \xrightarrow{\sigma} M$

such that all transitions of N occur in $\sigma.$

T-invariants: recap

Boundedness + liveness => positive T-invariant

No positive T-invariant => non (live + bounded) No positive T-invariant => non-live OR unbounded No positive T-invariant + liveness => unbounded No positive T-invariant + boundedness => non-live No positive T-inv. + positive S-inv. => non-live

T-invariants: pay attention to implication

No positive T-invariant

=> maybe non live

Exercises

Exhibit a system that has a positive T-invariant but is not live and bounded

Exhibit a live system that has a positive T-invariant but is not bounded