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We introduce two relevant kinds of invariants for 
Petri nets

Free Choice Nets (book, optional reading) 
https://www7.in.tum.de/~esparza/bookfc.html 

https://www7.in.tum.de/~esparza/bookfc.html
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chessboard with dominoes
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Invariant
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An invariant of a dynamic system is an assertion 
that holds at every reachable state 

Examples: 
liveness of a transition t 

deadlock freedom 
boundedness 



Recall: 
Liveness, formally
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(P, T, F,M0)

⌅t ⇤ T, ⌅M ⇤ [M0 ⌃, ⇧M � ⇤ [M ⌃, M � t�⇥



Liveness as invariant
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Let t ⇤ T and M � ⇤ [M ⇧.

Since M ⇤ [M0 ⇧, then M � ⇤ [M0 ⇧.

Since (P, T, F,M0) is live, ⌅M �� ⇤ [M � ⇧ with M �� t�⇥.

Therefore (P, T, F,M) is live.

Lemma
If (P, T, F,M0) is live and M � [M0 ⇥, then (P, T, F,M) is live.



Recall: Deadlock 
freedom, formally

 9

(P, T, F,M0)

⌅M ⇤ [M0 ⌃, ⇧t ⇤ T, M
t�⇥



Deadlock freedom as 
invariant
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Lemma: If (P, T, F,M0) is deadlock-free and M � [M0 ⇥,
then (P, T, F,M) is deadlock-free.

Let M � ⇤ [M ⇧.

Since M ⇤ [M0 ⇧, then M � ⇤ [M0 ⇧.

Since (P, T, F,M0) is deadlock-free, ⌅t ⇤ T with M � t�⇥.

Therefore (P, T, F,M) is deadlock-free.



Exercise
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Give the formal definition of Boundedness 

Then prove that Boundedness is an invariant 

Or give a counter-example



Exercise
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Give the formal definition of Cyclicity 

Then prove that Cyclicity is an invariant 

Or give a counter-example



Puzzle: from MI to MU
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You can compose words using symbols M, I, U 

Given the initial word MI, you can apply the following 
transformations, in any order, as many times as you like: 

1. Add a U to the end of any string ending in I (e.g., MI to MIU). 
2. Double the string after the M (e.g., MIU to MIUIU). 
3. Replace any III with a U (e.g., MUIIIU to MUUU). 
4. Remove any UU (e.g., MUUU to MU). 

Can you transform MI to MU? 
(Hint: count the Is modulo 3) 



Structural invariants
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In the case of Petri nets, it is possible to compute 
certain vectors of rational numbers(*) 
(directly from the structure of the net) 

(independently from the initial marking) 
which induce nice invariants, called  

S-invariants 

T-invariants 
(*) it is not necessary to consider real-valued solutions, because incidence matrices only have integer entries



Why invariants?
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Can be calculated efficiently  
(polynomial time for a basis) 

Independent of initial marking 

Structural property with behavioural consequences 

However, the main reason is didactical!  
You only truly understand a model if you think 

about it in terms of invariants! 



S-invariants
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S-invariant  
(aka place-invariant)

 17

x ·N = 0

Definition: An S-invariant of a net N=(P,T,F) is a 
rational-valued solution x of the equation

? ? ? ? ? 0 0 0 0 0 0=独 N



Fundamental property 
of S-invariants
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Proposition: Let I be an invariant of N .

For any M � [M0 ⇥ we have I ·M = I ·M0

=独I M M0独I



Fundamental property 
of S-invariants
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Proposition: Let I be an invariant of N .

For any M � [M0 ⇥ we have I ·M = I ·M0

Since M ⇤ [M0 ⌅, there is � s.t. M0
��⇥ M

By the marking equation: M = M0 +N · ⇥�

Therefore: I ·M = I · (M0 +N · ⇥�)
= I ·M0 + I ·N · ⇥�
= I ·M0 + 0 · ⇥�
= I ·M0



Place-invariant, 
intuitively

 20

=独I M

weights tokens
weighted sum



Place-invariant, 
intuitively
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A place-invariant assigns a weight to each place such that 
the weighted token sum remains constant during any 

computation 

For example, you can imagine that tokens are coins, 
places are the different kinds of available coins, 

the S-invariant assigns a value to each coin: 
the value of a marking is the sum of the values of the 

tokens/coins in it and it is not changed by firings



Place-invariant, 
intuitively
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A place-invariant assigns a weight to each place such that 
the weighted token sum remains constant during any 

computation 

For example, you can imagine that tokens are molecules, 
places are different kinds of molecules, 

the S-invariant assigns the number of atoms needed to 
form each molecule: 

the overall number of atoms is not changed by firings



Intuition: bubbles 
within tokens
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p1

p2

p3

p4

p5



Intuition: bubbles 
within tokens
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p1
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p3
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p5



Intuition: bubbles 
within tokens
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p1

p2

p3

p4

p5
I = [ 2 3 0 1 4 … ]



Intuition: bubbles 
within tokens
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I(p1)=2

I(p2)=3

I(p3)=0

I(p4)=1

I(p5)=4
I = [ 2 3 0 1 4 … ]



Intuition: bubbles 
within tokens
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I(p1)=2

I(p2)=3

I(p3)=0

I(p4)=1
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Intuition: bubbles 
within tokens
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I(p1)=2

I(p2)=3

I(p3)=0

I(p4)=1

I = [ 2 3 0 1 4 … ]
I(p5)=4



Intuition: tokens 
as coins
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I(p5)=20¢

I(p1)=10¢

I(p2)=50¢

I(p3)=20¢

I(p4)=20¢



Intuition: tokens 
as coins
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I(p5)=20¢

I(p1)=10¢

I(p2)=50¢

I(p3)=20¢

I(p4)=20¢



Linear combination
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Proposition:  
Any linear combination of S-invariants is an S-invariant

Take any two S-Invariants I1 and I2 and any two values k1, k2.
We want to prove that k1 I1 + k2 I2 is an S-invariant.

(k1 I1 + k2 I2) ·N = k1 I1 ·N+ k2 I2 ·N
= k1 0+ k2 0

= 0



Alternative definition 
of S-invariant
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Proposition:

A mapping I : P � Q is an S-invariant of N i� for any t ⇥ T :

�

p�•t
I(p) =

�

p�t•
I(p)



Exercise
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Prove the proposition about the alternative 
characterization of S-invariants



Consequence of 
alternative definition

 36

Very useful in proving S-invariance! 

The check is possible without constructing 
the incidence matrix 

It can also help to build S-invariants 
directly over the picture



Question time
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Which of the following are S-invariants? 
   m   w   c ] 
[  1   1  -1 ] 
[  1   0   1 ] 
[  0   1   1 ] 
[  1   1   1 ] 
[  1  -1   0 ] 
[  1   1   2 ] 
[  1   2   2 ] 

⇥t � T,
�

p�•t
I(p)

?
=

�

p�t•
I(p)

w m c



Traffic-lights example
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0

0

0
0

111

[ 1 1 1 0 0 0 0 ]



Traffic-lights example

 46

1

1

1
0

000

[ 1 1 1 0 0 0 0 ]
[ 0 0 0 0 1 1 1 ]



Traffic-lights example
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1

1

0
1

011

[ 1 1 1 0 0 0 0 ]
[ 0 0 0 0 1 1 1 ]
[ 1 1 0 1 1 1 0 ]



Traffic-lights example
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2

2

1
1

122

[ 1 1 1 0 0 0 0 ]
[ 0 0 0 0 1 1 1 ]
[ 1 1 0 1 1 1 0 ]
[ 2 2 1 1 2 2 1 ]

+
+
=



Exercises
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Define two (linearly independent) S-invariants for 
each of the nets below



S-invariants and system 
properties
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Semi-positive  
S-invariants
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The S-invariant I is semi-positive if I > 0
(i.e. I � 0 and I ⌅= 0)

The support of I is: ⇧I⌃ = { p | I(p) > 0 }

The S-invariant I is positive if I ⇥ 0
(i.e. I(p) > 0 for any place p ⇤ P )
(i.e. ⇧I⌃ = P )

A (semi-positive) S-invariant whose coefficients 
are all 0 and 1 is called uniform

all entries are non-negative 
and at least one is positive

all entries are positive



Note
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Every semi-positive invariant 
satisfies the equation 

pre-sets of support equal post-sets of support 

(the result holds for both S-invariant and T-invariant) 

•�I⇥ = �I⇥•

Notation: •S =
�

s�S •s

transitions that produce tokens 
in some places of the support

transitions that consume tokens 
from some places of the support



A sufficient condition 
for boundedness
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Theorem:
If (P, T, F,M0) has a positive S-invariant then it is bounded

Let M ⇥ [M0 ⇤ and let I be a positive S-invariant.

Let p ⇥ P . Then I(p)M(p) � I ·M = I ·M0

Since I is positive, we can divide by I(p):
M(p) � (I ·M0)/I(p)

I ·M =
X

q2P

I(q)M(q)



Consequences of 
previous theorem
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By exhibiting a positive S-invariant we can prove 
that the system is bounded for any initial marking 

Note that all places in the support of a semi-positive 
S-invariant are bounded for any initial marking

M(p)  I ·M0

I(p)
this value is independent 

from the reachable marking M



Example
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To prove that the system is bounded we can 
just exhibit a positive S-invariant 

I = [ 1  1  2 ]



Example
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How many tokens are at most in p3? 

I = [ 1  1  2 ] 

I ·M0

I(p3)
=

2

2
= 1



Exercises
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Find a positive S-invariant for the net below



A necessary condition 
for liveness
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Theorem:
If (P, T, F,M0) is live then for every semi-positive invariant I:

I ·M0 > 0
Let p ⌅ ⌃I⌥ and take any t ⌅ •p ⇧ p•.

By liveness, there are M,M � ⌅ [M0 ⌥ with M
t�⇤ M �

Then, M(p) > 0 (if t ⌅ p•) or M �(p) > 0 (if t ⌅ •p)

If M(p) > 0, then I ·M ⇥ I(p)M(p) > 0
If M �(p) > 0, then I ·M � ⇥ I(p)M �(p) > 0

In any case, I ·M0 = I ·M = I ·M � > 0 I ·M =
X

q2P

I(q)M(q)



Consequence of 
previous theorem
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If we find a semi-positive invariant such that 

Then we can conclude that the system is not live

I ·M0 = 0



Example
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It is immediate to check the counter-example 

I = [ 1  0  1 ] 

0 ] = 0 
[ 1 0 1 ]   1   = 0 

0 ] = 0
I M0

the system is not live



Markings that agree on 
all S-invariant
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Definition: M and M’ agree on all S-invariants if  
for every S-invariant I we have I⋅M = I⋅M’ 

Note: by properties of linear algebra,  
this corresponds to require that the equation on y 
M + N⋅y = M’ has some rational-valued solution 

Remark: In general, there can exist M and M’ that 
agree on all S-invariants but such that  

none of them is reachable from the other



A necessary condition 
for reachability
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Let (P, T, F,M0) be a system.

If there is an S-invariant I s.t. I ·M ⇤= I ·M0 then M ⇤⇥ [M0 ⌅

If the equationN·x = M�M0 has no rational-valued solution, thenM ⇤⇥ [M0 ⌅y

Reachability is decidable, but computationally expensive 
(EXPSPACE-hard) 

S-invariants provide a preliminary check that can be 
computed efficiently



Example
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Prove that the marking  
M = prod1free + cons1busy 

is not reachable

I = [ 0 0 0 1 1 ] 
I  M0 = 0 ≠1 = I  M独 独



S-invariants: recap
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Positive S-invariant                           => boundedness 
Unboundedness                  => no positive S-invariant 

Semi-positive S-invariant I and liveness    => I⋅M0 > 0 
Semi-positive S-invariant I and I⋅M0 = 0    => non-live 

S-invariant I and M reachable               => I⋅M = I⋅M0 
S-invariant I and I⋅M ≠ I⋅M0         => M not reachable



S-invariants: pay 
attention to implication
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No positive S-invariant              => maybe unbounded 

Semi-positive S-invariant I and I⋅M0 > 0 => maybe live 

S-invariant I and I⋅M = I⋅M0      => maybe M reachable



Exercises
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Can you find a positive S-invariant?



Exercises
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Prove that the system is not live by exhibiting a 
suitable S-invariant



T-invariants

 68



Dual reasoning
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x ·N = 0

The S-invariants of a net N are vectors satisfying 
the equation

It seems natural to ask if we can find some 
interesting properties also for the vectors 

satisfying the equation

N · y = 0



T-invariant  
(aka transition-invariant)
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Definition: A T-invariant of a net N=(P,T,F) is a 
rational-valued solution y of the equation

N · y = 0

?

?
?

?

?

?

=独N

0

0

0

0

0



Fundamental property 
of T-invariants
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Proposition: Let M
��⇥ M �.

The Parikh vector ⇥� is a T-invariant i� M � = M

⌅) By the marking equation lemma M � = M +N · ⇥�
Since ⇥� is a T-invariant N · ⇥� = 0, thus M � = M .

⇤) If M
��⇥ M , by the marking equation lemma M = M +N · ⇥�

Thus N · ⇥� = M �M = 0 and ⇥� is a T-invariant



Transition-invariant, 
intuitively
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A transition-invariant assigns a number of 
occurrences to each transition such that any  
occurrence sequence comprising exactly those 

transitions leads to the same marking where it started 
(independently from the order of execution) 



Example
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An easy-to-be-found T-invariant 

   m   d ] 
[  1   1 ] 

w m c



Alternative definition 
of T-invariant
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Proposition:

A mapping J : T � Q is a T-invariant of N i� for any p ⇥ P :

�

t�•p
J(t) =

�

t�p•
J(t)



Question time
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Which of the following are T-invariants? 
   t1   t2   t3   t4  t5 ] 

[ 1   0   0   1  1 ] 
[ 1   1   2   1  2 ] 
[ 1   1   1   0  2 ] 
[ 1   1   1   1  2 ] 
[ 0   1   1   0  1 ] 

⇥p � P,
�

t�•p
J(t)

?
=

�

t�p•
J(t)



T-invariants and system 
properties

 81



Pigeonhole principle
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 If n items are put into m slots, with n > m, then at least 
one slot must contain more than one item



Reproduction lemma
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Lemma: Let (P, T, F,M0) be a bounded system.
If M0

��⇤ for some infinite sequence �, then
there is a semi-positive T-invariant J such that ⇧J ⌃ ⇥ { t | t ⌅ � }.

Assume � = t1 t2 t3 ... and M0
t1�⇤ M1

t2�⇤ M2
t3�⇤ ...

By boundedness: [M0 ⇧ is finite.

By the pigeonhole principle, there are 0 ⇥ i < j s.t. Mi = Mj

Let �� = ti+1...tj . Then Mi
��
�⇤ Mj = Mi

By the marking equation lemma: ⇥�� is a T-invariant.
It is semi-positive, because �� is not empty (i < j).
Clearly, ⌅J ⇧ only includes transitions in �.

(fund. prop. of T-inv.)



Boundedness, liveness 
and positive T-invariant
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Theorem: If a bounded system is live,  
then it has a positive T-invariant

By boundedness: [M0 ⌃ is finite and we let k = |[M0 ⌃|.

By liveness: M0
�1�⌅ M1 with ⇥�1(t) > 0 for any t ⇧ T

Similarly: M1
�2�⌅ M2 with ⇥�2(t) > 0 for any t ⇧ T

Similarly: M0
�1�⌅ M1

�2�⌅ M2...
�k�⌅ Mk

By the pigeonhole principle, there are 0 ⇥ i < j ⇥ k s.t. Mi = Mj

Let � = �i+1...�j . Then Mi
��⌅ Mj = Mi

By the marking equation lemma: ⇥� is a T-invariant.
It is positive, because ⇥�(t) ⇤ ⇥�j(t) > 0 for any t ⇧ T .

(fund. prop. of T-inv.)



Corollary of previous 
theorem
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Every live and bounded system has:

a reachable marking M and
an occurrence sequence M

��⇥ M

such that all transitions of N occur in �.



T-invariants: recap
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Boundedness + liveness           => positive T-invariant 

No positive T-invariant           => non (live + bounded) 
No positive T-invariant      => non-live OR unbounded 
No positive T-invariant + liveness         => unbounded 
No positive T-invariant + boundedness     => non-live 
No positive T-inv. + positive S-inv.             => non-live 



T-invariants: pay 
attention to implication
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No positive T-invariant              => maybe non live



Exercises
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Exhibit a system that has a positive T-invariant  
but is not 

live and bounded 

Exhibit a live system that has a positive T-invariant 
but is not bounded


