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Object

2

We give a formal account of some key properties 
of net systems

Free Choice Nets (book, optional reading) 
https://www7.in.tum.de/~esparza/bookfc.html 
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Liveness, formally

3

(P, T, F,M0)

⌅t ⇤ T, ⌅M ⇤ [M0 ⌃, ⇧M � ⇤ [M ⌃, M � t�⇥



Liveness as invariant

4

Let t ⇤ T and M � ⇤ [M ⇧.

Since M ⇤ [M0 ⇧, then M � ⇤ [M0 ⇧.

Since (P, T, F,M0) is live, ⌅M �� ⇤ [M � ⇧ with M �� t�⇥.

Therefore (P, T, F,M) is live.

Lemma
If (P, T, F,M0) is live and M � [M0 ⇥, then (P, T, F,M) is live.



Deadlock freedom, 
formally
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(P, T, F,M0)

⌅M ⇤ [M0 ⌃, ⇧t ⇤ T, M
t�⇥



Deadlock freedom as 
invariant
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Lemma: If (P, T, F,M0) is deadlock-free and M � [M0 ⇥,
then (P, T, F,M) is deadlock-free.

Let M � ⇤ [M ⇧.

Since M ⇤ [M0 ⇧, then M � ⇤ [M0 ⇧.

Since (P, T, F,M0) is deadlock-free, ⌅t ⇤ T with M � t�⇥.

Therefore (P, T, F,M) is deadlock-free.



Boundedness, formally

7

(P, T, F,M0)

⌅k ⇥ N, ⇤M ⇥ [M0 ⇧, ⇤p ⇥ P, M(p) � k



Boundedness as 
invariant
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Lemma
If (P, T, F,M0) is bounded and M � [M0 ⇥, then (P, T, F,M) is bounded.

Since (P, T, F,M0) is bounded, it must be k-bounded for some k ⇥ N

Let M � ⇥ [M ⇤.

Since M ⇥ [M0 ⇤, then M � ⇥ [M0 ⇤.

Since (P, T, F,M0) is k-bounded, M �(p) � k for all p ⇥ P .

Therefore (P, T, F,M) is (k-)bounded.



Exercise

9

Give the formal definition of cyclicity 
!

Then prove that Cyclicity is an invariant 
!

Or give a counter-example



Five Exchange Lemmas 
(whose proofs are 
optional reading)

10



Exchange lemma:  
finite sequences (1)

11

Lemma: Let u, v ⇤ T with •u ⇧ v• = ⌅.
If M

vu�⇥ M �, then M
uv�⇥ M �

u

v



Exchange lemma: 
finite sequences (1)

12

Let M
v�⇥ K

u�⇥ M � and K � = K � •u.
Clearly M � = K � + u•.

Since •u ⌅ v• = ⇤, then: M �� v�⇥ K � with M �� = M � •u

Therefore:
M = M �� + •u u�⇥ M �� + u• v�⇥ K � + u• = M �

Lemma: Let u, v ⇤ T with •u ⇧ v• = ⌅.
If M

vu�⇥ M �, then M
uv�⇥ M �



Exchange lemma:  
finite sequences (1)

13

Lemma: Let u, v ⇤ T with •u ⇧ v• = ⌅.
If M

vu�⇥ M �, then M
uv�⇥ M �

v

u

Let M
v�⇥ K

u�⇥ M � and K � = K � •u.
Clearly M � = K � + u•.

Since •u ⌅ v• = ⇤, then: M �� v�⇥ K � with M �� = M � •u

Therefore:
M = M �� + •u u�⇥ M �� + u• v�⇥ K � + u• = M �

M

K

M’



Exchange lemma:  
finite sequences (1)
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Lemma: Let u, v ⇤ T with •u ⇧ v• = ⌅.
If M

vu�⇥ M �, then M
uv�⇥ M �

v

u
pre-set of u

K’

M

K

M’

Let M
v�⇥ K

u�⇥ M � and K � = K � •u.
Clearly M � = K � + u•.

Since •u ⌅ v• = ⇤, then: M �� v�⇥ K � with M �� = M � •u

Therefore:
M = M �� + •u u�⇥ M �� + u• v�⇥ K � + u• = M �



Exchange lemma:  
finite sequences (1)
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Lemma: Let u, v ⇤ T with •u ⇧ v• = ⌅.
If M

vu�⇥ M �, then M
uv�⇥ M �

v

u

K’ is preserved  
by the firing of u

K’

K’

M

K

M’

Let M
v�⇥ K

u�⇥ M � and K � = K � •u.
Clearly M � = K � + u•.

Since •u ⌅ v• = ⇤, then: M �� v�⇥ K � with M �� = M � •u

Therefore:
M = M �� + •u u�⇥ M �� + u• v�⇥ K � + u• = M �u



Exchange lemma:  
finite sequences (1)
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Lemma: Let u, v ⇤ T with •u ⇧ v• = ⌅.
If M

vu�⇥ M �, then M
uv�⇥ M �

v

u

M

K

M’

K’

K’

Let M
v�⇥ K

u�⇥ M � and K � = K � •u.
Clearly M � = K � + u•.

Since •u ⌅ v• = ⇤, then: M �� v�⇥ K � with M �� = M � •u

Therefore:
M = M �� + •u u�⇥ M �� + u• v�⇥ K � + u• = M �

Let M
v�⇥ K

u�⇥ M � and K � = K � •u.
Clearly M � = K � + u•.

Since •u ⌅ v• = ⇤, then: M �� v�⇥ K � with M �� = M � •u

Therefore:
M = M �� + •u u�⇥ M �� + u• v�⇥ K � + u• = M �

preserved by 
the firing of v

u



Exchange lemma:  
finite sequences (1)
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Lemma: Let u, v ⇤ T with •u ⇧ v• = ⌅.
If M

vu�⇥ M �, then M
uv�⇥ M �

v

u

v

M’’

K’

M

K

M’

K’

K’

M’’

Let M
v�⇥ K

u�⇥ M � and K � = K � •u.
Clearly M � = K � + u•.

Since •u ⌅ v• = ⇤, then: M �� v�⇥ K � with M �� = M � •u

Therefore:
M = M �� + •u u�⇥ M �� + u• v�⇥ K � + u• = M �

Let M
v�⇥ K

u�⇥ M � and K � = K � •u.
Clearly M � = K � + u•.

Since •u ⌅ v• = ⇤, then: M �� v�⇥ K � with M �� = M � •u

Therefore:
M = M �� + •u u�⇥ M �� + u• v�⇥ K � + u• = M �

Let M
v�⇥ K

u�⇥ M � and K � = K � •u.
Clearly M � = K � + u•.

Since •u ⌅ v• = ⇤, then: M �� v�⇥ K � with M �� = M � •u

Therefore:
M = M �� + •u u�⇥ M �� + u• v�⇥ K � + u• = M �u



Exchange lemma:  
finite sequences (1)
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Lemma: Let u, v ⇤ T with •u ⇧ v• = ⌅.
If M

vu�⇥ M �, then M
uv�⇥ M �

v

u

v

u

M

K

M’

M’’

K’K’

K’

M’’

Let M
v�⇥ K

u�⇥ M � and K � = K � •u.
Clearly M � = K � + u•.

Since •u ⌅ v• = ⇤, then: M �� v�⇥ K � with M �� = M � •u

Therefore:
M = M �� + •u u�⇥ M �� + u• v�⇥ K � + u• = M �

Let M
v�⇥ K

u�⇥ M � and K � = K � •u.
Clearly M � = K � + u•.

Since •u ⌅ v• = ⇤, then: M �� v�⇥ K � with M �� = M � •u

Therefore:
M = M �� + •u u�⇥ M �� + u• v�⇥ K � + u• = M �

Let M
v�⇥ K

u�⇥ M � and K � = K � •u.
Clearly M � = K � + u•.

Since •u ⌅ v• = ⇤, then: M �� v�⇥ K � with M �� = M � •u

Therefore:
M = M �� + •u u�⇥ M �� + u• v�⇥ K � + u• = M �



Exchange lemma:  
finite sequences (1)
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Lemma: Let u, v ⇤ T with •u ⇧ v• = ⌅.
If M

vu�⇥ M �, then M
uv�⇥ M �

v

u

M’’

K’



Exchange lemma:  
finite sequences (1)
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Lemma: Let u, v ⇤ T with •u ⇧ v• = ⌅.
If M

vu�⇥ M �, then M
uv�⇥ M �

v

u
M’’

K’



Exchange lemma:  
finite sequences (1)
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Lemma: Let u, v ⇤ T with •u ⇧ v• = ⌅.
If M

vu�⇥ M �, then M
uv�⇥ M �

v

u

v

u

K’

M’’

M’’ M’’

K’

M

M’

Let M
v�⇥ K

u�⇥ M � and K � = K � •u.
Clearly M � = K � + u•.

Since •u ⌅ v• = ⇤, then: M �� v�⇥ K � with M �� = M � •u

Therefore:
M = M �� + •u u�⇥ M �� + u• v�⇥ K � + u• = M �



Exchange lemma: 
finite sequences (2)
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Lemma: Let V ⇥ T and u ⌅ T \ V , with •u ⌃ V • = ⇧ .
If M

�u�⇤ M ⇥ with � ⌅ V �, then M
u��⇤ M ⇥

v1�! v2�! vn�!...�! u�!M M 0vn�1���!



Exchange lemma: 
finite sequences (2)
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Lemma: Let V ⇥ T and u ⌅ T \ V , with •u ⌃ V • = ⇧ .
If M

�u�⇤ M ⇥ with � ⌅ V �, then M
u��⇤ M ⇥

v1�! v2�! vn�!...�! u�!M M 0vn�1���!



Exchange lemma: 
finite sequences (2)
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Lemma: Let V ⇥ T and u ⌅ T \ V , with •u ⌃ V • = ⇧ .
If M

�u�⇤ M ⇥ with � ⌅ V �, then M
u��⇤ M ⇥

v1�! v2�! vn�!...�!u�!M M 0vn�1���!



Exchange lemma: 
finite sequences (2)
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The proof is by induction on the length of ⇥

base (⇥ = �): trivially M
u�⇥ M ⇥

induction (⇥ = ⇥⇥v for some ⇥⇥ ⇤ V � and v ⇤ V ):

Let M
��
�⇥ M ⇥⇥ vu�⇥ M ⇥. Note that •u ⇧ v• = ⌅

By exchange lemma 1: M
��
�⇥ M ⇥⇥ uv�⇥ M ⇥.

Let M
��u�⇥ M ⇥⇥⇥ v�⇥ M ⇥.

By inductive hypothesis: M
u��
�⇥ M ⇥⇥⇥ v�⇥ M ⇥

Thus, M
u��⇥ M ⇥

Lemma: Let V ⇥ T and u ⌅ T \ V , with •u ⌃ V • = ⇧ .
If M

�u�⇤ M ⇥ with � ⌅ V �, then M
u��⇤ M ⇥



Exchange lemma: 
finite sequences (3)
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Lemma: Let U, V ⇥ T and U ⌥ V = ⇧, with •U ⌥ V • = ⇧.
If M

��⇤ M ⇥ with � ⌅ (U ⌃ V )�, then M
�|U�|V�⇤ M ⇥

v1�! v2�!
vn�!...�!M M 0vn�1���!

u1�! u2�! um��!um�1���!
...�!

...�!



Exchange lemma: 
finite sequences (3)
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Lemma: Let U, V ⇥ T and U ⌥ V = ⇧, with •U ⌥ V • = ⇧.
If M

��⇤ M ⇥ with � ⌅ (U ⌃ V )�, then M
�|U�|V�⇤ M ⇥

v1�! v2�!
vn�!...�!M M 0vn�1���!

u1�! u2�! um��!um�1���!
...�!

...�!

�|Vz }| {
v1v2...vn�1vn����������!

�|Uz }| {
u1u2...um�1um������������!



Exchange lemma: 
finite sequences (3)
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Lemma: Let U, V ⇥ T and U ⌥ V = ⇧, with •U ⌥ V • = ⇧.
If M

��⇤ M ⇥ with � ⌅ (U ⌃ V )�, then M
�|U�|V�⇤ M ⇥

v1�! v2�!
vn�!...�!M M 0vn�1���!

u1�! u2�! um��!um�1���!
...�!

...�!

�|Vz }| {
v1v2...vn�1vn����������!

�|Uz }| {
u1u2...um�1um������������!



Exchange lemma: 
finite sequences (3)
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Lemma: Let U, V ⇥ T and U ⌥ V = ⇧, with •U ⌥ V • = ⇧.
If M

��⇤ M ⇥ with � ⌅ (U ⌃ V )�, then M
�|U�|V�⇤ M ⇥

v1�! v2�!
vn�!...�!M M 0vn�1���!

u1�! u2�! um��!um�1���!...�!

�|Vz }| {
v1v2...vn�1vn����������!

�|Uz }| {
u1u2...um�1um������������!



Exchange lemma: 
finite sequences (3)
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Lemma: Let U, V ⇥ T and U ⌥ V = ⇧, with •U ⌥ V • = ⇧.
If M

��⇤ M ⇥ with � ⌅ (U ⌃ V )�, then M
�|U�|V�⇤ M ⇥

M M 0
�|Vz }| {

v1v2...vn�1vn����������!
�|Uz }| {

u1u2...um�1um������������!



Exchange lemma: 
finite sequences (3)

31

The proof is by induction on the length of ⇥|U

base (⇥|U = �): trivially ⇥|V = ⇥

induction (⇥|U = u⇥⇥ for some u ⇤ U and ⇥⇥ ⇤ U�):

Let M
�0�⇥ u�⇥ �1�⇥ M ⇥, with ⇥ = ⇥0u⇥1 and ⇥0 ⇤ V �.

Note that ⇥⇥ = (⇥1)|U and •u ⇧ V • = ⌅

By exchange lemma 2: M
u�⇥ �0�⇥ �1�⇥ M ⇥.

Note that (⇥0⇥1)|U = (⇥1)|U = ⇥⇥ and (⇥0⇥1)|V = ⇥|V .

By inductive hypothesis: M
u�⇥ ��

�⇥
�|V�⇥ M ⇥

Since ⇥|U = u⇥⇥, we conclude that M
�|U�⇥

�|V�⇥ M ⇥

Lemma: Let U, V ⇥ T and U ⌥ V = ⇧, with •U ⌥ V • = ⇧.
If M

��⇤ M ⇥ with � ⌅ (U ⌃ V )�, then M
�|U�|V�⇤ M ⇥



Notation Aω
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Given a set A we denote by A!

the set of infinite sequences of elements in A, i.e.:

A! = { a1a2 · · · | a1, a2, . . . 2 A }



Exchange lemma: 
infinite sequences (4)
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Lemma: Let U, V ⇢ T and U \ V = ;, with •U \ V • = ;.
If M

��! with � 2 (U [ V )! and �|U 2 U⇤, then M
�|U�|V�!

v1�! v2�!
vn�!...�!M

vn�1���!
u1�! u2�! um��!um�1���!

...�!
...�! ...�!



Exchange lemma: 
infinite sequences (4)

34

Lemma: Let U, V ⇢ T and U \ V = ;, with •U \ V • = ;.
If M

��! with � 2 (U [ V )! and �|U 2 U⇤, then M
�|U�|V�!

v1�! v2�!
vn�!...�!M

vn�1���!
u1�! u2�! um��!um�1���!

...�!
...�! ...�!

�|Uz }| {
u1u2...um�1um������������!

�|Vz }| {
v1v2...vn�1vn...������������!



Exchange lemma: 
infinite sequences (4)
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Lemma: Let U, V ⇢ T and U \ V = ;, with •U \ V • = ;.
If M

��! with � 2 (U [ V )! and �|U 2 U⇤, then M
�|U�|V�!

v1�! v2�!
vn�!...�!M

vn�1���!
u1�! u2�! um��!um�1���!

...�!
...�! ...�!

�|Uz }| {
u1u2...um�1um������������!

�|Vz }| {
v1v2...vn�1vn...������������!



Exchange lemma: 
infinite sequences (4)
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Lemma: Let U, V ⇢ T and U \ V = ;, with •U \ V • = ;.
If M

��! with � 2 (U [ V )! and �|U 2 U⇤, then M
�|U�|V�!

M
...�!

�|Uz }| {
u1u2...um�1um������������!

�|Vz }| {
v1v2...vn�1vn...������������!

v1�! v2�!
vn�!...�!

vn�1���!
u1�! u2�! um��!um�1���!...�!



Exchange lemma: 
infinite sequences (4)
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Lemma: Let U, V ⇢ T and U \ V = ;, with •U \ V • = ;.
If M

��! with � 2 (U [ V )! and �|U 2 U⇤, then M
�|U�|V�!

M
�|Uz }| {

u1u2...um�1um������������!

�|Vz }| {
v1v2...vn�1vn...������������!



Exchange lemma: 
infinite sequences (4)
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Lemma: Let U, V ⇢ T and U \ V = ;, with •U \ V • = ;.
If M

��! with � 2 (U [ V )! and �|U 2 U⇤, then M
�|U�|V�!

Let � = �0�00
with �0

|U = �|U and �00
|V = �00

(i.e., only transitions in V appears in �00
).

Such sequences exist because �|U is assumed to be finite.

Let M 0
be such that M

�0
�! M 0 �00

�!.

By Exchange Lemma (3) applied to �0
we have:

M
�0
|U�0

|V����! M 0 �00
�!.

We conclude by observing that:

�|U = �0
|U and �|V = �0

|V �
00



Exchange lemma: 
infinite sequences (5)
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Lemma: Let U, V ⇢ T and U \ V = ;, with •U \ V • = ;.
If M

��! with � 2 (U [ V )! and �|U 2 U!, then M
�|U�!

v1�! v2�!
vn�!...�!M

vn�1���!
u1�! u2�! um��!um�1���!

...�!
...�! ...�!

...�!



Exchange lemma: 
infinite sequences (5)
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Lemma: Let U, V ⇢ T and U \ V = ;, with •U \ V • = ;.
If M

��! with � 2 (U [ V )! and �|U 2 U!, then M
�|U�!

v1�! v2�!
vn�!...�!M

vn�1���!
u1�! u2�! um��!um�1���!

...�!
...�! ...�!

...�!
�|Uz }| {

u1u2...um�1um...
�������������!

�|Vz }| {
v1v2...vn�1vn...������������!



Exchange lemma: 
infinite sequences (5)
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Lemma: Let U, V ⇢ T and U \ V = ;, with •U \ V • = ;.
If M

��! with � 2 (U [ V )! and �|U 2 U!, then M
�|U�!

v1�! v2�!
vn�!...�!M

vn�1���!
u1�! u2�! um��!um�1���!

...�!
...�! ...�!

...�!

finite prefix ⌧

⌧|Vz }| {
v1v2...vn�1vn����������!

⌧|Uz }| {
u1u2...um�1um������������!



Exchange lemma: 
infinite sequences (5)
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Lemma: Let U, V ⇢ T and U \ V = ;, with •U \ V • = ;.
If M

��! with � 2 (U [ V )! and �|U 2 U!, then M
�|U�!

M
...�!

...�!

finite prefix
enabled

⌧|Uz }| {
u1u2...um�1um������������!

⌧|Vz }| {
v1v2...vn�1vn����������!



Exchange lemma: 
infinite sequences (5)
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Lemma: Let U, V ⇢ T and U \ V = ;, with •U \ V • = ;.
If M

��! with � 2 (U [ V )! and �|U 2 U!, then M
�|U�!

To prove that M
�|U�! it su�ces to show that

every finite prefix of �|U is enabled at M .

Take any finite prefix ⌧ 0 of �|U and

a corresponding finite prefix ⌧ of � such that

⌧|U = ⌧ 0.

Clearly M
⌧�! M 0

for some suitable M 0
.

By Exchange Lemma (3), then M
⌧|U⌧|V����! M 0

, i.e.:

M enables ⌧|U = ⌧ 0.



Two theorems on strong 
connectedness 

(whose proofs are 
optional reading)

44



Strong connectedness 
theorem

45

Theorem: If a weakly connected system is  
live and bounded then it is strongly connected

Since the system is live and bounded, by a previous corollary:

exists M 2 [M0i and � such that M

��! M and all transitions in T occur in �.

Take any arc x ! y in F :

we need to show that there is a path from y to x using arcs of F .

We distinguish two cases:

1. x 2 P and y 2 T

2. x 2 T and y 2 P

(see Lecture 10)



Strong connectedness theorem (case 1)

46

y

x
Let V = { v 2 T | y !⇤

v } and U = T \ V .

Note that U and V are disjoint and that

•
U \ V

• = ;.
(to see this, suppose q 2 •

U \ V

•
then v ! q ! u for some v 2 V and u 2 U ,

but then u 2 V , which is impossible because U = T \ V )

By the Exchange Lemma (3), there exists M

0
with M

�|U�! M

0 �|V�! M

We claim that M

�|V�! M .

• if �|U = ✏ (i.e., � does not contain any transition in U),

then �|V = �.

• otherwise (�|U 6= ✏), we can apply the Exchange Lemma (5) to M

��···���!

to get M

(��··· )|U������!, i.e., M

�|U�|U ···
������!.

Since �|U can occur infinitely often from M , then M

0 ◆ M .

By the Boundedness Lemma M

0 = M and M

�|V�! M .

Since y 2 V , y occurs in �|V and y 2 x

•
, then

there must be some transition v that occurs in �|V such that v 2 •
x.

Since v 2 V , there is a path y !⇤
v.

We can extend this path by the arc (v, x) to get a path y !⇤
x.

(V is the set of transitions reachable from y)

(y subtracts a token from x)

(v adds a token to x)
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x

y
Let U = {u 2 T | u !⇤

x } and V = T \ U .

Note that U and V are disjoint and that

•
U \ V

• = ;.
(to see this, suppose q 2 •

U \ V

•
then v ! q ! u for some v 2 V and u 2 U ,

but then v 2 U , which is impossible because V = T \ U)

By the Exchange Lemma (3), there exists M

0
with M

�|U�! M

0 �|V�! M

By the Exchange Lemma (5) applied to M

��···���!
we get M

(��··· )|U������!, i.e., M

�|U�|U ···
������!.

Since �|U can occur infinitely often from M , then M

0 ◆ M .

By the Boundedness Lemma M

0 = M and M

�|U�! M .

Since x 2 U , x occurs in �|U and x 2 •
y, then

there must be some transition u that occurs in �|U such that u 2 y

•
.

Since u 2 U , there is a path u !⇤
x.

We can extend this path by the arc (y, u) to get a path y !⇤
x.

Strong connectedness theorem (case 2)
(U is the set of transitions from which x is reachable)

(x adds a token to y)

(u subtracts a token from y)



Consequences
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If a (weakly-connected) net is not strongly connected  
!

then 
!

It is not live and bounded 
!

If it is live, it is not bounded 
!

If it is bounded, it is not live



Example
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It is now immediate to see that this system 
cannot be live and bounded 
(it is live but not bounded)



Exercise
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On the basis of the previous observation: 
!

Draw a net that is bounded but not live 
!

Draw a(nother) net that is live but not bounded 
!

Draw a net that is neither live nor bounded



Strong connectedness 
via invariants
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Theorem: If a weakly connected net has  
a positive S-invariant I and a positive T-invariant J  

then it is strongly connected

Take any arc x ! y in F :

we need to show that there is a path from y to x using arcs of F .

We distinguish two cases:

1. x 2 P and y 2 T

2. x 2 T and y 2 P
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y

xStrong connectedness 
via invariants: case (1)

Let V = { v 2 T | y !⇤ v } and define:

J 0(t) =

⇢
J(t) if t 2 V
0 otherwise

Take p 2 P :

• if J 0(u) = 0 for all u 2 •p, then:

0 =
X

u2•p

J 0(u) 
X

t2p•

J 0(t)

(because J 0
has no negative entries).

• otherwise, assume that J 0(u) = J(u) > 0 for some u 2 •p, i.e., y !⇤ u ! p.
Then, for any t 2 p•: y !⇤ t and J 0(t) = J(t) > 0. So:

0 <
X

u2•p

J 0(u) 
X

u2•p

J(u) =
X

t2p•

J(t) =
X

t2p•

J 0(t)
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y

xStrong connectedness 
via invariants: case (1)

In both cases:
X

u2•
p

J

0(u) 
X

t2p

•

J

0(t)

Then: (N · J 0)(p) =
X

u2•
p

J

0(u)�
X

t2p

•

J

0(t)  0 for any p 2 P ,

i.e., N · J 0 has no positive entries.

Since I is an S-invariant: I · (N · J 0) = (I ·N) · J 0 = 0
and since I is positive, N · J 0 = 0, i.e., J 0 is a T-invariant. Hence:

X

t2•
x

J

0(t) =
X

t2x

•

J

0(t)  J

0(y) = J(y) > 0

So there exists v 2 •
x with J

0(v) > 0, which means v 2 V , i.e., y !⇤
v.

Since v 2 •
x, then y !⇤

x.

�
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Strong connectedness 
via invariants: case (2)

x

y

y

x

N’
Take N

0 = (T, P, F )
(i.e., invert the roles of places and transitions).

Then, N0 = �NT
(where NT

is the transposed of N)

I is a positive T-invariant of N

0
.

J is a positive S-invariant of N

0
.

By case (1), N

0
contains a path from y to x.

So, N contains a path from y to x.



Consequences
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If a (weakly-connected) net is not strongly connected  
!

then 
!

we cannot find (two) positive S- and T-invariants


