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Object

2

We study suitable soundness properties  
of Workflow nets 

Ch.6 of Business Process Management: Concepts, Languages, Architectures



WF nets as business 
processes

3
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Transition realised by 
another workflow net



Structural analysis

4

No distinguished entry / exit point 

no entry: when should the case start? 
no exit: when should the case end?  

not a workflow net!



Structural analysis

5

Multiple entry / exit points 

multiple entries: when should the case start? 
multiple exit: when should the case end?  

not a workflow net!



Structural analysis

6

Tasks t without incoming and/or outgoing arcs 

no input: when should t be carried out? 
no output: t does not contribute to case completion  

not a workflow net!



Structural analysis

7

Wrong decorations of transitions 

split with only one outgoing arc 

join with only one incoming arc 

left to designer responsibility



Activity analysis

8

Dead tasks 

Tasks that can never be carried out 
Each transitions lies on a path from i to o: not sufficient



Activity analysis

9

Dead tasks 

Tasks that can never be carried out 
Each transitions lies on a path from i to o: not sufficient 

can arise in workflow nets



Net analysis

10

Deadlock 

a case blocks without coming to an end 
can arise in workflow nets



Token analysis

11

Some tokens left in the net after case completion



Token analysis
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Some tokens left in the net after case completion 

(when a token is in the final place the case should end) 
can arise in workflow nets



Activity analysis

13

If tokens are left in the net after case completion 
then 

activities may still take place after case completion 

it is a (worse) consequence of the previous flaw 
can arise in workflow nets



Token analysis

14

More than one token reach the end place 

it can be a consequence of the previous flaws 
can arise in workflow nets



Question time

15

Do you see any problem in the workflow net below?



Question time
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Do you see any problem in the workflow net below?

Wrong decorations!



Question time
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Do you see any problem in the net below?



Question time
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Do you see any problem in the net below?

No input No output

Not a workflow net 
(not all nodes are on a path from i to o)



Question time
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Do you see any problem in the workflow net below?



Question time
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Do you see any problem in the workflow net below?

Possible deadlock



Question time
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Do you see any problem in the workflow net below?

Dead task



Question time

22

Do you see any problem in the workflow net below?



Question time
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Do you see any problem in the workflow net below?

Some tokens left in the net after case completion



Question time

24

Do you see any problem in the workflow net below?

Activities still take place after case completion



Question time

25

Do you see any problem in the workflow net below?

More than one token can reach the end place



Question time

26

Livelock (divergence without producing output) 

a case is trapped in a cycle with no opportunity to end 
can arise in workflow nets 

Draw a workflow net that suffers from livelock



Question time

27

Livelock (divergence without producing output)



Remark

28

All the previous flaws are typical errors that  
can be detected  

without any knowledge about the actual content  
of the Business Process



Verification and 
validation

29

Validation is concerned with  
the relation between the model and the reality 

How does a model fit log files? 
Which model does fit better?  

Verification aims to answer qualitative questions 
Is there a deadlock possible? 

Is it possible to successfully handle a specific case? 
Will all cases terminate eventually? 

Is it possible to execute a certain task?



Simulation techniques

30

Test analysis 
Try and see if certain firing sequences are allowed by the 

workflow net 

Using WoPeD: 
Play (forward and backward) with net tokens 

Record certain runs (to replay or explain) 
Randomly select alternatives 

Problem: how to make sure that all possible runs have 
been examined?



Reachability analysis

31

Verification by inspection 
All possible runs of a workflow net are represented in its 

Reachability Graph (when it is finite) 

Using WoPeD: 
all reachable states are shown 

(a single run does not necessarily visit all nodes) 
End states are evident (no outgoing arc) 

Useful to check if dangerous or undesired states can arise 
(e.g. the green-green state in the two-traffic-lights) 

Problem: state explosion
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Reachability analysis



Reachability analysis

33

Problem: state explosion



Exercise

34

Do you see any problem in the workflow net below?



Exercise

35

Which problem(s) in the workflow net below? 
How would you redesign the business process?



Coverability

36
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Proposition: 
The reachability graph of a net is finite 

if and only if  

the net is bounded

Reachability analysis: 
finiteness?
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Proposition: 
A net is unbounded  

if and only if  

its reachability graph is not finite

Reachability analysis: 
finiteness?
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Coverability graph

A coverability graph is a finite 
over-approximation of the reachability graph 

It allows for markings with infinitely many tokens 
in one place (called extended bags) 

B : P �⇥ N ⌅ {⇤}



Suppose

M0
t1�⇤ M1

t2�⇤ M2 ...
ti�⇤ Mi ...

tj�⇤ Mj

with Mi ⇥ Mj

Let M = Mi and M ⇥ = Mj and L = M ⇥ �M

By the monotonicity Lemma we have, for any n ⌅ N:
M ⇤� M + L ⇤� M + 2L ⇤� ... ⇤� M + nL

Hence all places p marked by L (i.e. if L(p) > 0) are unbounded
40

Discover unbounded 
places
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Cover unbounded places

Idea:
When computing the RG, if M ⇥ is found s.t.

M0 ⇤� M ⇤� M ⇥ with M ⇥ M ⇥

Add the extended bag B (instead of M ⇥) to the graph

where B(p) =

�
M ⇥(p) if M ⇥(p)�M(p) = 0
⌅ otherwise
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A few remarks

Idea: mark unbounded places by ⇧

Remind: M ⇤ M ⇥ means that M � M ⇥ � M ⌥= M ⇥, i.e.,
1. for any p ⌃ P , M ⇥(p) ⇥ M(p)
2. there exists at least one place q ⌃ P such that M ⇥(q) > M(q)

Remark:
Requiring M0 ⌅� M ⌅� M ⇥ is di�erent that
requiring M,M ⇥ ⌃ [M0  

than
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Operations on extended 
bags

Inclusion: Let B,B� : P ⌅ N ⌥ {⇧}
We write B ⇥ B� if for any p we have
B�(p) = ⇧ or B(p), B�(p) ⌃ N � B(p) ⇤ B�(p)

Sum: Let B,B� : P ⌅ N ⌥ {⇧}

(B +B�)(p) =

�
⇧ if B(p) = ⇧ or B�(p) = ⇧
B(p) +B�(p) if B(p), B�(p) ⌃ N

Di�erence: Let B : P ⌅ N ⌥ {⇧} and M : P ⌅ N with M ⇥ B

(B �M)(p) =

�
⇧ if B(p) = ⇧
B(p)�M(p) if B(p) ⌃ N

Inclusion: Let B,B� : P ⌅ N ⌥ {⇧}
We write B ⇥ B� if for any p we have
B�(p) = ⇧ or B(p), B�(p) ⌃ N � B(p) ⇤ B�(p)

Sum: Let B,B� : P ⌅ N ⌥ {⇧}

(B +B�)(p) =

�
⇧ if B(p) = ⇧ or B�(p) = ⇧
B(p) +B�(p) if B(p), B�(p) ⌃ N

Di�erence: Let B : P ⌅ N ⌥ {⇧} and M : P ⌅ N with M ⇥ B

(B �M)(p) =

�
⇧ if B(p) = ⇧
B(p)�M(p) if B(p) ⌃ N

Inclusion: Let B,B� : P ⌅ N ⌥ {⇧}
We write B ⇥ B� if for any p we have
B�(p) = ⇧ or B(p), B�(p) ⌃ N � B(p) ⇤ B�(p)

Sum: Let B,B� : P ⌅ N ⌥ {⇧}

(B +B�)(p) =

�
⇧ if B(p) = ⇧ or B�(p) = ⇧
B(p) +B�(p) if B(p), B�(p) ⌃ N

Di�erence: Let B : P ⌅ N ⌥ {⇧} and M : P ⌅ N with M ⇥ B

(B �M)(p) =

�
⇧ if B(p) = ⇧
B(p)�M(p) if B(p) ⌃ N
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Compute a reachability graph
1. Initially N = { M0 } and A = ∅

(all bags are finite in this case)
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Compute a reachability graph
1. Initially N = { M0 } and A = ∅ 
2. Take a bag B ∈ N and a transition t ∈ T such that 

1. B enables t and there is no arc labelled t leaving from B

(all bags are finite in this case)
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Compute a reachability graph
1. Initially N = { M0 } and A = ∅ 
2. Take a bag B ∈ N and a transition t ∈ T such that 

1. B enables t and there is no arc labelled t leaving from B 

3. Let B' = B - •t + t•

(all bags are finite in this case)
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Compute a reachability graph
1. Initially N = { M0 } and A = ∅ 
2. Take a bag B ∈ N and a transition t ∈ T such that 

1. B enables t and there is no arc labelled t leaving from B 

3. Let B' = B - •t + t• 
4. Add B' to N and (B,t,B') to A

(all bags are finite in this case)
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Compute a reachability graph
1. Initially N = { M0 } and A = ∅ 
2. Take a bag B ∈ N and a transition t ∈ T such that 

1. B enables t and there is no arc labelled t leaving from B 

3. Let B' = B - •t + t• 
4. Add B' to N and (B,t,B') to A 
5. Repeat steps 2,3,4 until no new arc can be added

(all bags are finite in this case)
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Compute a reachability graph
1. Initially N = { M0 } and A = ∅ 
2. Take a bag B ∈ N and a transition t ∈ T such that 

1. B enables t and there is no arc labelled t leaving from B 

3. Let B' = B - •t + t• 
4. Add B' to N and (B,t,B') to A 
5. Repeat steps 2,3,4 until no new arc can be added

(all bags are finite in this case)
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Compute a coverability graph
1. Initially N = { M0 } and A = ∅ 
2. Take a bag B ∈ N and a transition t ∈ T such that 

1. B enables t and there is no arc labelled t leaving from B 

3. Let B' = B - •t + t• 
4. Let Bc' such that for any p ∈ P  

1. Bc'(p) = ∞ if there is a node B'' ∈ N such that  

1. there is a directed path from B'' to B in the graph (N,A) 
2. B'' ⊂ B',  
3. B''(p) < B'(p) 

2. Bc'(p) = B'(p) otherwise 

5. Add Bc' to N and (B,t,Bc') to A 
6. Repeat steps 2,3,4,5 until no new arc can be added

B00
�

!!

⇢ B0

B

t
>>



Example
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Example
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Example
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Example
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Example
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Example
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∞



Example
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∞



Example
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∞



Example
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∞



Example
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∞



Example

61

∞



Properties of 
coverability graphs

62

A coverability graph is always finite,  
but in general it is not uniquely defined 

(it depends on which B and t are selected at step 2) 

Every firing sequence has a corresponding path in the CG 
(the converse is not necessarily true) 

Any path in a CG that visits only finite markings 
corresponds to a firing sequence 

If the RG is finite, then it coincides with the CG



Reachability analysis  
by coverability

63

All possible behaviours of a workflow net are represented 
exactly in the Reachability Graph (if finite) 

We use Coverability Graph when necessary (RG not finite) 

WoPeD computes a Coverability Graph



Example

64



Soundness

65



Soundness  
of Business Processes

66

A process is called sound if

1. it contains no unnecessary tasks

2. every case is always completed in full

3. no pending items are left after case completion



67

Business 
Process

i o

Soundness  
of Business Processes



Soundness  
of Workflow nets

68

A workflow net is called sound if

1. for each transition t,

there is a marking M (reachable from i) that enables t

2. for each token put in place i,

one token eventually appears in the place o

3. when a token is in place o, all other places are empty



Fairness assumption

69

Remark:
Condition 2 does not mean that iteration must be forbidden or bound

It says that from any reachable marking M
there must be possible to reach o in some steps

Fairness assumption:
A task cannot be postponed indefinitely

OK



70

Soundness, Formally
A workflow net is called sound if

no dead task no transition is dead

8t 2 T. 9M 2 [ i i. M t!

option to complete place o is eventually marked

8M 2 [ i i. 9M 0 2 [M i. M 0(o) � 1

proper completion when o is marked, no other token is left

8M 2 [ i i. M(o) � 1 ) M = o



1: no dead tasks

71

?

Reachable marking that enables the 
transition



1: no dead tasks
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The check must be repeated for each task



2: option to complete

73

?

Able to produce one token in o 



2: option to complete
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The check must be repeated for each reachable marking



3: proper completion

75

?

We must show that it is  
not a reachable marking



3: proper completion

76

The check must be repeated for each marking M 
such that M > o



Brute-force analysis

77

First, check if the Petri net is a workflow net 
easy "syntactic" check 

Second, check if it is sound (more difficult): 
build the Reachability Graph  

to check 1: for each transition t there must be an arc in the 
RG that is labelled with t 

to check 2&3: the RG must have only one final state (sink), 
that consists of one token in o  

and is reachable from any other state,  
and no other marking has a token in o



Some Pragmatic 
Considerations

78

All checks can better be done automatically  
(computer aided) 

but nevertheless RG construction... 
1. can be computationally expensive for large nets 

(because of state explosion) 
2. provides little support in repairing unsound processes 

3. can be infinite (CG can be used, but it is not exact) 



Advanced support

79

Translate soundness to other well-known properties that 
can be checked more efficiently: 

boundedness and liveness



N*

80



81

Business 
Process

i o

Play once
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Business 
Process

i o

reset

Play twice
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Business 
Process

i o

reset

Play any number of times



From N to N*

84

Let us denote by N : i ! o a workflow net
with entry place i and exit place o.

Let N⇤ be the net obtained by adding the “reset” transition to N
reset : o ! i.

Proposition:
N⇤ is strongly connected.



MAIN THEOREM
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Let us denote by N : i � o a workflow net
with entry place i and exit place o

Let N� be the net obtained by adding the ”reset” transition to N
reset : o � i

Theorem:
N is sound i� N� is live and bounded



Proof of MAIN 
THEOREM (1)

86

N� live and bounded implies N sound:

Since N� is live: for each t ⌅ T there is M ⌅ [ i ⇧. M t⇤

Take any M ⌅ [ i ⇧ enabling reset : o ⇤ i, hence M ⇥ o

Let M
reset�⇤ M ⇥. Then M ⇥ ⌅ [ i ⇧ and M ⇥ ⇥ i

Since N� is bound, it must be M ⇥ = i (and M = o)
Otherwise all places marked by M ⇥ � i = M � o would be unbounded

Hence N� just allows multiple runs of N :
”option to complete” and ”proper completion” hold (see above)
”no dead task” holds because N� is live



A technical lemma
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Lemma:
If N is sound, M is reachable in N i� M is reachable in N⇥

⌅) straightforward

⇤) Let i
��⇥ M in N⇥ for � = t1t2...tn

We proceed by induction on the number r of instances of reset in �
If r = 0, then reset does not occur in � and M is reachable in N
If r > 0, let k be the least index such that tk = reset
Let � = �⇤tk�⇤⇤ with �⇤ = t1t2...tk�1 fireable in N

Since N is sound: i
��
�⇥ o and i

���
�⇥ M

Since �⇤⇤ contains r � 1 instances of reset :
by inductive hypothesis M is reachable in N



Proof of MAIN 
THEOREM (2)

88

N sound implies N� bounded :
We proceed by contradiction, assuming N� is unbounded

Since N� is unbounded:
⌃M,M ⇥ such that i ⇤� M ⇤� M ⇥ with M ⇥ M ⇥

Let L = M ⇥ �M ⇧= ⌥

Since N is sound:
⌃� ⌅ T � such that M

�⇤ o

By the monotonicity Lemma: M ⇥ �⇤ o+ L and thus o+ L ⌅ [ i �
Which is absurd, because N is sound



Proof of MAIN 
THEOREM (3)

89

N sound implies N� live:
Take any transition t and let M be a marking reachable in N�

By the technical lemma, M is reachable in N

Since N is sound: ⌅� ⇤ T � with M
��⇥ o

Since N is sound: ⌅�⇥ ⇤ T � with i
��
�⇥ M ⇥ and M ⇥ t⇥

Let �⇥⇥ = � reset �⇥, then:

M
���
�⇥ M ⇥ in N� and M ⇥ t⇥



Recall: consequences of 
strong connectedness 

theorem

90

If a (weakly-connected) net is not strongly connected  

then 

It is not “live and bounded” 

If it is live, it is not bounded 
If it is bounded, it is not live



Strong connectedness 
of N*

91

Let us denote by N : i ! o a workflow net
with entry place i and exit place o.

Let N⇤ be the net obtained by adding the “reset” transition to N
reset : o ! i.

Proposition:
N⇤ is strongly connected.

Take two nodes of (x, y) 2 FN⇤ ,
we want to build a path from y to x

If x, y 6= reset , then
y lies on a path i !⇤ y !⇤ o, because N is a workflow net,
x lies on a path i !⇤ x !⇤ o, because N is a workflow net,
we combine the paths y !⇤ o ! reset ! i !⇤ x

If x = o, y = reset , then
take any path i !⇤ o,
we build the path reset ! i !⇤ o

If x = reset , y = i, then
take any path i !⇤ o,
we build the path i !⇤ o ! reset



Strong connectedness 
of N*: example

92

<latexit sha1_base64="IyvvUihDxoI02U4xQIrZcA7u7ok=">AAAB83icdVC7TkJBFNzrE/GFWtpsJCZWZJeoQEe0sYREHgkQsnc54Ia9j+yeaySEL7DVys7Y+kEW/ot7ERM1OtVk5pycOePHWllk7M1bWl5ZXVvPbGQ3t7Z3dnN7+00bJUZCQ0Y6Mm1fWNAqhAYq1NCODYjA19Dyx5ep37oFY1UUXuMkhl4gRqEaKinQSfW7fi7PCowxzjlNCS+dM0cqlXKRlylPLYc8WaDWz713B5FMAghRamFth7MYe1NhUEkNs2w3sRALORYj6DgaigBsbzoPOqPHiRUY0RgMVZrORfi+MRWBtZPAd5OBwBv720vFv7xOgsNyb6rCOEEIZXoIlYb5ISuNcg0AHSgDiCJNDlSFVAojEMEoKqR0YuIqybo+vp6m/5NmscDPCqx+mq9eLJrJkENyRE4IJyVSJVekRhpEEiD35IE8eon35D17L5+jS95i54D8gPf6Adcjkbs=</latexit>x

<latexit sha1_base64="YIAnqUgf2hpXvTTKApdqC7PbV/Q=">AAAB83icdVC7TkJBFNyLL8QXammzkZhYkV2iAh3RxhISeSRAyN7lgBv2PrJ7rgkhfIGtVnbG1g+y8F/ci5io0akmM+fkzBk/1soiY29eZmV1bX0ju5nb2t7Z3cvvH7RslBgJTRnpyHR8YUGrEJqoUEMnNiACX0Pbn1ylfvsOjFVReIPTGPqBGIdqpKRAJzWmg3yBFRljnHOaEl6+YI5Uq5USr1CeWg4FskR9kH/vDSOZBBCi1MLaLmcx9mfCoJIa5rleYiEWciLG0HU0FAHY/mwRdE5PEiswojEYqjRdiPB9YyYCa6eB7yYDgbf2t5eKf3ndBEeV/kyFcYIQyvQQKg2LQ1Ya5RoAOlQGEEWaHKgKqRRGIIJRVEjpxMRVknN9fD1N/yetUpGfF1njrFC7XDaTJUfkmJwSTsqkRq5JnTSJJEDuyQN59BLvyXv2Xj5HM95y55D8gPf6Adiykbw=</latexit>y

reset



http://woped.dhbw-karlsruhe.de/woped/

WoPeD

http://woped.dhbw-karlsruhe.de/woped/


Exercise

94

Use some tools to check if the net below is a sound 
workflow net or not



Exercise
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Use some tools to check if the net below is a sound 
workflow net or not



Exercise
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Analyse the following net


