
Business Processes Modelling
MPB (6 cfu, 295AA)

Roberto Bruni
http://www.di.unipi.it/~bruni

14 - Analysis of WF nets

1

http://www.di.unipi.it/~bruni

Object

2

We study suitable soundness properties
of Workflow nets

Ch.6 of Business Process Management: Concepts, Languages, Architectures

WF nets as business
processes

3

48

Transition realised by
another workflow net

Structural analysis

4

No distinguished entry / exit point

no entry: when should the case start?
no exit: when should the case end?

not a workflow net!

Structural analysis

5

Multiple entry / exit points

multiple entries: when should the case start?
multiple exit: when should the case end?

not a workflow net!

Structural analysis

6

Tasks t without incoming and/or outgoing arcs

no input: when should t be carried out?
no output: t does not contribute to case completion

not a workflow net!

Structural analysis

7

Wrong decorations of transitions

split with only one outgoing arc

join with only one incoming arc

left to designer responsibility

Activity analysis

8

Dead tasks

Tasks that can never be carried out
Each transitions lies on a path from i to o: not sufficient

Activity analysis

9

Dead tasks

Tasks that can never be carried out
Each transitions lies on a path from i to o: not sufficient

can arise in workflow nets

Net analysis

10

Deadlock

a case blocks without coming to an end
can arise in workflow nets

Token analysis

11

Some tokens left in the net after case completion

Token analysis

12

Some tokens left in the net after case completion

(when a token is in the final place the case should end)
can arise in workflow nets

Activity analysis

13

If tokens are left in the net after case completion
then

activities may still take place after case completion

it is a (worse) consequence of the previous flaw
can arise in workflow nets

Token analysis

14

More than one token reach the end place

it can be a consequence of the previous flaws
can arise in workflow nets

Question time

15

Do you see any problem in the workflow net below?

Question time

16

Do you see any problem in the workflow net below?

Wrong decorations!

Question time

17

Do you see any problem in the net below?

Question time

18

Do you see any problem in the net below?

No input No output

Not a workflow net
(not all nodes are on a path from i to o)

Question time

19

Do you see any problem in the workflow net below?

Question time

20

Do you see any problem in the workflow net below?

Possible deadlock

Question time

21

Do you see any problem in the workflow net below?

Dead task

Question time

22

Do you see any problem in the workflow net below?

Question time

23

Do you see any problem in the workflow net below?

Some tokens left in the net after case completion

Question time

24

Do you see any problem in the workflow net below?

Activities still take place after case completion

Question time

25

Do you see any problem in the workflow net below?

More than one token can reach the end place

Question time

26

Livelock (divergence without producing output)

a case is trapped in a cycle with no opportunity to end
can arise in workflow nets

Draw a workflow net that suffers from livelock

Question time

27

Livelock (divergence without producing output)

Remark

28

All the previous flaws are typical errors that
can be detected

without any knowledge about the actual content
of the Business Process

Verification and
validation

29

Validation is concerned with
the relation between the model and the reality

How does a model fit log files?
Which model does fit better?

Verification aims to answer qualitative questions
Is there a deadlock possible?

Is it possible to successfully handle a specific case?
Will all cases terminate eventually?

Is it possible to execute a certain task?

Simulation techniques

30

Test analysis
Try and see if certain firing sequences are allowed by the

workflow net

Using WoPeD:
Play (forward and backward) with net tokens

Record certain runs (to replay or explain)
Randomly select alternatives

Problem: how to make sure that all possible runs have
been examined?

Reachability analysis

31

Verification by inspection
All possible runs of a workflow net are represented in its

Reachability Graph (when it is finite)

Using WoPeD:
all reachable states are shown

(a single run does not necessarily visit all nodes)
End states are evident (no outgoing arc)

Useful to check if dangerous or undesired states can arise
(e.g. the green-green state in the two-traffic-lights)

Problem: state explosion

32

Reachability analysis

Reachability analysis

33

Problem: state explosion

Exercise

34

Do you see any problem in the workflow net below?

Exercise

35

Which problem(s) in the workflow net below?
How would you redesign the business process?

Coverability

36

37

Proposition:
The reachability graph of a net is finite

if and only if

the net is bounded

Reachability analysis:
finiteness?

38

Proposition:
A net is unbounded

if and only if

its reachability graph is not finite

Reachability analysis:
finiteness?

39

Coverability graph

A coverability graph is a finite
over-approximation of the reachability graph

It allows for markings with infinitely many tokens
in one place (called extended bags)

B : P �⇥ N ⌅ {⇤}

Suppose

M0
t1�⇤ M1

t2�⇤ M2 ...
ti�⇤ Mi ...

tj�⇤ Mj

with Mi ⇥ Mj

Let M = Mi and M ⇥ = Mj and L = M ⇥ �M

By the monotonicity Lemma we have, for any n ⌅ N:
M ⇤� M + L ⇤� M + 2L ⇤� ... ⇤� M + nL

Hence all places p marked by L (i.e. if L(p) > 0) are unbounded
40

Discover unbounded
places

41

Cover unbounded places

Idea:
When computing the RG, if M ⇥ is found s.t.

M0 ⇤� M ⇤� M ⇥ with M ⇥ M ⇥

Add the extended bag B (instead of M ⇥) to the graph

where B(p) =

�
M ⇥(p) if M ⇥(p)�M(p) = 0
⌅ otherwise

42

A few remarks

Idea: mark unbounded places by ⇧

Remind: M ⇤ M ⇥ means that M � M ⇥ � M ⌥= M ⇥, i.e.,
1. for any p ⌃ P , M ⇥(p) ⇥ M(p)
2. there exists at least one place q ⌃ P such that M ⇥(q) > M(q)

Remark:
Requiring M0 ⌅� M ⌅� M ⇥ is di�erent that
requiring M,M ⇥ ⌃ [M0

than

43

Operations on extended
bags

Inclusion: Let B,B� : P ⌅ N ⌥ {⇧}
We write B ⇥ B� if for any p we have
B�(p) = ⇧ or B(p), B�(p) ⌃ N � B(p) ⇤ B�(p)

Sum: Let B,B� : P ⌅ N ⌥ {⇧}

(B +B�)(p) =

�
⇧ if B(p) = ⇧ or B�(p) = ⇧
B(p) +B�(p) if B(p), B�(p) ⌃ N

Di�erence: Let B : P ⌅ N ⌥ {⇧} and M : P ⌅ N with M ⇥ B

(B �M)(p) =

�
⇧ if B(p) = ⇧
B(p)�M(p) if B(p) ⌃ N

Inclusion: Let B,B� : P ⌅ N ⌥ {⇧}
We write B ⇥ B� if for any p we have
B�(p) = ⇧ or B(p), B�(p) ⌃ N � B(p) ⇤ B�(p)

Sum: Let B,B� : P ⌅ N ⌥ {⇧}

(B +B�)(p) =

�
⇧ if B(p) = ⇧ or B�(p) = ⇧
B(p) +B�(p) if B(p), B�(p) ⌃ N

Di�erence: Let B : P ⌅ N ⌥ {⇧} and M : P ⌅ N with M ⇥ B

(B �M)(p) =

�
⇧ if B(p) = ⇧
B(p)�M(p) if B(p) ⌃ N

Inclusion: Let B,B� : P ⌅ N ⌥ {⇧}
We write B ⇥ B� if for any p we have
B�(p) = ⇧ or B(p), B�(p) ⌃ N � B(p) ⇤ B�(p)

Sum: Let B,B� : P ⌅ N ⌥ {⇧}

(B +B�)(p) =

�
⇧ if B(p) = ⇧ or B�(p) = ⇧
B(p) +B�(p) if B(p), B�(p) ⌃ N

Di�erence: Let B : P ⌅ N ⌥ {⇧} and M : P ⌅ N with M ⇥ B

(B �M)(p) =

�
⇧ if B(p) = ⇧
B(p)�M(p) if B(p) ⌃ N

44

Compute a reachability graph
1. Initially N = { M0 } and A = ∅

(all bags are finite in this case)

45

Compute a reachability graph
1. Initially N = { M0 } and A = ∅
2. Take a bag B ∈ N and a transition t ∈ T such that

1. B enables t and there is no arc labelled t leaving from B

(all bags are finite in this case)

46

Compute a reachability graph
1. Initially N = { M0 } and A = ∅
2. Take a bag B ∈ N and a transition t ∈ T such that

1. B enables t and there is no arc labelled t leaving from B

3. Let B' = B - •t + t•

(all bags are finite in this case)

47

Compute a reachability graph
1. Initially N = { M0 } and A = ∅
2. Take a bag B ∈ N and a transition t ∈ T such that

1. B enables t and there is no arc labelled t leaving from B

3. Let B' = B - •t + t•
4. Add B' to N and (B,t,B') to A

(all bags are finite in this case)

48

Compute a reachability graph
1. Initially N = { M0 } and A = ∅
2. Take a bag B ∈ N and a transition t ∈ T such that

1. B enables t and there is no arc labelled t leaving from B

3. Let B' = B - •t + t•
4. Add B' to N and (B,t,B') to A
5. Repeat steps 2,3,4 until no new arc can be added

(all bags are finite in this case)

49

Compute a reachability graph
1. Initially N = { M0 } and A = ∅
2. Take a bag B ∈ N and a transition t ∈ T such that

1. B enables t and there is no arc labelled t leaving from B

3. Let B' = B - •t + t•
4. Add B' to N and (B,t,B') to A
5. Repeat steps 2,3,4 until no new arc can be added

(all bags are finite in this case)

50

Compute a coverability graph
1. Initially N = { M0 } and A = ∅
2. Take a bag B ∈ N and a transition t ∈ T such that

1. B enables t and there is no arc labelled t leaving from B

3. Let B' = B - •t + t•
4. Let Bc' such that for any p ∈ P

1. Bc'(p) = ∞ if there is a node B'' ∈ N such that

1. there is a directed path from B'' to B in the graph (N,A)
2. B'' ⊂ B',
3. B''(p) < B'(p)

2. Bc'(p) = B'(p) otherwise

5. Add Bc' to N and (B,t,Bc') to A
6. Repeat steps 2,3,4,5 until no new arc can be added

B00
�

!!

⇢ B0

B

t
>>

Example

51

Example

52

Example

53

Example

54

Example

55

Example

56

∞

Example

57

∞

Example

58

∞

Example

59

∞

Example

60

∞

Example

61

∞

Properties of
coverability graphs

62

A coverability graph is always finite,
but in general it is not uniquely defined

(it depends on which B and t are selected at step 2)

Every firing sequence has a corresponding path in the CG
(the converse is not necessarily true)

Any path in a CG that visits only finite markings
corresponds to a firing sequence

If the RG is finite, then it coincides with the CG

Reachability analysis
by coverability

63

All possible behaviours of a workflow net are represented
exactly in the Reachability Graph (if finite)

We use Coverability Graph when necessary (RG not finite)

WoPeD computes a Coverability Graph

Example

64

Soundness

65

Soundness
of Business Processes

66

A process is called sound if

1. it contains no unnecessary tasks

2. every case is always completed in full

3. no pending items are left after case completion

67

Business
Process

i o

Soundness
of Business Processes

Soundness
of Workflow nets

68

A workflow net is called sound if

1. for each transition t,

there is a marking M (reachable from i) that enables t

2. for each token put in place i,

one token eventually appears in the place o

3. when a token is in place o, all other places are empty

Fairness assumption

69

Remark:
Condition 2 does not mean that iteration must be forbidden or bound

It says that from any reachable marking M
there must be possible to reach o in some steps

Fairness assumption:
A task cannot be postponed indefinitely

OK

70

Soundness, Formally
A workflow net is called sound if

no dead task no transition is dead

8t 2 T. 9M 2 [i i. M t!

option to complete place o is eventually marked

8M 2 [i i. 9M 0 2 [M i. M 0(o) � 1

proper completion when o is marked, no other token is left

8M 2 [i i. M(o) � 1) M = o

1: no dead tasks

71

?

Reachable marking that enables the
transition

1: no dead tasks

72

The check must be repeated for each task

2: option to complete

73

?

Able to produce one token in o

2: option to complete

74

The check must be repeated for each reachable marking

3: proper completion

75

?

We must show that it is
not a reachable marking

3: proper completion

76

The check must be repeated for each marking M
such that M > o

Brute-force analysis

77

First, check if the Petri net is a workflow net
easy "syntactic" check

Second, check if it is sound (more difficult):
build the Reachability Graph

to check 1: for each transition t there must be an arc in the
RG that is labelled with t

to check 2&3: the RG must have only one final state (sink),
that consists of one token in o

and is reachable from any other state,
and no other marking has a token in o

Some Pragmatic
Considerations

78

All checks can better be done automatically
(computer aided)

but nevertheless RG construction...
1. can be computationally expensive for large nets

(because of state explosion)
2. provides little support in repairing unsound processes

3. can be infinite (CG can be used, but it is not exact)

Advanced support

79

Translate soundness to other well-known properties that
can be checked more efficiently:

boundedness and liveness

N*

80

81

Business
Process

i o

Play once

82

Business
Process

i o

reset

Play twice

83

Business
Process

i o

reset

Play any number of times

From N to N*

84

Let us denote by N : i ! o a workflow net
with entry place i and exit place o.

Let N⇤ be the net obtained by adding the “reset” transition to N
reset : o ! i.

Proposition:
N⇤ is strongly connected.

MAIN THEOREM

85

Let us denote by N : i � o a workflow net
with entry place i and exit place o

Let N� be the net obtained by adding the ”reset” transition to N
reset : o � i

Theorem:
N is sound i� N� is live and bounded

Proof of MAIN
THEOREM (1)

86

N� live and bounded implies N sound:

Since N� is live: for each t ⌅ T there is M ⌅ [i ⇧. M t⇤

Take any M ⌅ [i ⇧ enabling reset : o ⇤ i, hence M ⇥ o

Let M
reset�⇤ M ⇥. Then M ⇥ ⌅ [i ⇧ and M ⇥ ⇥ i

Since N� is bound, it must be M ⇥ = i (and M = o)
Otherwise all places marked by M ⇥ � i = M � o would be unbounded

Hence N� just allows multiple runs of N :
”option to complete” and ”proper completion” hold (see above)
”no dead task” holds because N� is live

A technical lemma

87

Lemma:
If N is sound, M is reachable in N i� M is reachable in N⇥

⌅) straightforward

⇤) Let i
��⇥ M in N⇥ for � = t1t2...tn

We proceed by induction on the number r of instances of reset in �
If r = 0, then reset does not occur in � and M is reachable in N
If r > 0, let k be the least index such that tk = reset
Let � = �⇤tk�⇤⇤ with �⇤ = t1t2...tk�1 fireable in N

Since N is sound: i
��
�⇥ o and i

���
�⇥ M

Since �⇤⇤ contains r � 1 instances of reset :
by inductive hypothesis M is reachable in N

Proof of MAIN
THEOREM (2)

88

N sound implies N� bounded :
We proceed by contradiction, assuming N� is unbounded

Since N� is unbounded:
⌃M,M ⇥ such that i ⇤� M ⇤� M ⇥ with M ⇥ M ⇥

Let L = M ⇥ �M ⇧= ⌥

Since N is sound:
⌃� ⌅ T � such that M

�⇤ o

By the monotonicity Lemma: M ⇥ �⇤ o+ L and thus o+ L ⌅ [i �
Which is absurd, because N is sound

Proof of MAIN
THEOREM (3)

89

N sound implies N� live:
Take any transition t and let M be a marking reachable in N�

By the technical lemma, M is reachable in N

Since N is sound: ⌅� ⇤ T � with M
��⇥ o

Since N is sound: ⌅�⇥ ⇤ T � with i
��
�⇥ M ⇥ and M ⇥ t⇥

Let �⇥⇥ = � reset �⇥, then:

M
���
�⇥ M ⇥ in N� and M ⇥ t⇥

Recall: consequences of
strong connectedness

theorem

90

If a (weakly-connected) net is not strongly connected

then

It is not “live and bounded”

If it is live, it is not bounded
If it is bounded, it is not live

Strong connectedness
of N*

91

Let us denote by N : i ! o a workflow net
with entry place i and exit place o.

Let N⇤ be the net obtained by adding the “reset” transition to N
reset : o ! i.

Proposition:
N⇤ is strongly connected.

Take two nodes of (x, y) 2 FN⇤ ,
we want to build a path from y to x

If x, y 6= reset , then
y lies on a path i !⇤ y !⇤ o, because N is a workflow net,
x lies on a path i !⇤ x !⇤ o, because N is a workflow net,
we combine the paths y !⇤ o ! reset ! i !⇤ x

If x = o, y = reset , then
take any path i !⇤ o,
we build the path reset ! i !⇤ o

If x = reset , y = i, then
take any path i !⇤ o,
we build the path i !⇤ o ! reset

Strong connectedness
of N*: example

92

<latexit sha1_base64="IyvvUihDxoI02U4xQIrZcA7u7ok=">AAAB83icdVC7TkJBFNzrE/GFWtpsJCZWZJeoQEe0sYREHgkQsnc54Ia9j+yeaySEL7DVys7Y+kEW/ot7ERM1OtVk5pycOePHWllk7M1bWl5ZXVvPbGQ3t7Z3dnN7+00bJUZCQ0Y6Mm1fWNAqhAYq1NCODYjA19Dyx5ep37oFY1UUXuMkhl4gRqEaKinQSfW7fi7PCowxzjlNCS+dM0cqlXKRlylPLYc8WaDWz713B5FMAghRamFth7MYe1NhUEkNs2w3sRALORYj6DgaigBsbzoPOqPHiRUY0RgMVZrORfi+MRWBtZPAd5OBwBv720vFv7xOgsNyb6rCOEEIZXoIlYb5ISuNcg0AHSgDiCJNDlSFVAojEMEoKqR0YuIqybo+vp6m/5NmscDPCqx+mq9eLJrJkENyRE4IJyVSJVekRhpEEiD35IE8eon35D17L5+jS95i54D8gPf6Adcjkbs=</latexit>x

<latexit sha1_base64="YIAnqUgf2hpXvTTKApdqC7PbV/Q=">AAAB83icdVC7TkJBFNyLL8QXammzkZhYkV2iAh3RxhISeSRAyN7lgBv2PrJ7rgkhfIGtVnbG1g+y8F/ci5io0akmM+fkzBk/1soiY29eZmV1bX0ju5nb2t7Z3cvvH7RslBgJTRnpyHR8YUGrEJqoUEMnNiACX0Pbn1ylfvsOjFVReIPTGPqBGIdqpKRAJzWmg3yBFRljnHOaEl6+YI5Uq5USr1CeWg4FskR9kH/vDSOZBBCi1MLaLmcx9mfCoJIa5rleYiEWciLG0HU0FAHY/mwRdE5PEiswojEYqjRdiPB9YyYCa6eB7yYDgbf2t5eKf3ndBEeV/kyFcYIQyvQQKg2LQ1Ya5RoAOlQGEEWaHKgKqRRGIIJRVEjpxMRVknN9fD1N/yetUpGfF1njrFC7XDaTJUfkmJwSTsqkRq5JnTSJJEDuyQN59BLvyXv2Xj5HM95y55D8gPf6Adiykbw=</latexit>y

reset

http://woped.dhbw-karlsruhe.de/woped/

WoPeD

http://woped.dhbw-karlsruhe.de/woped/

Exercise

94

Use some tools to check if the net below is a sound
workflow net or not

Exercise

95

Use some tools to check if the net below is a sound
workflow net or not

Exercise

96

Analyse the following net

