
Business Processes Modelling
MPB (6 cfu, 295AA)

Roberto Bruni
http://www.di.unipi.it/~bruni

14 - Analysis of WF nets

￼1

http://www.di.unipi.it/~bruni

Object

2

We study suitable soundness properties
of Workflow nets

Ch.6 of Business Process Management: Concepts, Languages, Architectures

WF nets as business
processes

3



 

 

 

 



 

48













Transition realised by
another workflow net

Structural analysis

4

No distinguished entry / exit point

no entry: when should the case start?
no exit: when should the case end?

not a workflow net!

Structural analysis

5

Multiple entry / exit points

multiple entries: when should the case start?
multiple exit: when should the case end?

not a workflow net!

Structural analysis

6

Tasks t without incoming and/or outgoing arcs

no input: when should t be carried out?
no output: t does not contribute to case completion

not a workflow net!

Structural analysis

7

Wrong decorations of transitions

split with only one outgoing arc

join with only one incoming arc

non-sense: left to designer responsibility

Structural analysis

8

The definition of Workflow nets is purely structural
but already rules out many erroneous models

XXX

Behavioural analysis

9

Still many problematic workflow nets
can be defined…

Activity analysis

10

Dead tasks

Tasks that can never be carried out
(each transitions lies on a path from i to o: not sufficient)

Activity analysis

11

Dead tasks

Tasks that can never be carried out
(each transitions lies on a path from i to o: not sufficient)

workflow nets can contain dead tasks!

Net analysis

12

Deadlock

a case blocks without coming to an end
can arise in workflow nets

Token analysis

13

Some tokens left in the net after case completion

Token analysis

14

Some tokens left in the net after case completion

(when a token is in the final place the case should end)
can arise in workflow nets

Activity analysis

15

If tokens are left in the net after case completion
then

activities may still take place after case completion

it is a (worse) consequence of the previous flaw
can arise in workflow nets

Token analysis

16

More than one token reach the end place

it can be a consequence of the previous flaws
can arise in workflow nets

Livelock = divergence without producing output
a case is trapped in a cycle with no opportunity to end

can arise in workflow nets

Livelock

17

Question time

18

Do you see any problem in the net below?

Question time

19

Do you see any problem in the net below?

No input No output

Not a workflow net
(not all nodes are on a path from i to o)

Question time

20

Do you see any problem in the workflow net below?

Question time

21

Do you see any problem in the workflow net below?

Wrong decorations!

Question time

22

Do you see any problem in the workflow net below?

Question time

23

Do you see any problem in the workflow net below?

Possible deadlock

Question time

24

Do you see any problem in the workflow net below?

Dead task

Question time

25

Do you see any problem in the workflow net below?

Question time

26

Do you see any problem in the workflow net below?

Some tokens left in the net after case completion

Question time

27

Do you see any problem in the workflow net below?

Activities still take place after case completion

Question time

28

Do you see any problem in the workflow net below?

More than one token can reach the end place

Remark

29

All the previous flaws are typical errors that
can be detected

without any knowledge about the actual content
of the Business Process

Verification and
validation

30

Validation is concerned with
the relation between the model and the reality

How does a model fit log files?
Which model does fit better?

Verification aims to answer qualitative questions
Is there a deadlock possible?

Is it possible to successfully handle a specific case?
Will all cases terminate eventually?

Is it possible to execute a certain task?

Simulation techniques

31

Test analysis
Try and see if certain firing sequences are allowed by the

workflow net

Using WoPeD:
Play (forward and backward) with net tokens

Record certain runs (to replay or explain)
Randomly select alternatives

Problem: how to make sure that all possible runs have
been examined?

Reachability analysis

32

Verification by inspection
All possible runs of a workflow net are represented in its

Reachability Graph (when it is finite)

Using WoPeD:
all reachable states are shown

(a single run does not necessarily visit all nodes)
End states are evident (no outgoing arc)

Useful to check if dangerous or undesired states can arise
(e.g. the green-green state in the two-traffic-lights)

Problem: state explosion

33

Reachability analysis

Reachability analysis

34

Problem: state explosion

Exercise

35

Do you see any problem in the workflow net below?

Exercise

36

Which problem(s) in the workflow net below?
How would you redesign the business process?

Coverability

37

38

Proposition:
The reachability graph of a net is finite

if and only if

the net is bounded

Reachability analysis:
finiteness?

39

Proposition:
A net is unbounded

if and only if

its reachability graph is not finite

Reachability analysis:
finiteness?

40

Coverability graph

A coverability graph is a finite
over-approximation of the reachability graph

It allows for markings with infinitely many tokens
in one place (called extended bags)

B : P �⇥ N ⌅ {⇤}

Suppose

M0
t1�⇤ M1

t2�⇤ M2 ...
ti�⇤ Mi ...

tj�⇤ Mj

with Mi ⇥ Mj

Let M = Mi and M ⇥ = Mj and L = M ⇥ �M

By the monotonicity Lemma we have, for any n ⌅ N:
M ⇤� M + L ⇤� M + 2L ⇤� ... ⇤� M + nL

Hence all places p marked by L (i.e. if L(p) > 0) are unbounded
41

Discover unbounded
places

42

Account for unbounded
places

Idea:
When computing the RG, if M ⇥ is found s.t.

M0 ⇤� M ⇤� M ⇥ with M ⇥ M ⇥

Add the extended bag B (instead of M ⇥) to the graph

where B(p) =

�
M ⇥(p) if M ⇥(p)�M(p) = 0
⌅ otherwise

43

A few remarks

Idea: mark unbounded places by ⇧

Remind: M ⇤ M ⇥ means that M � M ⇥ � M ⌥= M ⇥, i.e.,
1. for any p ⌃ P , M ⇥(p) ⇥ M(p)
2. there exists at least one place q ⌃ P such that M ⇥(q) > M(q)

Remark:
Requiring M0 ⌅� M ⌅� M ⇥ is di�erent that
requiring M,M ⇥ ⌃ [M0

than

44

Operations on extended
bags

Inclusion: Let B,B� : P ⌅ N ⌥ {⇧}
We write B ⇥ B� if for any p we have
B�(p) = ⇧ or B(p), B�(p) ⌃ N � B(p) ⇤ B�(p)

Sum: Let B,B� : P ⌅ N ⌥ {⇧}

(B +B�)(p) =

�
⇧ if B(p) = ⇧ or B�(p) = ⇧
B(p) +B�(p) if B(p), B�(p) ⌃ N

Di�erence: Let B : P ⌅ N ⌥ {⇧} and M : P ⌅ N with M ⇥ B

(B �M)(p) =

�
⇧ if B(p) = ⇧
B(p)�M(p) if B(p) ⌃ N

Inclusion: Let B,B� : P ⌅ N ⌥ {⇧}
We write B ⇥ B� if for any p we have
B�(p) = ⇧ or B(p), B�(p) ⌃ N � B(p) ⇤ B�(p)

Sum: Let B,B� : P ⌅ N ⌥ {⇧}

(B +B�)(p) =

�
⇧ if B(p) = ⇧ or B�(p) = ⇧
B(p) +B�(p) if B(p), B�(p) ⌃ N

Di�erence: Let B : P ⌅ N ⌥ {⇧} and M : P ⌅ N with M ⇥ B

(B �M)(p) =

�
⇧ if B(p) = ⇧
B(p)�M(p) if B(p) ⌃ N

Inclusion: Let B,B� : P ⌅ N ⌥ {⇧}
We write B ⇥ B� if for any p we have
B�(p) = ⇧ or B(p), B�(p) ⌃ N � B(p) ⇤ B�(p)

Sum: Let B,B� : P ⌅ N ⌥ {⇧}

(B +B�)(p) =

�
⇧ if B(p) = ⇧ or B�(p) = ⇧
B(p) +B�(p) if B(p), B�(p) ⌃ N

Di�erence: Let B : P ⌅ N ⌥ {⇧} and M : P ⌅ N with M ⇥ B

(B �M)(p) =

�
⇧ if B(p) = ⇧
B(p)�M(p) if B(p) ⌃ N

45

Operations on extended
bags: examples

<latexit sha1_base64="/ridejGQt6QgT7fp90cT2X525Cc=">AAACRHicfVBdSxtBFJ2NXzG1NupjX4YGoVAIu4uNyZvoi48pNDGQhHB3vEkHZ2fXmbtCCP4tf0L/Q0Ef9ck38VWc3aaQinpg4HDOudy5J0qVtOT7f7zS0vLK6lp5vfJh4+Pmp+rWdtcmmRHYEYlKTC8Ci0pq7JAkhb3UIMSRwpPo7Cj3Ty7QWJnonzRNcRjDRMuxFEBOGlXbIfBvPHJvIPWYplzwgc0ii4TnvPDCd8y5vJgYVWt+3XdoNHhOgqYfONJqNcOwxYPC8v0am6M9qt4MThORxahJKLC2H/gpDWdgSAqFl5VBZjEFcQYT7DuqIUY7nBWXX/LdzAIlPEXDpeKFiIsTM4itncaRS8ZAv+xLLxdf8/oZjZvDmdRpRqhFvoikwmKRFUa6SpGfSoNEkP8cudRcgAEiNJKDEE7MXMcV18e/o/nbpBvWg0b9+4+92sHhvJky+8y+sK8sYPvsgB2zNuswwa7YNbtld95v79578B7/RkvefGaH/Qfv6RlQSa3b</latexit>

2a+ b+1c ✓ 2a+ 2b+1c ✓ 2a+1b+1c

<latexit sha1_base64="XLDewD6HfNW9zFOzYvp2jl+gWj4=">AAACSHicfVBNSxxBEO1Zk6ibr9UcvRRZAoHAMjuru3qTePGo4Kqwsyw1ba1p7OmZdNcIy+If8yf4DzwIuZqTt5Cb3esKSdAUNDzee1XV9bJSK8dxfB3VFl68fLW4tFx//ebtu/eNldVDV1RWUl8WurDHGTrSylCfFWs6Li1hnmk6ys52gn50TtapwhzwpKRhjqdGjZVE9tSocZAgfIHMv1SZMU9AQj01BaeuyhwxfYegJ/8zhAlzLdg6IEeNZtza2uwmGwnErTjuJZ1uAElvPelA2zOhmmJee6PGTXpSyConw1Kjc4N2XPJwipaV1HRRTytHJcozPKWBhwZzcsPp7PoL+FQ55AJKsqA0zEj6s2OKuXOTPPPOHPmb+1cL5FPaoOLx5nCqTFkxGRkWsdI0W+SkVT5WghNliRnDzwmUAYkWmckqQCk9Wfmc6z6Px6PheXCYtNrd1sb+enP76zyZJbEmPorPoi16Ylvsij3RF1Jcih/iVvyMrqK76Ff0+8Fai+Y9H8RfVavdA80frfQ=</latexit>

2a+ b+1c 6✓ a+ 2b+1c 6✓ 2a+1b+ 3c

<latexit sha1_base64="wtbf86x7SgQ8fQ8+Rn0ynwmJFLU=">AAACRHicdVDLSgNBEJz1GddX1KOXwSBEAmE3Pi9C0IvHCEaFJITeSUeHzM4uM71CCP6Wn+A/CHrUkzfxKm5iQE20Dk1R1U13VxAracnzHpyJyanpmdnMnDu/sLi0nF1ZPbdRYgRWRaQicxmARSU1VkmSwsvYIISBwougc9z3L27QWBnpM+rG2AjhSsu2FECp1MxW8tvAC7wUpKUudZu6XGy5BZ4vwbfyy+TuoZvf/ddtZnNe0RuAjxN/SHJsiEoz+1RvRSIJUZNQYG3N92Jq9MCQFApv3XpiMQbRgSuspVRDiLbRG3x+yzcTCxTxGA2Xig9E/DnRg9DabhiknSHQtR31+uJfXi2h9kGjJ3WcEGrRX0RS4WCRFUamkSJvSYNE0L8cudRcgAEiNJKDEKmYpBm7aR7+6Pfj5LxU9PeKu6c7ufLRMJkMW2cbLM98ts/K7IRVWJUJdsce2TN7ce6dV+fNef9qnXCGM2vsF5yPTxk9qjE=</latexit>

(3a+ 2b+1c) + (2a+1b+1c) = (5a+1b+1c)
<latexit sha1_base64="cJjCzY+dT2q9AUPbeHygIog0Pfg=">AAACKnicdZDLSgNBEEV7fDu+oi7dNAYhIobJxCS6EEU3LhWMCkkINW1FG3t6hu4aIQT/xE/wK9zqyp2IOz/EmRjxgdbqcm4VVXWDWElLnvfsDA2PjI6NT0y6U9Mzs3O5+YUTGyVGYF1EKjJnAVhUUmOdJCk8iw1CGCg8Da72M//0Go2VkT6mboytEC607EgBlKJ2rlqoAF/jTak71OXBlxSrfJ0Xypnp/8DutrvjtnN5r7i1WfUrPveKnlfzy9VM+LUNv8xLKckqzwZ12M69Ns8jkYSoSSiwtlHyYmr1wJAUCm/cZmIxBnEFF9hIpYYQbavX/++GryQWKOIxGi4V70P8PtGD0NpuGKSdIdCl/e1l8C+vkVBns9WTOk4ItcgWkVTYX2SFkWlwyM+lQSLILkcuNRdggAiN5CBECpM0ySyPz6f5/+LEL5aqxcrRRn53b5DMBFtiy6zASqzGdtkBO2R1Jtgtu2cP7NG5c56cZ+flo3XIGcwssh/lvL0DByOhxw==</latexit>

(5a+1b+1c)� (3a+ 2b+1c) =?

must be a marking!
<latexit sha1_base64="WpQBT3uoLkDHmYpTdbGDoKbeUF0=">AAACPHicdVCxThtBEN2DBJxLIIaUaVaxIhkhrLsLNnYRCUFDaSSMkWzLmlvGsGJv77Q7h2RZ/BKfwFfQUEBFh9KmZs84CiB41dN7bzQzL86UtBQEN97c/IePC4ulT/7nL0vLX8srq4c2zY3AjkhVao5isKikxg5JUniUGYQkVtiNz3YLv3uOxspUH9A4w0ECJ1qOpABy0rC8V60DX+d9qUc05vF/Ktb4Bq/+KsyokDfFmv/br0bvpYflSlALHBoNXpCwGYSOtFrNKGrxcGoFQYXN0B6Wb/vHqcgT1CQUWNsLg4wGEzAkhcILv59bzECcwQn2HNWQoB1Mph9f8J+5BUp5hoZLxaciPp+YQGLtOIldMgE6ta+9QnzL6+U0ag4mUmc5oRbFIpIKp4usMNJVifxYGiSC4nLkUnMBBojQSA5CODF33fquj39P8/fJYVQLG7X6/mZle2fWTIl9Zz9YlYVsi22zPdZmHSbYJbtmt+zOu/LuvQfvz1N0zpvNfGMv4P19BJnvp4Q=</latexit>

(5a+1b+1c)� (3a+ 2b+ 4c) = (2a+1b+1c)

46

Compute a reachability graph
1. Initially N = { M0 } and A = ∅

(all bags are finite in this case)

47

Compute a reachability graph
1. Initially N = { M0 } and A = ∅
2. Take a bag B ∈ N and a transition t ∈ T such that

1. B enables t and there is no arc labelled t leaving from B

(all bags are finite in this case)

48

Compute a reachability graph
1. Initially N = { M0 } and A = ∅
2. Take a bag B ∈ N and a transition t ∈ T such that

1. B enables t and there is no arc labelled t leaving from B

3. Let B' = B - •t + t•

(all bags are finite in this case)

49

Compute a reachability graph
1. Initially N = { M0 } and A = ∅
2. Take a bag B ∈ N and a transition t ∈ T such that

1. B enables t and there is no arc labelled t leaving from B

3. Let B' = B - •t + t•
4. Add B' to N and (B,t,B') to A

(all bags are finite in this case)

50

Compute a reachability graph
1. Initially N = { M0 } and A = ∅
2. Take a bag B ∈ N and a transition t ∈ T such that

1. B enables t and there is no arc labelled t leaving from B

3. Let B' = B - •t + t•
4. Add B' to N and (B,t,B') to A
5. Repeat steps 2,3,4 until no new arc can be added

(all bags are finite in this case)

51

Compute a reachability graph
1. Initially N = { M0 } and A = ∅
2. Take a bag B ∈ N and a transition t ∈ T such that

1. B enables t and there is no arc labelled t leaving from B

3. Let B' = B - •t + t•
4. Add B' to N and (B,t,B') to A
5. Repeat steps 2,3,4 until no new arc can be added

(all bags are finite in this case)

52

Compute a coverability graph
1. Initially N = { M0 } and A = ∅
2. Take a bag B ∈ N and a transition t ∈ T such that

1. B enables t and there is no arc labelled t leaving from B

3. Let B' = B - •t + t•
4. Let Bc' such that for any p ∈ P

1. Bc'(p) = ∞ if there is a node B'' ∈ N such that

1. there is a directed path from B'' to B in the graph (N,A)
2. B'' ⊂ B',
3. B''(p) < B'(p)

2. Bc'(p) = B'(p) otherwise

5. Add Bc' to N and (B,t,Bc') to A
6. Repeat steps 2,3,4,5 until no new arc can be added

B00
�

!!

⇢ B0

B

t
>>

Example

53

Example

54

Example

55

Example

56

Example

57

Example

58

∞

Example

59

∞

Example

60

∞

Example

61

∞

Example

62

∞

Example

63

∞

Properties of
coverability graphs

64

A coverability graph is always finite,
but in general it is not uniquely defined

(it depends on which B and t are selected at step 2)

Every firing sequence has a corresponding path in the CG
(the converse is not necessarily true)

Any path in a CG that visits only finite markings
corresponds to a firing sequence

If the RG is finite, then it coincides with the CG

Reachability analysis
by coverability

65

All possible behaviours of a workflow net are represented
exactly in the Reachability Graph (if finite)

We use Coverability Graph when necessary (RG not finite)

WoPeD computes a Coverability Graph

Example

66

Soundness

67

Soundness
of Business Processes

68

A process is called sound if

1. it contains no unnecessary tasks

2. every case is always completed in full

3. no pending items are left after case completion

69

Business
Process

i o

Soundness
of Business Processes

Soundness
of Workflow nets

70

A workflow net is called sound if

1. for each transition t,

there is a marking M (reachable from i) that enables t

2. for each token put in place i,

one token eventually appears in the place o

3. when a token is in place o, all other places are empty

Fairness assumption

71

Remark:
Condition 2 does not mean that iteration must be forbidden or bound

It says that from any reachable marking M
there must be possible to reach o in some steps

Fairness assumption:
A task cannot be postponed indefinitely

OK

72

Soundness, Formally
A workflow net is called sound if

no dead task no transition is dead

8t 2 T. 9M 2 [i i. M t!

option to complete place o is eventually marked

8M 2 [i i. 9M 0 2 [M i. M 0(o) � 1

proper completion when o is marked, no other token is left

8M 2 [i i. M(o) � 1) M = o

1: no dead tasks

73

?

Reachable marking that enables the
transition

1: no dead tasks

74

The check must be repeated for each task

2: option to complete

75

?

Able to produce one token in o

2: option to complete

76

The check must be repeated for each reachable marking

3: proper completion

77

?

We must show that it is
not a reachable marking

3: proper completion

78

The check must be repeated for each marking
such that

M
M > o

Brute-force analysis

79

First, check if the Petri net is a workflow net
easy "structural" check

Second, check if it is sound (more difficult):
build the Reachability Graph

to check 1: for each transition t there must be an arc in the
RG that is labelled with t

to check 2&3: the RG must have only one final state (sink),
that consists of one token in o

and is reachable from any other state,
and no other marking has a token in o

Some Pragmatic
Considerations

80

All checks can better be done automatically
(computer aided)

but nevertheless RG construction...
1. can be computationally expensive for large nets
 (because of state explosion)
2. provides little support in repairing unsound processes
3. can be infinite (CG can be used, but it is not exact)

Advanced support

81

Translate soundness to other well-known properties that
can be checked more efficiently:

boundedness and liveness

N*

82

83

Business
Process

i o

Play once

84

Business
Process

i o

reset

Play twice

85

Business
Process

i o

reset

Play any number of times

From N to N*

86

Let us denote by N : i ! o a workflow net
with entry place i and exit place o.

Let N⇤ be the net obtained by adding the “reset” transition to N
reset : o ! i.

Proposition:
N⇤ is strongly connected.

MAIN THEOREM

87

Let us denote by N : i � o a workflow net
with entry place i and exit place o

Let N� be the net obtained by adding the ”reset” transition to N
reset : o � i

Theorem:
N is sound i� N� is live and bounded

MAIN THEOREM

88

Let us denote by N : i � o a workflow net
with entry place i and exit place o

Let N� be the net obtained by adding the ”reset” transition to N
reset : o � i

Theorem:
N is sound i� N� is live and bounded
1 no dead tasks
2 option to complete
3 proper completion

at any reachable marking, every transition can fire in the future
and
for some k, every place will contain less than k tokens

⇐ 1
2 ⇒

3 ⇒

Proof of MAIN
THEOREM (1)

89

N� live and bounded implies N sound:

Since N� is live: for each t ⌅ T there is M ⌅ [i ⇧. M t⇤

Take any M ⌅ [i ⇧ enabling reset : o ⇤ i, hence M ⇥ o

Let M
reset�⇤ M ⇥. Then M ⇥ ⌅ [i ⇧ and M ⇥ ⇥ i

Since N� is bound, it must be M ⇥ = i (and M = o)
Otherwise all places marked by M ⇥ � i = M � o would be unbounded

Hence N� just allows multiple runs of N :
”option to complete” and ”proper completion” hold (see above)
”no dead task” holds because N� is live

(⇐)

A technical lemma

90

Lemma:
If N is sound, M is reachable in N i� M is reachable in N⇥

⌅) straightforward

⇤) Let i
��⇥ M in N⇥ for � = t1t2...tn

We proceed by induction on the number r of instances of reset in �
If r = 0, then reset does not occur in � and M is reachable in N
If r > 0, let k be the least index such that tk = reset
Let � = �⇤tk�⇤⇤ with �⇤ = t1t2...tk�1 fireable in N

Since N is sound: i
��
�⇥ o and i

���
�⇥ M

Since �⇤⇤ contains r � 1 instances of reset :
by inductive hypothesis M is reachable in N

Proof of MAIN
THEOREM (2)

91

N sound implies N� bounded :
We proceed by contradiction, assuming N� is unbounded

Since N� is unbounded:
⌃M,M ⇥ such that i ⇤� M ⇤� M ⇥ with M ⇥ M ⇥

Let L = M ⇥ �M ⇧= ⌥

Since N is sound:
⌃� ⌅ T � such that M

�⇤ o

By the monotonicity Lemma: M ⇥ �⇤ o+ L and thus o+ L ⌅ [i �
Which is absurd, because N is sound

(⇒)

Proof of MAIN
THEOREM (3)

92

N sound implies N� live:
Take any transition t and let M be a marking reachable in N�

By the technical lemma, M is reachable in N

Since N is sound: ⌅� ⇤ T � with M
��⇥ o

Since N is sound: ⌅�⇥ ⇤ T � with i
��
�⇥ M ⇥ and M ⇥ t⇥

Let �⇥⇥ = � reset �⇥, then:

M
���
�⇥ M ⇥ in N� and M ⇥ t⇥

(⇐)

Recall: consequences of
strong connectedness

theorem

93

If a (weakly-connected) net is not strongly connected

then

It is not “live and bounded”

If it is live, it is not bounded
If it is bounded, it is not live

Strong connectedness
of N*

94

Let us denote by N : i ! o a workflow net
with entry place i and exit place o.

Let N⇤ be the net obtained by adding the “reset” transition to N
reset : o ! i.

Proposition:
N⇤ is strongly connected.

Take two nodes of (x, y) 2 FN⇤ ,
we want to build a path from y to x

If x, y 6= reset , then
y lies on a path i !⇤ y !⇤ o, because N is a workflow net,
x lies on a path i !⇤ x !⇤ o, because N is a workflow net,
we combine the paths y !⇤ o ! reset ! i !⇤ x

If x = o, y = reset , then
take any path i !⇤ o,
we build the path reset ! i !⇤ o

If x = reset , y = i, then
take any path i !⇤ o,
we build the path i !⇤ o ! reset

Strong connectedness
of N*: example

95

<latexit sha1_base64="IyvvUihDxoI02U4xQIrZcA7u7ok=">AAAB83icdVC7TkJBFNzrE/GFWtpsJCZWZJeoQEe0sYREHgkQsnc54Ia9j+yeaySEL7DVys7Y+kEW/ot7ERM1OtVk5pycOePHWllk7M1bWl5ZXVvPbGQ3t7Z3dnN7+00bJUZCQ0Y6Mm1fWNAqhAYq1NCODYjA19Dyx5ep37oFY1UUXuMkhl4gRqEaKinQSfW7fi7PCowxzjlNCS+dM0cqlXKRlylPLYc8WaDWz713B5FMAghRamFth7MYe1NhUEkNs2w3sRALORYj6DgaigBsbzoPOqPHiRUY0RgMVZrORfi+MRWBtZPAd5OBwBv720vFv7xOgsNyb6rCOEEIZXoIlYb5ISuNcg0AHSgDiCJNDlSFVAojEMEoKqR0YuIqybo+vp6m/5NmscDPCqx+mq9eLJrJkENyRE4IJyVSJVekRhpEEiD35IE8eon35D17L5+jS95i54D8gPf6Adcjkbs=</latexit>x

<latexit sha1_base64="YIAnqUgf2hpXvTTKApdqC7PbV/Q=">AAAB83icdVC7TkJBFNyLL8QXammzkZhYkV2iAh3RxhISeSRAyN7lgBv2PrJ7rgkhfIGtVnbG1g+y8F/ci5io0akmM+fkzBk/1soiY29eZmV1bX0ju5nb2t7Z3cvvH7RslBgJTRnpyHR8YUGrEJqoUEMnNiACX0Pbn1ylfvsOjFVReIPTGPqBGIdqpKRAJzWmg3yBFRljnHOaEl6+YI5Uq5USr1CeWg4FskR9kH/vDSOZBBCi1MLaLmcx9mfCoJIa5rleYiEWciLG0HU0FAHY/mwRdE5PEiswojEYqjRdiPB9YyYCa6eB7yYDgbf2t5eKf3ndBEeV/kyFcYIQyvQQKg2LQ1Ya5RoAOlQGEEWaHKgKqRRGIIJRVEjpxMRVknN9fD1N/yetUpGfF1njrFC7XDaTJUfkmJwSTsqkRq5JnTSJJEDuyQN59BLvyXv2Xj5HM95y55D8gPf6Adiykbw=</latexit>y

reset

http://woped.dhbw-karlsruhe.de/woped/

WoPeD

http://woped.dhbw-karlsruhe.de/woped/

Exercise

97

Use some tools to check if the net below is a sound
workflow net or not

Exercise

98

Use some tools to check if the net below is a sound
workflow net or not

Exercise

99

Analyse the following net

Exercise

100

Analyse the following net

Design and analysis of
WF-nets

101

The workflow of a computer repair service (CRS) can be described as follows.
A customer brings in a defective computer and the CRS checks the defect and hands out a
repair cost calculation back.
If the customer decides that the costs are acceptable, the process continues, otherwise
she takes her computer home, unrepaired.
The ongoing repair consists of two activities, which are executed sequentially but in an
arbitrary order.
One activity is to check and repair the hardware,
whereas the other activity is to check and configure the software.
After both activities are completed, the proper system functionality is tested.
If an error is detected the repair procedure is repeated,
otherwise the repair is finished and the computer is returned.

Model the described workflow as a sound workflow net.

