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Object

2

We study some “good” properties of S-systems 
and T-systems

Free Choice Nets (book, optional reading) 
https://www7.in.tum.de/~esparza/bookfc.html 

https://www7.in.tum.de/~esparza/bookfc.html


Notation: token count

3

M(P ) =
�

p�P

M(p)

P = {p1, p2, p3} M = 2p1 + 3p2 M(P ) = 2 + 3 + 0 = 5

Example



S-systems

4



S-system
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Definition: We recall that a net N is an S-net if 
each transition has exactly one input place and 

exactly one output place 
!
!
!
!
!

A system (N,M0) is an S-system if N is an S-net

⇥t � T, | • t| = 1 = |t • |



S-system: example
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S-net N*
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Proposition: A workflow net N is an S-net  
iff N* is an S-net

N and N* differ only for the reset transition, 
that has exactly one incoming arc 

and exactly one outgoing arc



Fundamental property 
of S-systems
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Observation: each transition t that fires  
removes exactly one token from some place p  
and inserts exactly one token in some place p’ 

(p and p’ can also coincide)  
!

Thus, the overall number of tokens in the net is 
an invariant under any firing.  

!



Fundamental property 
of S-systems
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Proposition: Let (P,T,F,M0) be an S-system.  
If M is a reachable marking, then M(P) = M0(P)

We show that for any M
��! M 0

we have M 0(P ) = M(P )

base (� = ✏): trivial (M 0 = M)

induction (� = �0t for some �0 2 T ⇤
and t 2 T ):

Let M
�0
�! M 00 t�! M 0

.

By inductive hypothesis: M 00(P ) = M(P )

By definition of S-system: | • t| = |t • | = 1

Thus, M 0(P ) = M 00(P )� | • t|+ |t • | = M(P )� 1 + 1 = M(P )



A consequence of the 
fundamental property
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Corollary: Any S-system is bounded

Let M ⇤ [M0 ⌅.

By the fundamental property of S-systems: M(P ) = M0(P ).

Then, for any p ⇤ P we have M(p) � M(P ) = M0(P ).

Thus the S-system is k-bounded for any k ⇥ M0(P ).

M(P ) =
�

p�P

M(p)



S-invariants of S-nets
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Proposition: Let N=(P,T,F) be a connected S-net.  
I is a rational-valued S-invariant of N iff I=[ x ... x ] 

for some rational value x

t

⇥t � T,
�

p�•t
I(p) =

�

p�t•
I(p)

⇥t � T, | • t| = |t • | = 1

Let •t = {pt} and t• = {pt}

⇥t � T, I(pt) = I(pt)

pt pt

S-invariance

S-nets



S-invariants of S-nets
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Proposition: Let N=(P,T,F) be a connected S-net.  
I is a rational-valued S-invariant of N iff I=[ x ... x ] 

for some rational value x

t t’

pt pt = pt’ pt’ 

I(pt) = I(pt) = I(pt
�
) = I(pt�)



S-invariants of S-nets
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Proposition: Let N=(P,T,F) be a connected S-net.  
I is a rational-valued S-invariant of N iff I=[ x ... x ] 

for some rational value x

t t’

pt pt = pt’ pt’ 

I(pt) = I(pt) = I(pt�) = I(pt
�
)



S-invariants of S-nets
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Proposition: Let N=(P,T,F) be a connected S-net.  
I is a rational-valued S-invariant of N iff I=[ x ... x ] 

for some rational value x

t t’

pt pt = pt’ pt’ 

I(pt) = I(pt) = I(pt
�
) = I(pt�)



S-invariants of S-nets
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Proposition: Let N=(P,T,F) be a connected S-net.  
I is a rational-valued S-invariant of N iff I=[ x ... x ] 

for some rational value x

⇥p0, pn � P, p0 t1 p1 t2 p2 t3 p3 ... tn pn
(�ti, either (pi, ti)(ti, pi+1) or (ti, pi)(pi+1, ti))

weak!
connectivity

⇥p0, pn � P, I(p0) = I(pn)

S-net



A note on S-invariants 
and S-nets
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⇥M � [M0 ⇤, I ·M = I ·M0

I = [ 1 1 ... 1 ]

⇥M, I ·M =
�

p�P

1 ·M(p) =
�

p�P

M(p) = M(P )

⇥M � [M0 ⇤, M(P ) = I ·M = I ·M0 = M0(P )

S-invariance

S-invariant 
of S-nets

We recover the 
Fundamental 

property of S-nets

consequence



Liveness theorem for 
S-systems
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⌅) (quite obvious)
(N,M0) is live by hypothesis and bounded (because S-system).
By the strong connectedness theorem, N is strongly connected.

Since (N,M0) is live, then M0
t�⇤ for some t.

Assume •t = {p}. Thus, M0(p) ⇥ 1.

Theorem: An S-system (N,M0) is live iff N is 
strongly connected and M0 marks at least one place 



Liveness theorem for 
S-systems
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Theorem: An S-system (N,M0) is live iff N is 
strongly connected and M0 marks at least one place 

⌅) (more interesting)
Take any M ⇧ [M0 ⌃ and t ⇧ T .

We want to find M ⇥ ⇧ [M ⌃ such that M ⇥ t�⇤.

Take p1 ⇧ P such that M(p1) ⇥ 1 (it exists, because M(P ) = M0(P ) ⇥ 1).
By strong connectedness: there is a path from p1 to tn = t
(p1, t1)(t1, p2)(p2, t2)...(pn, tn)

By definition of S-system: •ti = {pi} and ti• = {pi+1}.
Thus, M

��⇤ M ⇥ t�⇤ for � = t1t2...tn�1.



Reachability lemma for 
S-nets
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Lemma: Let (P,T,F) be a strongly connected S-net. 
If M(P) = M’(P), then M’ is reachable from M

We proceed by induction on M(P )

base (M(P ) = M ⇥(P ) = 0): trivial (M ⇥ = M)

induction (M(P ) = M ⇥(P ) > 0):

Let p, p⇥ ⇤ P be such that M(p) > 0 and M ⇥(p⇥) > 0.

Let K = M � p and K ⇥ = M ⇥ � p⇥.

Clearly K ⇥(P ) = K(P ) < M(P ) = M ⇥(P ).

By inductive hypothesis: ⌅�, K ��⇥ K ⇥

By strong connectedness: there is a path from p0 = p to pn = p⇥

(p0, t1)(t1, p1)(p1, t2)...(tn, pn)

By definition of S-system: •ti = {pi�1} and ti• = {pi}.

Thus, p = p0
��
�⇥ pn = p⇥ for �⇥ = t1t2...tn.

By the monotonicity lemma: M = K + p
��⇥ K ⇥ + p

��
�⇥ K ⇥ + p⇥ = M ⇥



Reachability Theorem 
for S-systems
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Theorem: Let (P,T,F,M0) be a live S-system.  
A marking M is reachable iff M(P)=M0(P)

=>) Follows from the fundamental property of S-systems 
!
<=) By the previous liveness theorem, the S-net is 
strongly connected.  
We conclude by applying the reachability lemma for  
S-systems.



S-systems: recap
S-system                                             => bounded 
S-system:       str. conn. + M0(P)>0   <=> live                       

!
S-system + M reachable                    => M(P) = M0(P) 
S-system + str. conn.:   M(P)=M0(P) <=> M reachable 
S-system + live:            M(P)=M0(P) <=> M reachable 

!
S-invariant I                                       => I = [ x x ... x ]



Question time
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Which of the following markings are reachable? (why?) 
!

[ 1 1 1 1 ] 
[ 2 0 2 0 ] 
[ 1 2 1 2 ] 
[ 4 0 0 0 ] 
[ 0 4 0 4 ] 
[ 0 3 2 1 ] 
[ 0 0 4 0 ] 
[ 0 3 0 0 ] 
[ 0 3 0 1 ]



Question time
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Which of the following are S-invariants? (why?) 
!

[ 1 1 0 0 ] 
[ 0 0 2 2 ] 
[ 1 1 1 1 ] 
[ 2 2 1 1 ] 
[ 2 2 2 2 ] 
[ 1 2 2 1 ]



Exercises
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Which of the following S-systems are live? (why?)



Boundedness Theorem 
for S-systems
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Theorem:
A live S-system (P, T, F,M0) is k-bounded i� M0(P ) � k



Exercise

41

Prove the boundedness theorem for live S-systems



T-systems

42



T-system
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Definition: We recall that a net N is a T-net if each 
place has exactly one input transition and exactly 

one output transition 
!
!
!
!

A system (N,M0) is a T-system if N is a T-net

⇥p � P, | • p| = 1 = |p • |



T-system: example
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T-systems: an 
observation
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Notably, computation in T-systems is concurrent, 
but essentially deterministic: 

!
the firing of a transition t in M cannot disable 

another transition t’ enabled at M



T-net N*
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Is it true that: A workflow net N is a T-net  
iff N* is a T-net ?



T-systems: another 
observation
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Determination of control: 
!

the transitions responsible for enabling t are  
one for each input place of t



Notation: token count 
of a circuit
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Let � = (x1, y1)(y1, x2)(x2, y2)...(xn, yn) be a circuit.

Let P|� � P be the set of places in �.

M(�) = M(P|�) =
�

p�P|�

M(p)

We say that � is marked at M if M(�) > 0



Example
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M(�1) = 4

M(�2) = 2

M(�3) = 3



Trace two circuits over the T-system below

Question time
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Fundamental property 
of T-systems
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The token count of a circuit is invariant under any firing. 



Fundamental property 
of T-systems
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Proposition: Let � be a circuit of a T-system (P, T, F,M0).
If M is a reachable marking, then M(�) = M0(�)

Take any t � T : either t ⇥� � or t � �.

If t ⇥� �, then no place in •t ⇤ t• is in �
(otherwise, by definition of T-nets, t would be in �).
Then, an occurrence of t does not change the token count of �.

If t � �, then exactly one place in •t and one place in t• are in �.
Then, an occurrence of t does not change the token count of �.



Example
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M(�1) = 4
M(�2) = 2

M(�3) = 3

M0 = [ 0  4  2  0  3  0 ] 
M = [ 2  2  1  2  2  1 ] 
M’ = [ 2  1  1  1  2  2 ]



Is the marking p1 + 2p2 reachable? (why?)

Question time

57



T-invariants of T-nets
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Proposition: Let N=(P,T,F) be a connected T-net.  
J is a rational-valued T-invariant of N iff J=[ x ... x ] 

for some rational value x

(the proof is dual to the analogous proposition for 
S-invariants of S-nets)



Liveness theorem for 
T-systems
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Theorem: A T-system (N,M0) is live  
iff every circuit of N is marked at M0

�) (quite obvious)
By contradiction, let � be a circuit with M0(�) = 0.
By the fundamental property of T-systems: ⇤M ⇥ [M0 ⇧, M(�) = 0.

Take any t ⇥ T|� and p ⇥ P|� ⌅ •t.

For any M ⇥ [M0 ⇧, we have M(p) = 0.
Hence t is never enabled and the T-system is not live.



Liveness theorem for 
T-systems
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Theorem: A T-system (N,M0) is live  
iff every circuit of N is marked at M0

�) (more involved)
Take any t ⇥ T and M ⇥ [M0 ⇤.
We need to show that some marking M � reachable from M enables t.

The key idea is to collect the places that control the firing of t:
p ⇥ PM,t if there is a path from p to t through places unmarked at M .
We then proceed by induction on the size of PM,t.

We just sketch the key idea of the proof over a T-system.

⇐



Liveness theorem for 
T-systems
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Theorem: A T-system (N,M0) is live  
every circuit of N is marked at M0

M = p1 + p6 + p7

M’ enabling t2?

⇐



Liveness theorem for 
T-systems
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PM,t2 = { p2, p3, p4 }

Theorem: A T-system (N,M0) is live  
every circuit of N is marked at M0⇐



Liveness theorem for 
T-systems
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�) (continued proof sketch)

Base case: |PM,t| = 0.

Every place in •t is already marked at M .

Hence t is enabled at M .

⇐

Theorem: A T-system (N,M0) is live  
every circuit of N is marked at M0⇐



Liveness theorem for 
T-systems
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�) (continued proof sketch)

Inductive case: |PM,t| > 0.
Therefore t is not enabled at M .

We look for a path � of maximal length necessary for firing t.
� must contain only places unmarked at M .

By the fundamental property of T-systems: all circuits are marked at M .
� is not necessarily unique, but exists (no cycle in it).

⇐

Theorem: A T-system (N,M0) is live  
every circuit of N is marked at M0⇐



Liveness theorem for 
T-systems
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� = t4 p3 t3 p2 t2

Theorem: A T-system (N,M0) is live  
every circuit of N is marked at M0⇐



Liveness theorem for 
T-systems
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� = t5 p4 t3 p2 t2

Theorem: A T-system (N,M0) is live  
every circuit of N is marked at M0⇐



Liveness theorem for 
T-systems
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⇥) (Inductive case: |PM,t| > 0, continued proof sketch)

� begins with a transition t� enabled at M .
(otherwise a longer path could be found).

By firing t� we reach a marking M �� such that PM ��,t � PM,t.

Hence |PM ��,t| < |PM,t| and we conclude by inductive hypothesis.

⇐

Theorem: A T-system (N,M0) is live  
every circuit of N is marked at M0⇐



Liveness theorem for 
T-systems
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� = t5 p4 t3 p2 t2

PM,t2 = { p2, p3, p4 }

Theorem: A T-system (N,M0) is live  
every circuit of N is marked at M0⇐



Liveness theorem for 
T-systems
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� = t5 p4 t3 p2 t2

PM,t2 = { p2, p3, p4 }

Theorem: A T-system (N,M0) is live  
every circuit of N is marked at M0⇐



Liveness theorem for 
T-systems
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� = t5 p4 t3 p2 t2

PM,t2 = { p2, p3, p4 }

Theorem: A T-system (N,M0) is live  
every circuit of N is marked at M0⇐



Liveness theorem for 
T-systems
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PM,t2 = { p2, p3, p4 }

PM’’,t2 = { p2, p3 }

Theorem: A T-system (N,M0) is live  
every circuit of N is marked at M0⇐



Which of the T-systems below is live? (why?)

Question time

73



Boundedness theorem 
for live T-systems
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⇥) Let M ⇤ [M0 ⌅ and take any p ⇤ P .

By the fundamental property of T-systems:
M(p) � M(�p) = M0(�p) � k

Theorem: A live T-system (P, T, F,M0) is k-bounded i↵

every place p 2 P belongs to a circuit �p with M0(�p)  k.



Boundedness theorem 
for live T-systems
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⇧) Let kp ⇥ k be the bound of p.
Take M ⌃ [M0 ⌥ with M(p) = kp.

Define L = M � kpp and note that the T-system (N,L) is not live.

(otherwise L
��⌅ L� with L�(p) > 0 for enabling t ⌃ p•. But then:

M = L+ kpp
��⌅ L� + kpp = M � with M �(p) = L�(p) + kp > kp!)

By the liveness theorem: some circuit � is not marked at L.
Since (N,M) is live, the circuit � is marked at M ⇤ L.
Since M � L = kpp, the circuit � contains p and
M0(�) = M(�) = M(p) = kp ⇥ k.

Theorem: A live T-system (P, T, F,M0) is k-bounded i↵

every place p 2 P belongs to a circuit �p with M0(�p)  k.



Boundedness in strongly 
connected T-systems
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Lemma: If a T-system (N,M0) is strongly connected, 
then it is bounded

Let � be the set of the circuits of N and let k = max��� M0(�).

Since N is strongly connected, every place p belongs to some circuit �p.

By the fundamental property of T-systems: token count of �p is invariant.

Thus, for any reachable marking M , we have M(p) � M(�p) = M0(�p) � k.
Hence the net is k-bounded.



Liveness in strongly 
connected T-systems
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Lemma: If a T-system (N,M0) is strongly connected, then 
it is live   iff   it is deadlock-free    iff   it has an infinite run

It is obvious that (for any net):
Livenesss implies deadlock freedom.
Deadlock freedom implies the existence of an infinite run.

We show that (for strongly connected T-systems):
The existence of an infinite run implies liveness.

=) =)



Liveness in strongly 
connected T-systems
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Lemma: Let (N,M0) be a strongly connected T-system.  
If it has an infinite run σ, then it is live

Since the T-system is strongly connected then it is bounded.

By the Reproduction lemma (holding for any bounded net):
There is a semi-positive T-invariant J.
The support of J is included in the set of transitions of the infinite run �.

By T-invariance in T-systems: �J ⇥ = T
(� is an infinite run that contains all transitions).

Hence every transition can occur from M0.
Hence every place can become marked.
Hence every circuit can become marked.

By the fundamental property of T-systems: every circuit is marked at M0.

By the liveness theorem, (N,M0) is live.



Place bounds in  
live T-systems
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Let (P, T, F,M0) be a live T-system.
We can draw some easy consequences of the above results:

1) If p ⇥ P is bounded, then it belongs to some circuit.
(see part � of the proof of the boundedness theorem)

2) If p ⇥ P belongs to some circuit, then it is bounded.
(by the fundamental property of T-systems)

3) If (N,M0) is bounded, then it is strongly connected.
(by strong connectedness theorem, holding for any system)

4) If N is strongly connected, then (N,M0) is bounded.
(by 1, since any p ⇥ P belongs to a circuit by strong connectdness)



Place bounds in  
live T-systems
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Let (P, T, F,M0) be a live T-system.
We can draw some easy consequences of the above results:

1+2) p � P is bounded i� it belongs to some circuit.

3+4) (N,M0) is bounded i� it is strongly connected.



T-systems: recap
T-system + M reachable + ! circuit     => M(!) = M0(!) 

!

T-system + !1... !n circuits:      ∃i. p∈ !i <=> p bounded 

T-system:                  M0(!)>0 for all circuits ! <=> live 
!

T-system:                strongly connected   => bounded 
T-system + live:       strongly connected <=> bounded 
T-system + str. conn.:              deadlock-free <=> live 
T-system + str. conn.:                   infinite run <=> live 

!
T-invariant J                                       => J = [ x x ... x ]

82



Exercises
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Which are the circuits of the T-system below?  
Is the T-system below live? (why?) 
Which places are bounded? (why?) 

Assign a bound to each bounded place.



Exercises
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Which are the circuits of the T-systems below?  
Are the T-systems below live? (why?) 
Which places are bounded? (why?) 

Assign a bound to each bounded place.


