Methods for the specification and verification of business processes MPB (6 cfu, 295AA)

venerdì 15 novembre 13

Before we start...

Two theorems on strong connectedness whose proofs we omit

Strong connectedness theorem

Theorem: If a weakly connected system is live and bounded then it is strongly connected

(the proof requires a few technical lemmas that we prefer to omit)

Strong connectedness via invariants

Theorem: If a weakly connected net has a positive S-invariant and a positive T-invariant then it is strongly connected

(the proof exploits requires a few technical lemmas that we prefer to omit)

Object

We study some "good" properties of S-systems and T-systems

Notation: token count

$$M(P) = \sum_{p \in P} M(p)$$

Example

 $P = \{p_1, p_2, p_3\} \qquad M = 2p_1 + 3p_2 \qquad M(P) = 2 + 3 + 0 = 5$

S-systems

S-system

Definition: We recall that a net N is an S-net if each transition has exactly one input place and exactly one output place

$$\forall t \in T, \qquad |\bullet t| = 1 = |t \bullet$$

A system (N,M₀) is an S-system if N is an S-net

S-system: example

Fundamental property of S-systems

Observation: each transition t that fires removes exactly one token from some place p and inserts exactly one token in some place p' (p and p' can also coincide)

Thus, **the overall number of tokens in the net is an invariant** under any firing.

Fundamental property of S-systems

Proposition: Let (P,T,F,M_0) be an S-system. If M is a reachable marking, then $M(P) = M_0(P)$

We show that for any $M \xrightarrow{\sigma} M'$ we have M'(P) = M(P)

base $(\sigma = \epsilon)$: trivial (M' = M)

induction ($\sigma = \sigma' t$ for some $\sigma' \in T^*$ and $t \in T$):

Let $M \xrightarrow{\sigma'} M'' \xrightarrow{t} M'$.

By inductive hypothesis: M''(P) = M(P)By definition of T-system: $|\bullet t| = |t \bullet| = 1$ Thus, $M'(P) = M''(P) - |\bullet t| + |t \bullet| = M(P) - 1 + 1 = M(P)$

A consequence of the fundamental property

Corollary: Any S-system is bounded

Let $M \in [M_0 \rangle$.

By the fundamental property of S-systems: $M(P) = M_0(P)$.

Then, for any $p \in P$ we have $M(p) \leq M(P) = M_0(P)$.

Thus the S-system is k-bounded for any $k \ge M_0(P)$.

Proposition: Let N=(P,T,F) be a connected S-net.
I is a rational-valued S-invariant of N iff I=[x ... x] for some rational value x

S-invariance
$$\forall t \in T, \ \sum_{p \in \bullet t} \mathbf{I}(p) = \sum_{p \in t \bullet} \mathbf{I}(p)$$

S-nets

$$\forall t \in T, |\bullet t| = |t \bullet| = 1$$

$$p^t$$
 t p_t

Let
$$\bullet t = \{p^t\}$$
 and $t \bullet = \{p_t\}$

$$\forall t \in T, \, \mathbf{I}(p^t) = \mathbf{I}(p_t)$$

Proposition: Let N=(P,T,F) be a connected S-net.
I is a rational-valued S-invariant of N iff I=[x ... x] for some rational value x

 $\mathbf{I}(p^t) = \mathbf{I}(p_t) = \mathbf{I}(p^{t'}) = \mathbf{I}(p_{t'})$

Proposition: Let N=(P,T,F) be a connected S-net.
I is a rational-valued S-invariant of N iff I=[x ... x] for some rational value x

 $\mathbf{I}(p^t) = \mathbf{I}(p_t) = \mathbf{I}(p_{t'}) = \mathbf{I}(p^{t'})$

Proposition: Let N=(P,T,F) be a connected S-net.
I is a rational-valued S-invariant of N iff I=[x ... x] for some rational value x

$$\mathbf{I}(p_t) = \mathbf{I}(p^t) = \mathbf{I}(p^{t'}) = \mathbf{I}(p_{t'})$$

Proposition: Let N=(P,T,F) be a connected S-net. I is a rational-valued S-invariant of N iff I=[x ... x] for some rational value x

weak

 $\forall p_0, p_n \in P, \quad p_0 t_1 p_1 t_2 p_2 t_3 p_3 \dots t_n p_n$ connectivity $(\forall t_i, \text{ either } (p_i, t_i)(t_i, p_{i+1}) \text{ or } (t_i, p_i)(p_{i+1}, t_i))$

$$\forall p_0, p_n \in P, \, \mathbf{I}(p_0) = \mathbf{I}(p_n)$$

A note on S-invariants and S-nets

S-invariance
$$\forall M \in [M_0\rangle, \quad \mathbf{I} \cdot M = \mathbf{I} \cdot M_0$$

S-invariant $\mathbf{I} = \begin{bmatrix} 1 \ 1 \ \dots \ 1 \end{bmatrix}$ of S-nets

consequence $\forall M$, $\mathbf{I} \cdot M = \sum_{p \in P} 1 \cdot M(p) = \sum_{p \in P} M(p) = M(P)$

We recover the Fundamental $\forall M \in [M_0\rangle, \quad M(P) = \mathbf{I} \cdot M = \mathbf{I} \cdot M_0 = M_0(P)$ property of S-nets

Reachability lemma for S-nets

Lemma: Let (P,T,F) be a strongly connected S-net. If M(P) = M'(P), then M' is reachable from M

We proceed by induction on ${\cal M}({\cal P})$

base (M(P) = M'(P) = 0): trivial (M' = M)

induction (M(P) = M'(P) > 0): Let $p, p' \in P$ be such that M(p) > 0 and M'(p') > 0. Let K = M - p and K' = M' - p'. Clearly K'(P) = K(P) < M(P) = M'(P). By inductive hypothesis: $\exists \sigma, K \xrightarrow{\sigma} K'$ By strong connectedness: there is a path from $p_0 = p$ to $p_n = p'$ $(p_0, t_1)(t_1, p_1)(p_1, t_2)...(t_n, p_n)$ By definition of S-system: $\bullet t_i = \{p_{i-1}\}$ and $t_i \bullet = \{p_i\}$. Thus, $p = p_0 \xrightarrow{\sigma'} p_n = p'$ for $\sigma' = t_1 t_2...t_n$. By the monotonicity lemma: $M = K + p \xrightarrow{\sigma} K' + p \xrightarrow{\sigma'} K' + p' = M'$

20

Theorem: An S-system (N,M₀) is live iff N is strongly connected and M₀ marks at least one place

 \Rightarrow) (quite obvious)

 (N, M_0) is live by hypothesis and bounded (because S-system). By the strong connectedness theorem, N is strongly connected.

Since (N, M_0) is live, then $M_0 \xrightarrow{t}$ for some t.

Assume • $t = \{p\}$. Thus, $M_0(p) \ge 1$.

Theorem: An S-system (N,M₀) is live iff N is strongly connected and M₀ marks at least one place

⇐) (more interesting) Take any $M \in [M_0\rangle$ and $t \in T$.

We want to find $M' \in [M]$ such that $M' \stackrel{t}{\longrightarrow}$.

Take $p_1 \in P$ such that $M(p_1) \ge 1$ (it exists, because $M(P) = M_0(P) \ge 1$). By strong connectedness: there is a path from p_1 to $t_n = t$ $(p_1, t_1)(t_1, p_2)(p_2, t_2)...(p_n, t_n)$

By definition of S-system: $\bullet t_i = \{p_i\}$ and $t_i \bullet = \{p_{i+1}\}$. Thus, $M \xrightarrow{\sigma} M' \xrightarrow{t}$ for $\sigma = t_1 t_2 \dots t_{n-1}$.

Reachability Theorem for S-systems

Theorem: Let (P,T,F,M₀) be a live S-system. A marking M is reachable **iff** M(P)=M₀(P)

=>) Follows from the fundamental property of S-systems

<=) By the liveness theorem, the S-net is strongly connected. Then we conclude by applying the reachability lemma.

S-systems: recap

S-system => bounded S-system: str. conn. + $M_0(P)>0$ <=> liveness

S-system + M reachable => $M(P) = M_0(P)$ S-system + str. conn.: $M(P)=M_0(P)$ <=> M reachable S-system + liveness: $M(P)=M_0(P)$ <=> M reachable

S-invariant I

=> **I** = [x x ... x]

Which of the following S-systems are live? (why?)

Which of the following markings are reachable? (why?)

 $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 0 & 2 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 2 & 1 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 1 & 2 \\ 4 & 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 4 & 0 & 4 \end{bmatrix}$ $\begin{bmatrix} 0 & 3 & 2 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 4 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 3 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 3 & 0 & 0 \end{bmatrix}$

Which of the following markings are reachable? (why?)

 $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 0 & 2 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 2 & 1 & 2 \end{bmatrix}$ $\begin{bmatrix} 4 & 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 4 & 0 & 4 \end{bmatrix}$ $\begin{bmatrix} 0 & 3 & 2 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 4 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 3 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 3 & 0 & 0 \end{bmatrix}$

Which of the following are S-invariants? (why?)

[1100] [0022] 11111] [2211] [2222] [1221]

Which of the following are S-invariants? (why?)

[1100] [0022] 1111] 2211] [2222] [1221]

Boundedness Theorem for S-systems

Theorem:

A live S-system (P, T, F, M_0) is k-bounded iff $M_0(P) \leq k$

Prove the boundedness theorem for live S-systems

T-systems

T-system

Definition: We recall that a net N is a **T-net** if each place has exactly one input transition and exactly one output transition

$$\forall p \in P, \qquad |\bullet p| = 1 = |p \bullet|$$

A system (N,M₀) is a T-system if N is a T-net

T-system: example

T-systems: an observation

Notably, computation in T-systems is concurrent, but essentially deterministic:

the firing of a transition t in M cannot disable another transition t' enabled at M

T-systems: another observation

Determination of control:

the transitions responsible for enabling t are one for each input place of t

Notation: token count of a circuit

Let
$$\gamma = (x_1, y_1)(y_1, x_2)(x_2, y_2)...(x_n, y_n)$$
 be a circuit.

Let $P_{|\gamma} \subseteq P$ be the set of places in γ .

$$M(\gamma) = M(P_{|\gamma}) = \sum_{p \in P_{|\gamma}} M(p)$$

We say that γ is **marked at** M if $M(\gamma) > 0$

 $M(\gamma_1) = 4$ $M(\gamma_2) = 2$ $M(\gamma_3) = 3$

Trace two circuits over the T-system below

Fundamental property of T-systems

The token count of a circuit is invariant under any firing.

Fundamental property of T-systems

Proposition: Let γ be a circuit of a T-system (P, T, F, M_0) . If M is a reachable marking, then $M(\gamma) = M_0(\gamma)$

Take any $t \in T$: either $t \notin \gamma$ or $t \in \gamma$.

If $t \notin \gamma$, then no place in $\bullet t \cup t \bullet$ is in γ (otherwise, by definition of T-nets, t would be in γ). Then, an occurrence of t does not change the token count of γ .

If $t \in \gamma$, then exactly one place in $\bullet t$ and one place in $t \bullet$ are in γ . Then, an occurrence of t does not change the token count of γ .

 $M_0 = \begin{bmatrix} 0 & 4 & 2 & 0 & 3 & 0 \end{bmatrix}$ $M = \begin{bmatrix} 2 & 2 & 1 & 2 & 2 & 1 \end{bmatrix}$ $M' = \begin{bmatrix} 2 & 1 & 1 & 2 & 2 \end{bmatrix}$ Not reachable!

Is the marking p₁ + 2p₂ reachable? (why?)

Proposition: Let N=(P,T,F) be a connected T-net.
J is a rational-valued T-invariant of N iff J=[x ... x] for some rational value x

(the proof is dual to the analogous proposition for S-invariants of S-nets)

Theorem: A T-system (N,M₀) is live iff every circuit of N is marked at M₀

⇒) (quite obvious) By contradiction, let γ be a circuit with $M_0(\gamma) = 0$. By the fundamental property of T-systems: $\forall M \in [M_0\rangle, M(\gamma) = 0$.

Take any $t \in T_{|\gamma}$ and $p \in P_{|\gamma} \cap \bullet t$.

For any $M \in [M_0\rangle$, we have M(p) = 0. Hence t is never enabled and the T-system is not live.

Theorem: A T-system (N,M₀) is live iff every circuit of N is marked at M₀

 \Leftarrow) (more involved) Take any $t \in T$ and $M \in [M_0)$. We need to show that some marking M' reachable from M enables t.

The key idea is to collect the places that control the firing of t: $p \in P_{M,t}$ if there is a path from p to t through places unmarked at M. We then proceed by induction on the size of $P_{M,t}$.

We just sketch the key idea of the proof over a T-system.

Theorem: A T-system (N,M₀) is live iff every circuit of N is marked at M₀

$$M = p_1 + p_6 + p_7$$

M' enabling t₂?

Theorem: A T-system (N,M₀) is live iff every circuit of N is marked at M₀

⇐) (continued proof sketch)

Base case: $|P_{M,t}| = 0$.

Every place in $\bullet t$ is already marked at M.

Hence t is enabled at M.

Theorem: A T-system (N,M₀) is live iff every circuit of N is marked at M₀

 \Leftarrow) (continued proof sketch)

Inductive case: $|P_{M,t}| > 0$. Therefore t is not enabled at M.

We look for a path π of maximal length necessary for firing t. π must contain only places unmarked at M.

By the fundamental property of T-systems: all circuits are marked at M. π is not necessarily unique, but exists (no cycle in it).

Theorem: A T-system (N,M₀) is live iff every circuit of N is marked at M₀

 \Leftarrow) (Inductive case: $|P_{M,t}| > 0$, continued proof sketch)

 π begins with a transition t' enabled at M. (otherwise a longer path could be found).

By firing t' we reach a marking M'' such that $P_{M'',t} \subset P_{M,t}$.

Hence $|P_{M'',t}| < |P_{M,t}|$ and we conclude by inductive hypothesis.

Which of the T-systems below is live? (why?)

Boundedness theorem for live T-systems

Theorem: A live T-system (P, T, F, M_0) is k-bounded iff every place $p \in P$ belongs to a circuit γ_p with $M_0(\gamma_p) \leq k$.

⇒) Let $k_p \leq k$ be the bound of p. Take $M \in [M_0\rangle$ with $M(p) = k_p$.

Define $L = M - k_p p$ and note that the T-system (N, L) is not live. (otherwise $L \xrightarrow{\sigma} L'$ with L'(p) > 0 for enabling $t \in p \bullet$. But then: $M = L + k_p p \xrightarrow{\sigma} L' + k_p p = M'$ with $M'(p) = L'(p) + k_p > k_p!$)

By the liveness theorem: some circuit γ is not marked at L. Since (N, M) is live, the circuit γ is marked at $M \supset L$. Since $M - L = k_p p$, the circuit γ contains p and $M_0(\gamma) = M(\gamma) = M(p) = k_p \leq k$.

Boundedness theorem for live T-systems

Theorem: A live T-system (P, T, F, M_0) is k-bounded iff every place $p \in P$ belongs to a circuit γ_p with $M_0(\gamma_p) \leq k$.

 \Leftarrow) Let $M \in [M_0\rangle$ and take any $p \in P$.

By the fundamental property of T-systems: $M(p) \leq M(\gamma_p) = M_0(\gamma_p) \leq k$

Boundedness in strongly connected T-systems

Lemma: If a T-system (N,M₀) is strongly connected, then it is bounded

Let Γ be the set of the circuits of N and let $k = \max_{\gamma \in \Gamma} M_0(\gamma)$.

Since N is strongly connected, every place p belongs to some circuit γ_p .

By the fundamental property of T-systems: token count of γ_p is invariant.

Thus, for any reachable marking M, we have $M(p) \leq M(\gamma_p) = M_0(\gamma_p) \leq k$. Hence the net is k-bounded.

Liveness in strongly connected T-systems

Lemma: If a T-system (N,M_0) is strongly connected, then it is live iff it is deadlock-free iff it has an infinite run

It is obvious that (for any net):

Liveness implies deadlock freedom.

Deadlock freedom implies the existence of an infinite run.

We show that (for strongly connected T-systems): The existence of an infinite run implies liveness.

Liveness in strongly connected T-systems

Lemma: Let (N,M₀) be a strongly connected T-system. If it has an infinite run, then it is live

Since the T-system is strongly connected then it is bounded.

By the Reproduction lemma (holding for any bounded net): There is a semi-positive T-invariant J. The support of J is included in the set of transitions of the infinite run σ .

By T-invariance in T-systems: $\langle \mathbf{J} \rangle = T$ (σ is an infinite run that contains all transitions).

Hence every transition can occur from M_0 . Hence every place can become marked. Hence every circuit can become marked.

By the fundamental property of T-systems: every circuit is marked at M_0 .

By the liveness theorem, (N, M_0) is live.

Place bounds in live T-systems

Let (P, T, F, M_0) be a live T-system. We can draw some easy consequences of the above results:

1) If $p \in P$ is bounded, then it belongs to some circuit. (see part \Rightarrow of the proof of the boundedness theorem)

2) If $p \in P$ belongs to some circuit, then it is bounded. (by the fundamental property of T-systems)

3) If (N, M_0) is bounded, then it is strongly connected. (by strong connectedness theorem, holding for any system)

4) If N is strongly connected, then (N, M_0) is bounded. (by 1, since any $p \in P$ belongs to a circuit by strong connectdness)

Place bounds in live T-systems

Let (P, T, F, M_0) be a live T-system. We can draw some easy consequences of the above results:

1+2) $p \in P$ is bounded iff it belongs to some circuit.

3+4) (N, M_0) is bounded iff it is strongly connected.

T-systems: recap

T-system + M reachable + c circuit $=> M(c) = M_0(c)$

T-system + $c_1...c_n$ circuits: $\exists i. p \in c_i <=> p$ bounded T-system: M(c)>0 for all circuits c <=> live

T-system:strongly connected <=> boundedT-system + str. conn.:deadlock-free <=> liveT-system + str. conn.:infinite run <=> live

T-invariant J => J = [x x ... x]

Which are the circuits of the T-system below? Is the T-system below live? (why?) Which places are bounded? (why?) Assign a bound to each bounded place.

Which are the circuits of the T-systems below? Are the T-systems below live? (why?) Which places are bounded? (why?) Assign a bound to each bounded place.

