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Before we start...

2
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Two theorems on strong 
connectedness whose 

proofs we omit
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Strong connectedness 
theorem
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Theorem: If a weakly connected system is live 
and bounded then it is strongly connected

(the proof requires a few technical lemmas that we 
prefer to omit)
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Strong connectedness 
via invariants

5

Theorem: If a weakly connected net has a positive 
S-invariant and a positive T-invariant then it is 

strongly connected

(the proof exploits requires a few technical 
lemmas that we prefer to omit)
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Object

6

We study some “good” properties of S-systems 
and T-systems
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Notation: token count
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M(P ) =
�

p�P

M(p)

P = {p1, p2, p3} M = 2p1 + 3p2 M(P ) = 2 + 3 + 0 = 5

Example
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S-systems

8
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S-system

9

Definition: We recall that a net N is an S-net if 
each transition has exactly one input place and 

exactly one output place

A system (N,M0) is an S-system if N is an S-net

⇥t � T, | • t| = 1 = |t • |
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S-system: example

10
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Fundamental property 
of S-systems

11

Observation: each transition t that fires 
removes exactly one token from some place p 
and inserts exactly one token in some place p’

(p and p’ can also coincide) 

Thus, the overall number of tokens in the net is 
an invariant under any firing. 
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Fundamental property 
of S-systems

12

Proposition: Let (P,T,F,M0) be an S-system. 
If M is a reachable marking, then M(P) = M0(P)
We show that for any M

��⇥ M ⇥ we have M ⇥(P ) = M(P )

base (⇥ = �): trivial (M ⇥ = M)

induction (⇥ = ⇥⇥t for some ⇥⇥ ⇤ T � and t ⇤ T ):

Let M
��
�⇥ M ⇥⇥ t�⇥ M ⇥.

By inductive hypothesis: M ⇥⇥(P ) = M(P )

By definition of T-system: | • t| = |t • | = 1

Thus, M ⇥(P ) = M ⇥⇥(P )� |• t|+ |t • | = M(P )� 1 + 1 = M(P )
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A consequence of the 
fundamental property

13

Corollary: Any S-system is bounded

Let M ⇤ [M0 ⌅.

By the fundamental property of S-systems: M(P ) = M0(P ).

Then, for any p ⇤ P we have M(p) � M(P ) = M0(P ).

Thus the S-system is k-bounded for any k ⇥ M0(P ).
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S-invariants of S-nets

14

Proposition: Let N=(P,T,F) be a connected S-net.  
I is a rational-valued S-invariant of N iff I=[ x ... x ] 

for some rational value x

t

⇥t � T,
�

p�•t
I(p) =

�

p�t•
I(p)

⇥t � T, | • t| = |t • | = 1

Let •t = {pt} and t• = {pt}

⇥t � T, I(pt) = I(pt)

pt pt

S-invariance

S-nets
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S-invariants of S-nets

15

Proposition: Let N=(P,T,F) be a connected S-net.  
I is a rational-valued S-invariant of N iff I=[ x ... x ] 

for some rational value x

t t’
pt pt = pt’ pt’ 

I(pt) = I(pt) = I(pt
�
) = I(pt�)
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S-invariants of S-nets

16

Proposition: Let N=(P,T,F) be a connected S-net.  
I is a rational-valued S-invariant of N iff I=[ x ... x ] 

for some rational value x

t t’
pt pt = pt’ pt’ 

I(pt) = I(pt) = I(pt�) = I(pt
�
)
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S-invariants of S-nets

17

Proposition: Let N=(P,T,F) be a connected S-net.  
I is a rational-valued S-invariant of N iff I=[ x ... x ] 

for some rational value x

t t’
pt pt = pt’ pt’ 

I(pt) = I(pt) = I(pt
�
) = I(pt�)
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S-invariants of S-nets

18

Proposition: Let N=(P,T,F) be a connected S-net.  
I is a rational-valued S-invariant of N iff I=[ x ... x ] 

for some rational value x

⇥p0, pn � P, p0 t1 p1 t2 p2 t3 p3 ... tn pn
(�ti, either (pi, ti)(ti, pi+1) or (ti, pi)(pi+1, ti))

weak
connectivity

⇥p0, pn � P, I(p0) = I(pn)
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A note on S-invariants 
and S-nets

19

⇥M � [M0 ⇤, I ·M = I ·M0

I = [ 1 1 ... 1 ]

⇥M, I ·M =
�

p�P

1 ·M(p) =
�

p�P

M(p) = M(P )

⇥M � [M0 ⇤, M(P ) = I ·M = I ·M0 = M0(P )

S-invariance

S-invariant 
of S-nets

We recover the 
Fundamental 

property of S-nets

consequence

venerdì 15 novembre 13



Reachability lemma for 
S-nets

20

Lemma: Let (P,T,F) be a strongly connected S-net. 
If M(P) = M’(P), then M’ is reachable from M

We proceed by induction on M(P )

base (M(P ) = M ⇥(P ) = 0): trivial (M ⇥ = M)

induction (M(P ) = M ⇥(P ) > 0):

Let p, p⇥ ⇤ P be such that M(p) > 0 and M ⇥(p⇥) > 0.

Let K = M � p and K ⇥ = M ⇥ � p⇥.

Clearly K ⇥(P ) = K(P ) < M(P ) = M ⇥(P ).

By inductive hypothesis: ⌅�, K ��⇥ K ⇥

By strong connectedness: there is a path from p0 = p to pn = p⇥

(p0, t1)(t1, p1)(p1, t2)...(tn, pn)

By definition of S-system: •ti = {pi�1} and ti• = {pi}.

Thus, p = p0
��
�⇥ pn = p⇥ for �⇥ = t1t2...tn.

By the monotonicity lemma: M = K + p
��⇥ K ⇥ + p

��
�⇥ K ⇥ + p⇥ = M ⇥
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Liveness theorem for 
S-systems

21

⌅) (quite obvious)
(N,M0) is live by hypothesis and bounded (because S-system).
By the strong connectedness theorem, N is strongly connected.

Since (N,M0) is live, then M0
t�⇤ for some t.

Assume •t = {p}. Thus, M0(p) ⇥ 1.

Theorem: An S-system (N,M0) is live iff N is 
strongly connected and M0 marks at least one place
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Liveness theorem for 
S-systems

22

Theorem: An S-system (N,M0) is live iff N is 
strongly connected and M0 marks at least one place

⌅) (more interesting)
Take any M ⇧ [M0 ⌃ and t ⇧ T .

We want to find M ⇥ ⇧ [M ⌃ such that M ⇥ t�⇤.

Take p1 ⇧ P such that M(p1) ⇥ 1 (it exists, because M(P ) = M0(P ) ⇥ 1).
By strong connectedness: there is a path from p1 to tn = t
(p1, t1)(t1, p2)(p2, t2)...(pn, tn)

By definition of S-system: •ti = {pi} and ti• = {pi+1}.
Thus, M

��⇤ M ⇥ t�⇤ for � = t1t2...tn�1.
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Reachability Theorem 
for S-systems

23

Theorem: Let (P,T,F,M0) be a live S-system. 
A marking M is reachable iff M(P)=M0(P)

=>) Follows from the fundamental property of S-systems

<=) By the liveness theorem, the S-net is strongly 
connected. Then we conclude by applying the 
reachability lemma.
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S-systems: recap
S-system                                             => bounded
S-system:       str. conn. + M0(P)>0   <=> liveness                      

S-system + M reachable                    => M(P) = M0(P)
S-system + str. conn.:  M(P)=M0(P)  <=> M reachable
S-system + liveness:     M(P)=M0(P) <=> M reachable

S-invariant I                                       => I = [ x x ... x ]
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Exercises
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Which of the following S-systems are live? (why?)
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Exercises

26

Which of the following markings are reachable? (why?)

[ 1 1 1 1 ]
[ 2 0 2 0 ]
[ 1 2 1 2 ]
[ 4 0 0 0 ]
[ 0 4 0 4 ]
[ 0 3 2 1 ]
[ 0 0 4 0 ]
[ 0 3 0 0 ]
[ 0 3 0 1 ]
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Exercises

27

Which of the following markings are reachable? (why?)

[ 1 1 1 1 ]
[ 2 0 2 0 ]
[ 1 2 1 2 ]
[ 4 0 0 0 ]
[ 0 4 0 4 ]
[ 0 3 2 1 ]
[ 0 0 4 0 ]
[ 0 3 0 0 ]
[ 0 3 0 1 ]
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Exercise

28

Which of the following are S-invariants? (why?)

[ 1 1 0 0 ]
[ 0 0 2 2 ]
[ 1 1 1 1 ]
[ 2 2 1 1 ]
[ 2 2 2 2 ]
[ 1 2 2 1 ]
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Exercise

29

Which of the following are S-invariants? (why?)

[ 1 1 0 0 ]
[ 0 0 2 2 ]
[ 1 1 1 1 ]
[ 2 2 1 1 ]
[ 2 2 2 2 ]
[ 1 2 2 1 ]
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Boundedness Theorem 
for S-systems

30

Theorem:
A live S-system (P, T, F,M0) is k-bounded i� M0(P ) � k
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Exercise

31

Prove the boundedness theorem for live S-systems
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T-systems

32
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T-system

33

Definition: We recall that a net N is a T-net if each 
place has exactly one input transition and exactly 

one output transition

A system (N,M0) is a T-system if N is a T-net

⇥p � P, | • p| = 1 = |p • |
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T-system: example

34
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T-systems: an 
observation

35

Notably, computation in T-systems is concurrent, 
but essentially deterministic:

the firing of a transition t in M cannot disable 
another transition t’ enabled at M
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T-systems: another 
observation

36

Determination of control:

the transitions responsible for enabling t are 
one for each input place of t
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Notation: token count 
of a circuit

37

Let � = (x1, y1)(y1, x2)(x2, y2)...(xn, yn) be a circuit.

Let P|� � P be the set of places in �.

M(�) = M(P|�) =
�

p�P|�

M(p)

We say that � is marked at M if M(�) > 0
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Example

38

M(�1) = 4

M(�2) = 2

M(�3) = 3
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Trace two circuits over the T-system below

Example

39
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Fundamental property 
of T-systems

40

The token count of a circuit is invariant under any firing. 
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Fundamental property 
of T-systems

41

Proposition: Let � be a circuit of a T-system (P, T, F,M0).
If M is a reachable marking, then M(�) = M0(�)

Take any t � T : either t ⇥� � or t � �.

If t ⇥� �, then no place in •t ⇤ t• is in �
(otherwise, by definition of T-nets, t would be in �).
Then, an occurrence of t does not change the token count of �.

If t � �, then exactly one place in •t and one place in t• are in �.
Then, an occurrence of t does not change the token count of �.
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Example

42

M(�1) = 4
M(�2) = 2

M(�3) = 3

M0 = [ 0  4  2  0  3  0 ]
M = [ 2  2  1  2  2  1 ]
M’ = [ 2  1  1  1  2  2 ]
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Example

43

M(�1) = 4
M(�2) = 2

M(�3) = 3

M0 = [ 0  4  2  0  3  0 ]
M = [ 2  2  1  2  2  1 ]
M’ = [ 2  1  1  1  2  2 ]

Not reachable! 
Not reachable!
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Is the marking p1 + 2p2 reachable? (why?)

Example

44
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T-invariants of T-nets

45

Proposition: Let N=(P,T,F) be a connected T-net.  
J is a rational-valued T-invariant of N iff J=[ x ... x ] 

for some rational value x

(the proof is dual to the analogous proposition for 
S-invariants of S-nets)
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Liveness theorem for 
T-systems

46

Theorem: A T-system (N,M0) is live 
iff every circuit of N is marked at M0

�) (quite obvious)
By contradiction, let � be a circuit with M0(�) = 0.
By the fundamental property of T-systems: ⇤M ⇥ [M0 ⇧, M(�) = 0.

Take any t ⇥ T|� and p ⇥ P|� ⌅ •t.

For any M ⇥ [M0 ⇧, we have M(p) = 0.
Hence t is never enabled and the T-system is not live.
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Liveness theorem for 
T-systems

47

Theorem: A T-system (N,M0) is live 
iff every circuit of N is marked at M0

�) (more involved)
Take any t ⇥ T and M ⇥ [M0 ⇤.
We need to show that some marking M � reachable from M enables t.

The key idea is to collect the places that control the firing of t:
p ⇥ PM,t if there is a path from p to t through places unmarked at M .
We then proceed by induction on the size of PM,t.

We just sketch the key idea of the proof over a T-system.

⇐
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Liveness theorem for 
T-systems

48

Theorem: A T-system (N,M0) is live 
iff every circuit of N is marked at M0

M = p1 + p6 + p7

M’ enabling t2?

venerdì 15 novembre 13



Liveness theorem for 
T-systems

49

Theorem: A T-system (N,M0) is live 
iff every circuit of N is marked at M0

PM,t2 = { p2, p3, p4 }
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Liveness theorem for 
T-systems

50

Theorem: A T-system (N,M0) is live 
iff every circuit of N is marked at M0

�) (continued proof sketch)

Base case: |PM,t| = 0.

Every place in •t is already marked at M .

Hence t is enabled at M .

⇐
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Liveness theorem for 
T-systems

51

Theorem: A T-system (N,M0) is live 
iff every circuit of N is marked at M0

�) (continued proof sketch)

Inductive case: |PM,t| > 0.
Therefore t is not enabled at M .

We look for a path � of maximal length necessary for firing t.
� must contain only places unmarked at M .

By the fundamental property of T-systems: all circuits are marked at M .
� is not necessarily unique, but exists (no cycle in it).

⇐
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Liveness theorem for 
T-systems

52

Theorem: A T-system (N,M0) is live 
iff every circuit of N is marked at M0

� = t4 p3 t3 p2 t2
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Liveness theorem for 
T-systems

53

Theorem: A T-system (N,M0) is live 
iff every circuit of N is marked at M0

� = t5 p4 t3 p2 t2
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Liveness theorem for 
T-systems

54

Theorem: A T-system (N,M0) is live 
iff every circuit of N is marked at M0

⇥) (Inductive case: |PM,t| > 0, continued proof sketch)

� begins with a transition t� enabled at M .
(otherwise a longer path could be found).

By firing t� we reach a marking M �� such that PM ��,t � PM,t.

Hence |PM ��,t| < |PM,t| and we conclude by inductive hypothesis.

⇐
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Liveness theorem for 
T-systems

55

Theorem: A T-system (N,M0) is live 
iff every circuit of N is marked at M0

� = t5 p4 t3 p2 t2
PM,t2 = { p2, p3, p4 }
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Liveness theorem for 
T-systems

56

Theorem: A T-system (N,M0) is live 
iff every circuit of N is marked at M0

� = t5 p4 t3 p2 t2
PM,t2 = { p2, p3, p4 }

venerdì 15 novembre 13



Liveness theorem for 
T-systems

57

Theorem: A T-system (N,M0) is live 
iff every circuit of N is marked at M0

� = t5 p4 t3 p2 t2
PM,t2 = { p2, p3, p4 }

venerdì 15 novembre 13



Liveness theorem for 
T-systems

58

Theorem: A T-system (N,M0) is live 
iff every circuit of N is marked at M0

PM,t2 = { p2, p3, p4 }

PM’’,t2 = { p2, p3 }
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Which of the T-systems below is live? (why?)

Example

59
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Boundedness theorem 
for live T-systems

60

⇧) Let kp ⇥ k be the bound of p.
Take M ⌃ [M0 ⌥ with M(p) = kp.

Define L = M � kpp and note that the T-system (N,L) is not live.

(otherwise L
��⌅ L� with L�(p) > 0 for enabling t ⌃ p•. But then:

M = L+ kpp
��⌅ L� + kpp = M � with M �(p) = L�(p) + kp > kp!)

By the liveness theorem: some circuit � is not marked at L.
Since (N,M) is live, the circuit � is marked at M ⇤ L.
Since M � L = kpp, the circuit � contains p and
M0(�) = M(�) = M(p) = kp ⇥ k.

Theorem: A live T-system (P, T, F,M0) is k-bounded i↵

every place p 2 P belongs to a circuit �p with M0(�p)  k.
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Boundedness theorem 
for live T-systems

61

⇥) Let M ⇤ [M0 ⌅ and take any p ⇤ P .

By the fundamental property of T-systems:
M(p) � M(�p) = M0(�p) � k

Theorem: A live T-system (P, T, F,M0) is k-bounded i↵

every place p 2 P belongs to a circuit �p with M0(�p)  k.
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Boundedness in strongly 
connected T-systems

62

Lemma: If a T-system (N,M0) is strongly connected, 
then it is bounded

Let � be the set of the circuits of N and let k = max��� M0(�).

Since N is strongly connected, every place p belongs to some circuit �p.

By the fundamental property of T-systems: token count of �p is invariant.

Thus, for any reachable marking M , we have M(p) � M(�p) = M0(�p) � k.
Hence the net is k-bounded.
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Liveness in strongly 
connected T-systems

63

Lemma: If a T-system (N,M0) is strongly connected, then 
it is live   iff   it is deadlock-free    iff   it has an infinite run

It is obvious that (for any net):
Livenesss implies deadlock freedom.
Deadlock freedom implies the existence of an infinite run.

We show that (for strongly connected T-systems):
The existence of an infinite run implies liveness.

=) =)
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Liveness in strongly 
connected T-systems

64

Lemma: Let (N,M0) be a strongly connected T-system.  
If it has an infinite run, then it is live

Since the T-system is strongly connected then it is bounded.

By the Reproduction lemma (holding for any bounded net):
There is a semi-positive T-invariant J.
The support of J is included in the set of transitions of the infinite run �.

By T-invariance in T-systems: �J ⇥ = T
(� is an infinite run that contains all transitions).

Hence every transition can occur from M0.
Hence every place can become marked.
Hence every circuit can become marked.

By the fundamental property of T-systems: every circuit is marked at M0.

By the liveness theorem, (N,M0) is live.
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Place bounds in 
live T-systems

65

Let (P, T, F,M0) be a live T-system.
We can draw some easy consequences of the above results:

1) If p ⇥ P is bounded, then it belongs to some circuit.
(see part � of the proof of the boundedness theorem)

2) If p ⇥ P belongs to some circuit, then it is bounded.
(by the fundamental property of T-systems)

3) If (N,M0) is bounded, then it is strongly connected.
(by strong connectedness theorem, holding for any system)

4) If N is strongly connected, then (N,M0) is bounded.
(by 1, since any p ⇥ P belongs to a circuit by strong connectdness)
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Place bounds in 
live T-systems

66

Let (P, T, F,M0) be a live T-system.
We can draw some easy consequences of the above results:

1+2) p � P is bounded i� it belongs to some circuit.

3+4) (N,M0) is bounded i� it is strongly connected.
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T-systems: recap
T-system + M reachable + c circuit     => M(c) = M0(c)

T-system + c1...cn circuits:       ∃i. p∈ci <=> p bounded
T-system:                    M(c)>0 for all circuits c <=> live

T-system:                strongly connected <=> bounded
T-system + str. conn.:              deadlock-free <=> live
T-system + str. conn.:                   infinite run <=> live

T-invariant J                                       => J = [ x x ... x ]
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Exercises

68

Which are the circuits of the T-system below? 
Is the T-system below live? (why?)
Which places are bounded? (why?)

Assign a bound to each bounded place.
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Exercises

69

Which are the circuits of the T-systems below? 
Are the T-systems below live? (why?)
Which places are bounded? (why?)

Assign a bound to each bounded place.
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