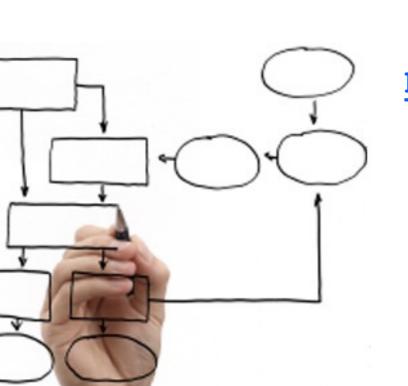
Business Processes Modelling MPB (6 cfu, 295AA)

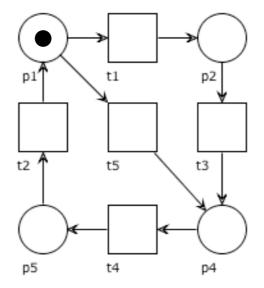


Roberto Bruni

http://www.di.unipi.it/~bruni

16 - S-systems

Object



We study some "good" properties of S-systems

Free Choice Nets (book, optional reading)

https://www7.in.tum.de/~esparza/bookfc.html

S-systems

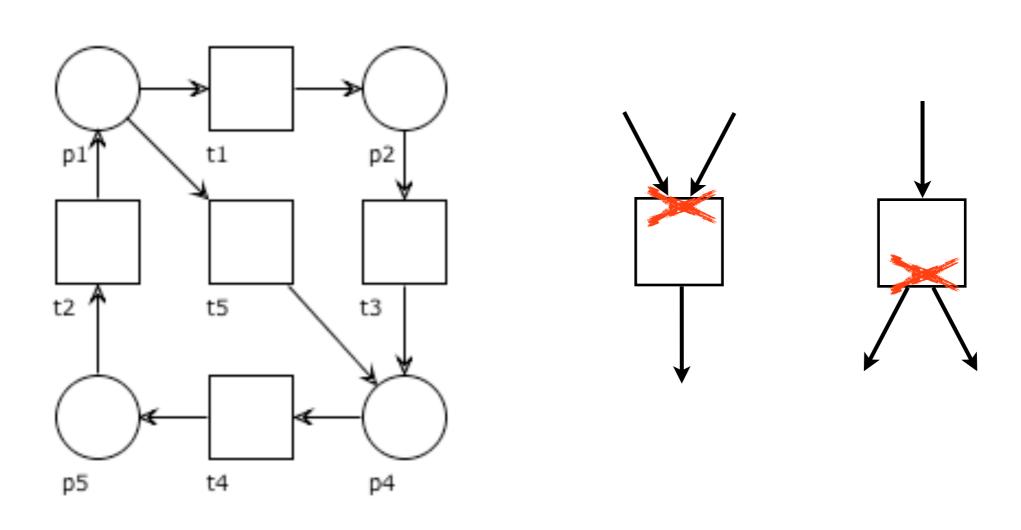
S-system

Definition: We recall that a net N is an S-net if each transition has exactly one input place and exactly one output place

$$\forall t \in T, \qquad |\bullet t| = 1 = |t \bullet|$$

A system (N,M₀) is an S-system if N is an S-net

S-net: example



S-net N*

Proposition: A workflow net N is an S-net iff N* is an S-net

N and N* differ only for the reset transition, that has exactly one incoming arc and exactly one outgoing arc

S-systems: an observation

Observation: each transition t that fires removes exactly one token from some place p and inserts exactly one token in some place q (p and q can also coincide)

Notation: token count

$$M(P) = \sum_{p \in P} M(p)$$

Example

$$P = \{p_1, p_2, p_3\}$$
 $M = 2p_1 + 3p_2$ $M(P) = 2 + 3 + 0 = 5$

Fundamental property of S-systems

The overall number of tokens in the net is an invariant under any firing.

Fundamental property of S-systems

Proposition: Let (P,T,F,M_0) be an S-system. If M is a reachable marking, then $M(P) = M_0(P)$

We show that for any $M \stackrel{\sigma}{\longrightarrow} M'$ we have M'(P) = M(P)

base $(\sigma = \epsilon)$: trivial (M' = M)

induction ($\sigma = \sigma' t$ for some $\sigma' \in T^*$ and $t \in T$):

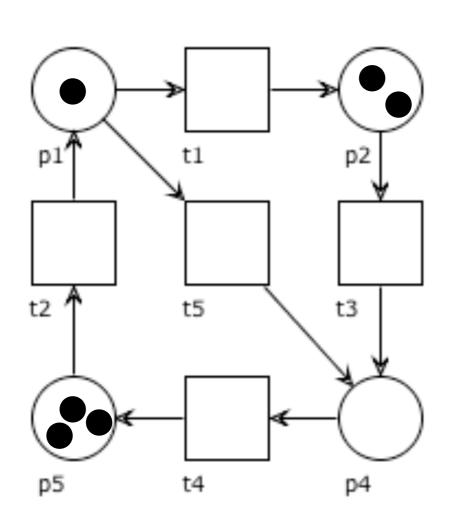
Let
$$M \xrightarrow{\sigma'} M'' \xrightarrow{t} M'$$
.

By inductive hypothesis: M''(P) = M(P)

By definition of S-system: $| \bullet t | = |t \bullet | = 1$

Thus,
$$M'(P) = M''(P) - | \bullet t| + |t \bullet | = M(P) - 1 + 1 = M(P)$$

Question time



Is the marking $M = p_2 + 4p_4 + 2p_5$ reachable?

A consequence of the fundamental property

Corollary: Any S-system is bounded

Let $M \in [M_0]$.

By the fundamental property of S-systems: $M(P) = M_0(P)$.

Then, for any $p \in P$ we have $M(p) \leq M(P) = M_0(P)$.

Thus the S-system is k-bounded for any $k \geq M_0(P)$.

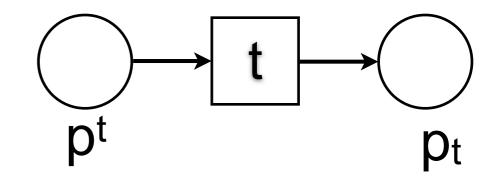
$$M(P) = \sum_{p \in P} M(p)$$

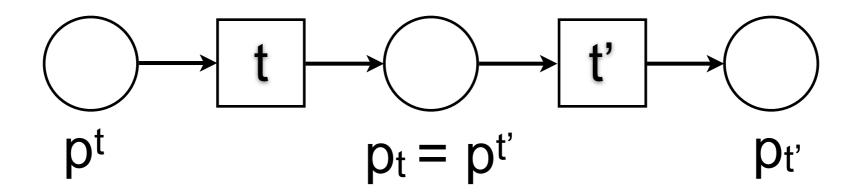
S-invariance
$$\forall t \in T, \; \sum_{p \in \bullet t} \mathbf{I}(p) = \sum_{p \in t \bullet} \mathbf{I}(p)$$

S-nets
$$\forall t \in T, \mid \bullet t \mid = \mid t \bullet \mid = 1$$

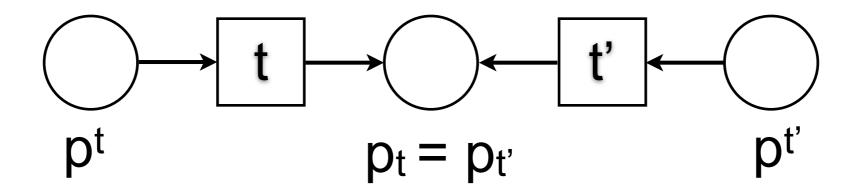
Let
$$\bullet t = \{p^t\}$$
 and $t \bullet = \{p_t\}$

$$\forall t \in T, \mathbf{I}(p^t) = \mathbf{I}(p_t)$$

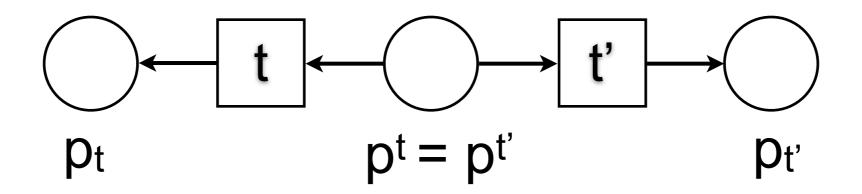




$$\mathbf{I}(p^t) = \mathbf{I}(p_t) = \mathbf{I}(p^{t'}) = \mathbf{I}(p_{t'})$$



$$\mathbf{I}(p^t) = \mathbf{I}(p_t) = \mathbf{I}(p_{t'}) = \mathbf{I}(p^{t'})$$



$$\mathbf{I}(p_t) = \mathbf{I}(p^t) = \mathbf{I}(p^{t'}) = \mathbf{I}(p_{t'})$$

connectivity
$$\forall p_0, p_n \in P, \quad p_0 \, t_1 \, p_1 \, t_2 \, p_2 \, t_3 \, p_3 \dots t_n \, p_n$$
S-net $(\forall t_i$, either $(p_i, t_i)(t_i, p_{i+1})$ or $(t_i, p_i)(p_{i+1}, t_i)$

$$\forall p_0, p_n \in P, \mathbf{I}(p_0) = \mathbf{I}(p_n)$$

A note on S-invariants and S-nets

S-invariance

$$\forall M \in [M_0\rangle, \quad \mathbf{I} \cdot M = \mathbf{I} \cdot M_0$$

S-invariant of S-nets

$$I = [1 \ 1 \ ... \ 1]$$

consequence $\forall M, \quad \mathbf{I} \cdot M = \sum_{p \in P} 1 \cdot M(p) = \sum_{p \in P} M(p) = M(P)$

We recover the Fundamental property of S-nets

$$\forall M \in [M_0\rangle, \quad M(P) = \mathbf{I} \cdot M = \mathbf{I} \cdot M_0 = M_0(P)$$

Liveness theorem for S-systems

Theorem: An S-system (N,M₀) is live **iff**N is strongly connected and M₀ marks at least one place

 \Rightarrow) (quite obvious)

 (N,M_0) is live by hypothesis and bounded (because S-system). By the strong connectedness theorem, N is strongly connected.

Since (N, M_0) is live, then $M_0 \stackrel{t}{\longrightarrow}$ for some t.

Assume $\bullet t = \{p\}$. Thus, $M_0(p) \ge 1$.

Liveness theorem for S-systems

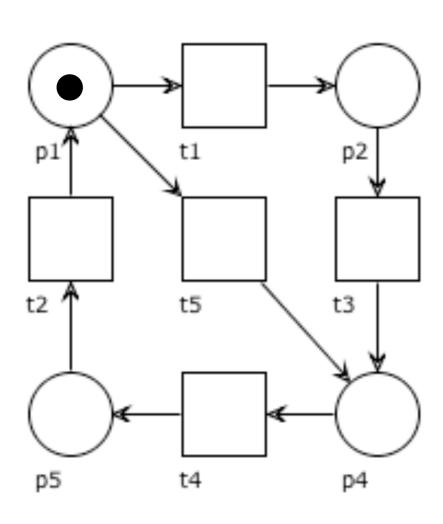
Theorem: An S-system (N,M₀) is live **iff**N is strongly connected and M₀ marks at least one place

```
\Leftarrow) (more interesting) Take any M \in [M_0] and t \in T. We want to find M' \in [M] such that M' \stackrel{t}{\longrightarrow}.
```

Take $p_1 \in P$ such that $M(p_1) \geq 1$ (it exists, because $M(P) = M_0(P) \geq 1$). By strong connectedness: there is a path from p_1 to $t_n = t$ $(p_1, t_1)(t_1, p_2)(p_2, t_2)...(p_n, t_n)$

By definition of S-system: $\bullet t_i = \{p_i\}$ and $t_i \bullet = \{p_{i+1}\}$. Thus, $M \xrightarrow{\sigma} M' \xrightarrow{t}$ for $\sigma = t_1 t_2 ... t_{n-1}$.

Question time



Is this system live?

Reachability lemma for

S-nets

Lemma: Let (P,T,F) be a strongly connected S-net. If M(P) = M'(P), then M' is reachable from M

We proceed by induction on ${\cal M}(P)$

base
$$(M(P) = M'(P) = 0)$$
: trivial $(M' = M)$

induction
$$(M(P) = M'(P) > 0)$$
:

Let $p, p' \in P$ be such that M(p) > 0 and M'(p') > 0.

Let K = M - p and K' = M' - p'.

Clearly
$$K'(P) = K(P) < M(P) = M'(P)$$
.

By inductive hypothesis: $\exists \sigma, K \xrightarrow{\sigma} K'$

By strong connectedness: there is a path from $p_0 = p$ to $p_n = p'$

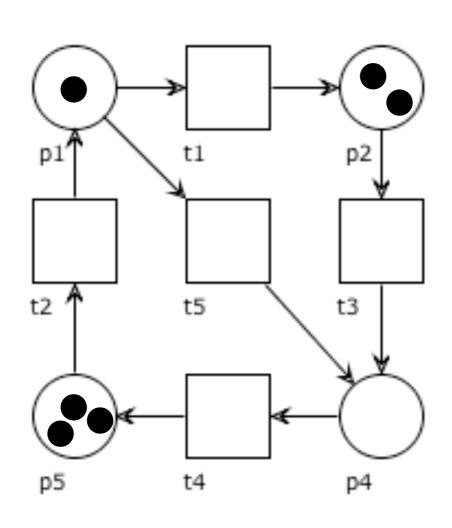
$$(p_0, t_1)(t_1, p_1)(p_1, t_2)...(t_n, p_n)$$

By definition of S-system: $\bullet t_i = \{p_{i-1}\}$ and $t_i \bullet = \{p_i\}$.

Thus,
$$p = p_0 \xrightarrow{\sigma'} p_n = p'$$
 for $\sigma' = t_1 t_2 ... t_n$.

By the monotonicity lemma: $M = K + p \xrightarrow{\sigma} K' + p \xrightarrow{\sigma'} K' + p' = M'$

Question time



Is the marking $M = p_2 + 4p_4 + p_5$ reachable?

Reachability Theorem for S-systems

Theorem: Let (P,T,F,M₀) be a live S-system. A marking M is reachable **iff** M(P)=M₀(P)

- =>) Follows from the fundamental property of S-systems
- <=) By the previous liveness theorem, the S-net is strongly connected. We conclude by applying the reachability lemma for S-systems.

S-systems: recap

```
S-system => bounded S-system: strong conn. + M_0(P)>0 <=> live
```

```
S-system + M reachable => M(P) = M_0(P)
S-system + str. conn.: M(P)=M_0(P) <=> M reachable
S-system + live: M(P)=M_0(P) <=> M reachable
```

S-system: S-invariant $I \le I = [k k ... k]$

Workflow S-nets

Theorem: If a workflow net N is an S-system then it is safe and sound

N is S-system <=> N* is S-system

N and N* S-systems => N and N* bounded

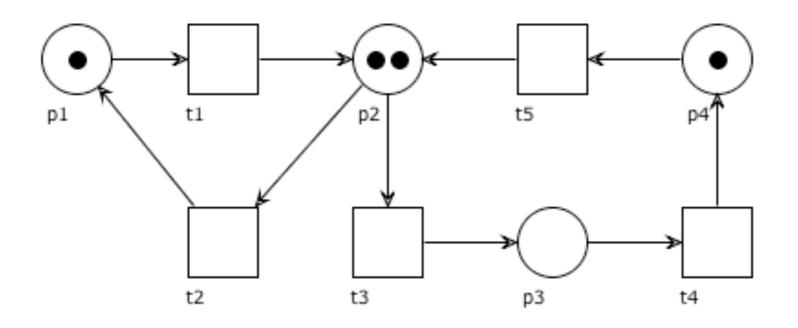
M₀(P)=1 (initially one token in place i) N and N* S-systems + M₀(P)=1 => N and N* safe

N workflow net => N* strong connected N* strong connected + $M_0(P) = 1 <=> N*$ live

N* bounded and live <=> N sound

Question time

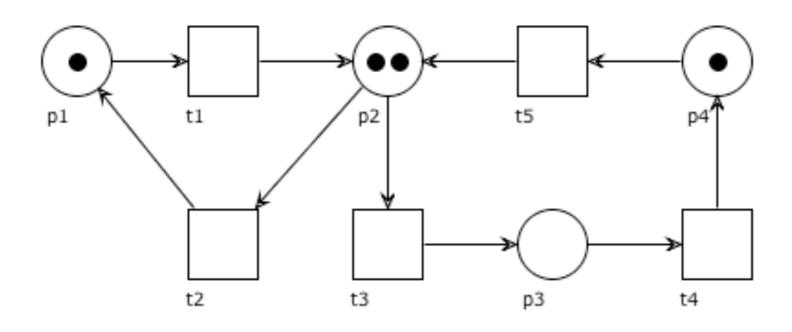
Which of the following markings are reachable? (why?)



```
[1111]
[2020]
[1212]
[4000]
[0404]
[0321]
[0301]
[0301]
```

Question time

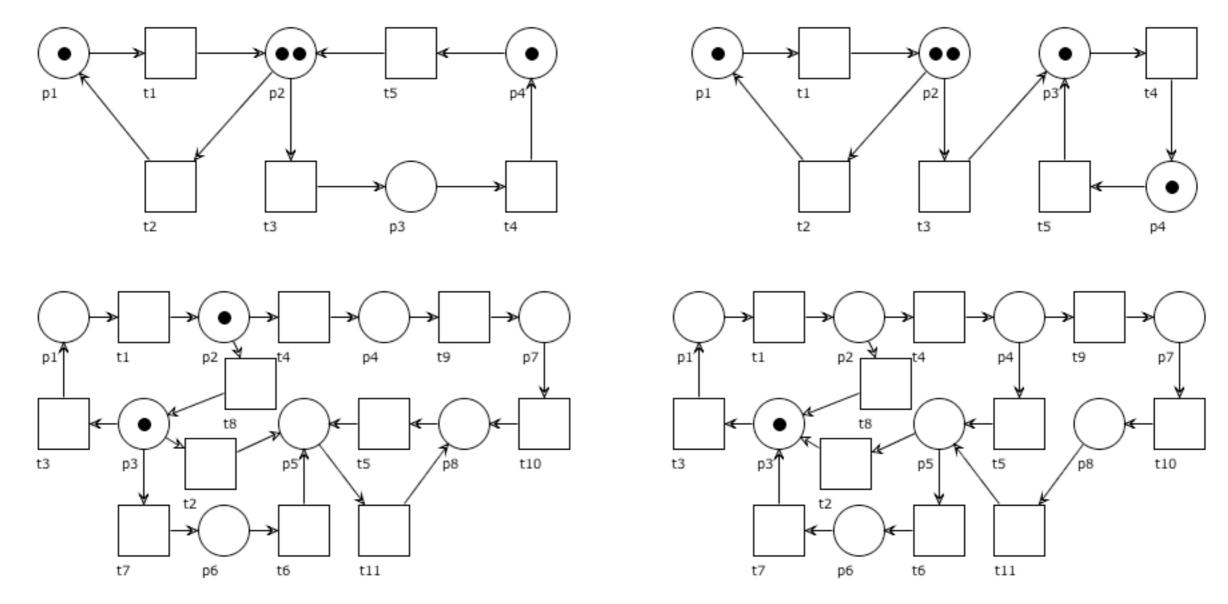
Which of the following are S-invariants? (why?)



[1100] [0022] [1111] [2211] [222] [1221]

Exercises

Which of the following S-systems are live? (why?)



Boundedness Theorem for S-systems

Theorem:

A live S-system (P, T, F, M_0) is k-bounded iff $M_0(P) \leq k$

Exercise

Prove the boundedness theorem for live S-systems

Exercise

Is the net below a workflow net? Is it sound?

