
Methods for the specification and
verification of business processes

MPB (6 cfu, 295AA)

Roberto Bruni
http://www.di.unipi.it/~bruni

17 - Free-choice nets

1

http://www.di.unipi.it/~bruni

Object

2

We study some “good” properties of
free-choice nets

Free Choice Nets (book, optional reading)
https://www7.in.tum.de/~esparza/bookfc.html

https://www7.in.tum.de/~esparza/bookfc.html

Free-choice net

3

Definition: We recall that a net N is free-choice if
whenever there is an arc (p,t), then there is an arc

from any input place of t
to any output transition of p

t

p
implies

t

p

Free-choice net:
alternative definitions

4

Proposition: All the following definitions of free-choice net are equivalent.

1) A net (P, T, F) is free-choice if:

8p 2 P, 8t 2 T , (p, t) 2 F implies •t⇥ p• ✓ F .

2) A net (P, T, F) is free-choice if:

8p, q 2 P, 8t, u 2 T , {(p, t), (q, t), (p, u)} ✓ F implies (q, u) 2 F .

3) A net (P, T, F) is free-choice if:

8p, q 2 P , either p• = q• or p • \q• = ;.

4) A net (P, T, F) is free-choice if:

8t, u 2 T , either •t = •u or •t \ •u = ;.

Free-choice net:
my favourite definition

5

Proposition: All the following definition of free-choice net are equivalent.

1) A net (P, T, F) is free-choice if:
⌅p ⇤ P, ⌅t ⇤ T , (p, t) ⇤ F implies •t� p• ⇤ F .

2) A net (P, T, F) is free-choice if:
⌅p, q ⇤ P, ⌅t, u ⇤ T , {(p, t), (q, t), (p, u)} ⇥ F implies (q, u) ⇤ F .

3) A net (P, T, F) is free-choice if:
⌅p, q ⇤ P , either p• = q• or p • ⌃q• = ⇧.

4) A net (P, T, F) is free-choice if:
⌅t, u ⇤ T , either •t = •u or •t ⌃ •u = ⇧.

Free-choice system

6

Definition: A system (N,M0) is free-choice
if N is free-choice

Example

7

non free-choice free-choice

•t1 = { p1, p3 }
•t2 = { p3 }
•t1 6= •t2

•t1 \ •t2 = { p3 } 6= ;

•t1 = •t2
•t1 \ •t3 = ;
•t2 \ •t3 = ;

Fundamental property
of free-choice nets

8

Proposition: Let (P, T, F,M0) be free-choice.

If M
t�⇥ and t ⇤ p•, then M

t��⇥ for every t� ⇤ p•.

The proof is trivial, by definition of free-choice net

Free-choice

Exercises

9

Prove that every S-net is free-choice

Prove that every T-net is free-choice

Show a free-choice net that is neither an S-net nor a T-net

S-nets T-nets

Free-choice N*

10

Proposition: A workflow net N is free-choice
iff N* is free-choice

N and N* differ only for the reset transition,
whose pre-set (o) is disjoint

from the pre-set of any other transition

Rank Theorem
(main result)

11

Theorem:
A free-choice system (P,T,F,M0) is live and bounded

iff
1. it has at least one place and one transition
2. it is connected
3. M0 marks every proper siphon
4. it has a positive S-invariant
5. it has a positive T-invariant
6. rank(N) = |CN| - 1

(where CN is the set of clusters)

Clusters

12

Cluster

13

Let x be the node of a net N = (P, T, F)
(not necessarily free-choice)

Definition:

The cluster of x, written [x], is the least set s.t.

1. x 2 [x]

2. if p 2 [x] \ P then p• ✓ [x]

3. if t 2 [x] \ T then •t ✓ [x]

(if a place p is in the cluster,
then all transitions in the

post-set of p are in the cluster)

(if a transition t is in the cluster,
then all places in the

pre-set of t are in the cluster)

Cluster: example

14

Clusters partition

15

Lemma: The set { [x] | x � P ⇥ T } is a partition of P ⇥ T

Take the reflexive, symmetric and transitive closure E of

F ⇤ (P � T)

From the definition, it follows that

y ⇥ [x] i� (x, y) ⇥ E

Since E is an equivalence relation, its classes define a partition

Fundamental property
of clusters in f.c. nets

16

Proposition:

If M
t�⇥, then for any t� ⇤ [t] we have M

t��⇥

Immediate consequence of the fact that, for free-choice nets

t, t� � [x] i� • t = •t�

Exercise

17

Draw all clusters in the nets below

Exercise

18

!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

Draw all clusters in the free-choice net below

Stable markings

19

Stable set of markings

20

Definition: A set of markings M is called stable if

M ⇥ M implies [M ⇤ � M

(starting from any marking in the stable set M,
no marking outside M is reachable)

Question time

21

Given a net system:

Is the singleton set { 0 } a stable set?

Is the set of all markings a stable set?

Is the set of live markings a stable set?

Is the set of deadlock markings a stable set?

Stability check

26

M is stable i�
⌅M, t,M �. (M ⇤ M ⇧ M

t�⇥ M � implies M � ⇤ M)

Example

27

Which of the following is a stable set of markings?

{ 2p1+p2 }
{ 2p1+p2 , p1+2p3 }

{ p1 , p2 }

Exercises

31

Which of the following is a stable set of markings?

{ p1 , p3 }
{ 2p1+2p2 , 2p3 }

{ 2p1+2p2 , p1+p2+p3 , 2p3 }
{ p1, 2p1+2p2 , p1+p2+p3 , 2p3 }

Exercises

32

Given a net system:

Is the set { M | M(P)=1 } a stable set?

Is the set of markings reachable from M0 a stable set?

Is the set { M | M(P)<k } a stable set?

Exercises

33

Let I be an S-invariant

Is the set { M | I⋅M = I⋅M0 } a stable set?

Is the set { M | I⋅M ≠ I⋅M0 } a stable set?

Is the set { M | I⋅M = 1 } a stable set?

Is the set { M | I⋅M = 0 } a stable set?

Exercises

34

Let M and M’ be stable sets
Is their union a stable set?

Is their intersection a stable set?
Is their difference a stable set?

What is the least stable set that includes a marking M0?

What is the largest stable set of a net?

Siphons

35

Proper siphon

36

Definition:

A set of places R is a siphon if •R � R•

It is a proper siphon if R ⇥= ⇤

Siphons, intuitively

37

A set of places R is a siphon if

all transitions that can produce tokens in the places of R

require some place in R to be marked

Therefore:
if no token is present in R,

then no token will ever be produced in R

Siphon check

38

Let R be a set of places of a net

mark with √ all transitions that consumes tokens from R

if there is a transition producing tokens in some place of
R that is not marked by √, then R is not a siphon

Otherwise R is a siphon

Siphon check: example

39

Is R = { prod1busy, prod1free, itembuffer} a siphon?

•R ✓ R•

Siphon check: example

40

Is R = { prod1busy, prod1free, itembuffer} a siphon?

√

√
√

•R ✓ R•

Siphon check: example

41

Is R = { prod1busy, itembuffer} a siphon?

•R ✓ R•

Siphon check: example

42

Is R = { prod1busy, itembuffer} a siphon?

√
√

X

•R ✓ R•

Fundamental property
of siphons

43

Proposition: Unmarked siphons remain unmarked

Take a siphon R.

We just need to prove that the set of markings
M = { M | M(R)=0 }

is stable, which is immediate by definition of siphon

Consequence of the
fundamental property

44

Corollary:
If a siphon R is marked at some reachable marking M,

then it was initially marked at M0

By hypothesis: M(R)>0

By contradiction: assume M0(R)=0
Then by the fundamental property of siphons: M(R)=0

which is absurd

Siphons and liveness

45

Prop.: Live systems have no unmarked proper siphons
(We show that every proper siphon R of a live system is

initially marked)

Take p ⇤ R and let t ⇤ •p ⌅ p•

Since the system is live, then there are M,M � ⇤ [M0 ⇧ such that

M
t�⇥ M �

Therefore p is marked at either M or M �

Therefore R is marked at either M or M �

Therefore R was initially marked (at M0)

Siphons and deadlock

46

Proposition:
Deadlocked systems have an unmarked proper siphon

Let M be a deadlocked marking

Let R = { p | M(p) = 0 }

Since M is deadlock: R• = T

Therefore •R � T = R• and R is a siphon.
Since T cannot be empty, R is proper

A key observation

47

If we can guarantee that

all proper siphons are marked
at every reachable marking,

then the system is deadlock free

Exercise

48

Prove that the union of siphons is a siphon

Traps

49

Proper trap

50

Definition:

A set of places R is a trap if •R � R•

It is a proper trap if R ⇥= ⇤

Traps, intuitively

51

A set of places R is a trap if

all transitions that can consume tokens from R

produce some token in some place of R

Therefore:
if some token is present in R,

then it is never possible for R to become empty

Trap check

52

Let R be a set of places of a net

mark with √ all transitions that produce tokens in R

if there is a transition consuming tokens from some
place in R that is not marked by √, then R is not a trap

Otherwise R is a trap

Trap check: example

53

Is R = { itembuffer, cons1busy, cons1free} a trap?

•R ◆ R•

Trap check: example

54

Is R = { itembuffer, cons1busy, cons1free} a trap?

√√
√

•R ◆ R•

Trap check: example

55

Is R = { itembuffer, cons1busy} a trap?

•R ◆ R•

Trap check: example

56

Is R = { itembuffer, cons1busy} a trap?

√
√ X

•R ◆ R•

Fundamental property
of traps

57

Proposition: Marked traps remain marked

Take a trap R.

We just need to prove that the set of markings
M = { M | M(R)>0 }

is stable, which is immediate by definition of trap

Consequence of the
fundamental property

58

Corollary:
If a trap R is unmarked at some reachable marking M,

then it was initially unmarked at M0

By hypothesis: M(R)=0

By contradiction: assume M0(R)>0

Then by the fundamental property of traps: M(R)>0
which is absurd

Exercise

59

Prove that the union of traps is a trap

Putting pieces together

60

unmarked siphons stay unmarked
(marked siphons can become unmarked)

if a siphon is marked at M, it was marked at M0

if all proper siphons always stay marked => deadlock-free

Putting pieces together

61

if all proper siphons always stay marked => deadlock-free

marked traps stay marked
(unmarked traps can become marked)

if a trap is unmarked at M, it was unmarked at M0

if a siphon contains a marked trap, it stays marked

if all siphons contain marked traps, they stay marked
=> deadlock-free

A sufficient condition
for deadlock-freedom

62

Proposition:
If every proper siphon of a system includes an initially

marked trap, then the system is deadlock-free

We show that if the system is not deadlock free, then there is
a siphon that does not include any marked trap.

Assume some reachable M is dead.
Let R be the set of unmarked places at M.

Then, we have seen that R is a proper siphon.
Since M(R)=0, then R includes no trap marked at M.

Therefore, R includes no trap marked at M0

Note

63

It is easy to observe that the every siphon includes a
(possibly empty) unique maximal trap

with respect to set inclusion

Moreover, a siphon includes a marked trap
iff

its maximal trap is marked

Exercise

64

Find all siphons and traps in the net below

Live and dead places
(recall)

65

66

A place p is live
if every time it becomes unmarked

there is still the possibility to be marked in the future
(or if it is always marked)

liveness implies place-liveness

Definition: Let (P, T, F,M0) be a net system.

A place p � P is live if ⇥M � [M0 ⌅. ⇤M � � [M ⌅.M �(p) > 0

Place liveness

Definition:
A net system (P, T, F,M0) is place-live if every place p � P is live

Dead nodes

67

Definition: Let (P, T, F) be a net system.

A transition t ⇤ T is dead at M if ⇧M � ⇤ [M ⌃.M � ⌅ t�⇥

A place p ⇤ P is dead at M if ⇧M � ⇤ [M ⌃.M �(p) = 0

Some obvious facts

68

If a system is not live, it has a transition dead at some
reachable marking

If a system is not place-live, it has a place dead at
some reachable marking

If a place / transition is dead at M, then it remains dead
at any marking reachable from M

(the set of dead nodes can only increase during a run)

Every transition in the pre- or post-set of a dead place
is also dead

An obvious facts in
free-choice nets

69

In a free-choice net:

if an output transition t of a place p is dead at M

then any output transition t’ of p is dead at M

(because t and t’ must have the same pre-set)

Dead t, dead p

70

Lemma: If the transition t is dead at M in a free-choice net,
then there is a non-live place p in the pre-set of t

(i.e., p is dead at some marking reachable from M)
By contraposition, we prove: if all input places of t are live then t is not dead
Let •t = [t] \ P = {p1, ..., pn}

Since all places p1, ..., pn are live at M , there exists
M

�1�! M1
�2�! ...

�n�! Mn

such that Mi(pi) > 0 for all i

If the sequence contains u 2 [t] then t is not dead at M

If no transition in [t] appears in the sequence, then no token in •t is consumed

Hence Mn(pi) > 0 for all i, and Mn
t�! and t is not dead at M

Place-liveness implies
liveness in f.c. nets

71

Proposition: If a free-choice system is place-live,
then it is live

If a free-choice system is not live then there is a
transition t dead at some reachable marking M

But then some input place of t must be dead at M,
so the system is not place-live

Consequence in f.c. nets:
place-liveness = liveness

72

If a free-choice system is place-live, then it is live

In any system, liveness implies place-liveness

Therefore:

A free-choice system is live iff it is place-live

Non-liveness and
unmarked siphons

73

By non-liveness: the system is not place-live,
i.e., some p is dead at some L

Take M � [L ⇥ such that every place not dead at M
is not dead at any marking of [M ⇥
i.e. all markings in [M ⇥ have the same set R dead places
(dead places remain dead)

Next we prove that R is a proper siphon and M(R) = 0

Lemma: Every non-live free-choice system has a proper
siphon R and a reachable marking M such that M(R)=0

Non-liveness and
unmarked siphons

74

Lemma: Every non-live free-choice system has a proper
siphon R and a reachable marking M such that M(R)=0

1. R is a siphon

• any t � •R is dead at M

(if not any q � t • ⌅R would not be dead)

• every t dead at M has an input place in R

(t has some input place dead at some marking reachable from M)

2. R is proper

p is dead at L, hence it is dead at M , hence p � R, hence R ⇥= ⇤

3. M(R) = 0 because it contains dead places

Commoner’s theorem

75

Commoner’s theorem

76

Theorem:
A free-choice system is live

iff

every proper siphon includes an initially marked trap

(we show just the “if” direction, which is simpler)

Commoner’s theorem:
“if” direction

77

(Non-live free-choice implies that
a proper siphon exists whose traps are all unmarked)

We know that a non-live free-choice system contains a
proper siphon R such that M(R)=0

So every trap included in R is unmarked at M

Since marked traps remain marked,
every trap included in R must have been

initially unmarked

Complexity of the
non-liveness problem

in free-choice systems

78

A non-deterministic
algorithm for non-liveness

79

1. guess a set of places R

2. check if R is a siphon (•R ⊆ R•)
(polynomial time)

3. if R is a siphon, compute the maximal trap Q ⊆ R

4. if M0(Q)=0, then answer “non-live”
(polynomial time)

A polynomial algorithm for
maximal trap in a siphon

80

3. if R is a siphon, compute the maximal trap Q ⊆ R

Input: A net N = (P, T, F) and R � P
Output: Q � R

Q := R
while (⌅p ⇥ Q, ⌅t ⇥ p•, t ⇤⇥ •Q)

Q := Q \ {p}
return Q

•R ✓ R• •Q ◆ Q•

Main consequence

81

The non-liveness problem for free-choice systems is in NP

Is the same problem in P?

82

The corresponding deterministic algorithm cannot make
the guess in step 1

It has to explore all possible subsets of places
2|P| cases!

NP-completeness

83

We next sketch the proof of the reduction to non-liveness
in a free-choice net of the CNF-SAT problem

(Satisfiability problem for propositional formulas in
conjunctive normal form)

CNF-SAT formulas

84

Variables: x1, x2, ..., xn

Literals: x1, x̄1, x2, x̄2, ..., xn, x̄n

Clause: disjunction of literals

Formula: conjunction of clauses

Example: � = (x1 ⇥ x̄3) � (x1 ⇥ x̄2 ⇥ x3) � (x2 ⇥ x̄3)

Is there an assignment of boolean values to the variables such that � = true?

The free-choice net of a
formula

85

The idea is
to construct a free-choice system (P,T,F,M0)

and show that

the formula is satisfiable
iff

(P,T,F,M0) is not live

CNF-SAT formulas

86

Is there an assignment of boolean values to the variables such that � = true?

Is there an assignment of boolean values to the variables such that ¬� = false?

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)

� = (x1 _ x3) ^ (x1 _ x2 _ x3) ^ (x2 _ x3)

87

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)

88

L3L2L1

One place Li for each variable xi

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)

89

One transition for each literal

L3L2L1

x1 x̄1 x̄2 x̄3x3x2

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)

90

L3L2L1

x1 x̄1 x̄2 x̄3x3x2

One transition Ci for each clause Ci

C3C2C1

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)

91

L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1
A place for each occurrence of a literal

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)

92

L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1

A place for true
True

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)

93

L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1

True

Back

A transition to restart

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)

94

L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1

True

Back

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)

95

L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1

True

Back

Fix an assignment

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)

96

L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1

True

Back

If none enabled, Back is dead

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)

97

L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1

True

Back

If � is satisfiable, then the net is not live

If the net is not live, then � is satisfiable

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)

98

L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1

True

Back

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)

Main consequence

99

No polynomial algorithm to decide liveness of a
free-choice system exists

(unless P=NP)

100

Draw the net corresponding to the formula

Is it satisfiable?

Exercise

x2 ^ (x1 _ x3 _ x4) ^ (x1 _ x2) ^ (x1 _ x4) ^ (x2 _ x4)

Live and bounded
free-choice nets

101

Rank Theorem

102

Theorem:
A free-choice system (P,T,F,M0) is live and bounded

iff
1. it has at least one place and one transition
2. it is connected
3. M0 marks every proper siphon
4. it has a positive S-invariant
5. it has a positive T-invariant
6. rank(N) = |CN| - 1

(where CN is the set of clusters)

A polynomial algorithm
for maximal siphon

103

A polynomial algorithm for computing maximal siphon in R

Input: A net N = (P, T, F,M0), R � P
Output: Q � R

Q := R
while (⌅p ⇥ Q, ⌅t ⇥ •p, t ⇤⇥ Q•)

Q := Q \ {p}
return Q

Q is a siphon if •Q � Q•

A polynomial algorithm for
maximal unmarked siphon

104

3. M0 marks every proper siphon

Input: A net N = (P, T, F,M0), R = { p | M0(p) = 0 }
Output: Q � R maximal unmarked siphon

Q := R
while (⌅p ⇥ Q, ⌅t ⇥ •p, t ⇤⇥ Q•)

Q := Q \ {p}
return Q

If Q is empty then M0 marks every proper siphon

Main consequence

105

Given a free-choice system, the problem to decide
if it is live and bounded

can be solved in polynomial time

Coverability

106

A technique to find
a positive S-invariant

107

Decompose the free-choice net N in suitable S-nets so
that any place of N belongs to an S-net

(the same place can appear in more S-nets)

Each S-net provides a uniform S-invariant

A positive S-invariant is obtained
as the sum of the S-invariants of each subnet

S-component

108

Definition: Let N = (P, T, F) and ⇧ ⇤ X ⇥ P ⌃ T
Let N � = (P ⌥X,T ⌥X,F ⌥ (X �X)) be a subnet of N .
N � is an S-component if

1. it is a strongly connected S-net

2. for every place p ⌅ X ⌥ P , we have •p ⌃ p• ⇥ X

S-cover

109

Definition: Let C be a set of S-components of a net N

C is an S-cover if every place p of N
belongs to one or more S-components in C

We say that N is covered by S-components
if it has an S-cover

S-cover: example

110

!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#
!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

S-coverability theorem

111

Theorem: If a free-choice net N is live and bounded
then N is S-coverable

(proof omitted)

Consequence:
free-choice + not S-coverable => not (live and bounded)

A technique to find
a positive T-invariant

112

Decompose the free-choice net N in suitable T-nets so
that any transition of N belongs to a T-net

(the same transition can appear in more T-nets)

Each T-net provides a uniform T-invariant

A positive T-invariant is obtained
as the sum of the T-invariants of each subnet

T-component

113

Definition: Let N = (P, T, F) and ⇧ ⇤ X ⇥ P ⌃ T
Let N � = (P ⌥X,T ⌥X,F ⌥ (X �X)) be a subnet of N .
N � is a T-component if

1. it is a strongly connected T-net

2. for every transition t ⌅ X ⌥ T , we have •t ⌃ t• ⇥ X

T-cover

114

Definition: Let C be a set of T-components of a net N

C is a T-cover if every transition t of N
belongs to one or more T-components in C

We say that N is covered by T-components
if it has a T-cover

T-cover: example

115

!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

!""# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

617,# +,8# 9# 21/)#&:;#0.<:;);# =*))>?%.1?)#535()4#&:;#1(5#;)?.4'.51(1.:# 1:(.# ->?.4'.:):(5#

!""# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

617,# +,8# 9# 21/)#&:;#0.<:;);# =*))>?%.1?)#535()4#&:;#1(5#;)?.4'.51(1.:# 1:(.# ->?.4'.:):(5#

T-coverability theorem

116

Theorem: If a free-choice net N is live and bounded
then N is T-coverable

(proof omitted)

Consequence:
free-choice + not T-coverable => not (live and bounded)

Exercise

117

Find an S-cover and a T-cover for the net below
and derive suitable S- and T-invariants

Compositionality

118

Compositionality of
sound free-choice nets

119

Lemma:
If a free-choice workflow net N is sound

then it is safe

(because N* is S-coverable and M0=i has just one token)

Proposition:
If N and N’ are sound free-choice workflow nets
then N[N’/t] is a sound free-choice workflow net

(we just need to show that N[N’/t] is free-choice)

