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Object

2

We study some “good” properties of 
free-choice nets

Free Choice Nets (book, optional reading) 
https://www7.in.tum.de/~esparza/bookfc.html 

https://www7.in.tum.de/~esparza/bookfc.html


Free-choice net

3

Definition: We recall that a net N is free-choice if 
whenever there is an arc (p,t), then there is an arc  

from any input place of t  
to any output transition of p

t

p
implies

t

p



Free-choice net: 
alternative definitions
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Proposition: All the following definitions of free-choice net are equivalent.

1) A net (P, T, F ) is free-choice if:

8p 2 P, 8t 2 T , (p, t) 2 F implies •t⇥ p• ✓ F .

2) A net (P, T, F ) is free-choice if:

8p, q 2 P, 8t, u 2 T , {(p, t), (q, t), (p, u)} ✓ F implies (q, u) 2 F .

3) A net (P, T, F ) is free-choice if:

8p, q 2 P , either p• = q• or p • \q• = ;.

4) A net (P, T, F ) is free-choice if:

8t, u 2 T , either •t = •u or •t \ •u = ;.



Free-choice net:  
my favourite definition
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Proposition: All the following definition of free-choice net are equivalent.

1) A net (P, T, F ) is free-choice if:
⌅p ⇤ P, ⌅t ⇤ T , (p, t) ⇤ F implies •t� p• ⇤ F .

2) A net (P, T, F ) is free-choice if:
⌅p, q ⇤ P, ⌅t, u ⇤ T , {(p, t), (q, t), (p, u)} ⇥ F implies (q, u) ⇤ F .

3) A net (P, T, F ) is free-choice if:
⌅p, q ⇤ P , either p• = q• or p • ⌃q• = ⇧.

4) A net (P, T, F ) is free-choice if:
⌅t, u ⇤ T , either •t = •u or •t ⌃ •u = ⇧.



Free-choice system
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Definition: A system (N,M0) is free-choice 
if N is free-choice



Example

7

non free-choice free-choice

•t1 = { p1, p3 }
•t2 = { p3 }
•t1 6= •t2

•t1 \ •t2 = { p3 } 6= ;

•t1 = •t2
•t1 \ •t3 = ;
•t2 \ •t3 = ;



Fundamental property 
of free-choice nets
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Proposition: Let (P, T, F,M0) be free-choice.

If M
t�⇥ and t ⇤ p•, then M

t��⇥ for every t� ⇤ p•.

The proof is trivial, by definition of free-choice net



Free-choice 

Exercises

9

Prove that every S-net is free-choice 

Prove that every T-net is free-choice 

Show a free-choice net that is neither an S-net nor a T-net

S-nets T-nets



Free-choice N*
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Proposition: A workflow net N is free-choice  
iff N* is free-choice

N and N* differ only for the reset transition, 
whose pre-set (o) is disjoint  

from the pre-set of any other transition



Rank Theorem  
(main result)
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Theorem: 
A free-choice system (P,T,F,M0) is live and bounded 

iff 
1. it has at least one place and one transition 
2. it is connected 
3. M0 marks every proper siphon 
4. it has a positive S-invariant 
5. it has a positive T-invariant 
6. rank(N) = |CN| - 1 

(where CN is the set of clusters)



Clusters

12



Cluster
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Let x be the node of a net N = (P, T, F )
(not necessarily free-choice)

Definition:

The cluster of x, written [x], is the least set s.t.

1. x 2 [x]

2. if p 2 [x] \ P then p• ✓ [x]

3. if t 2 [x] \ T then •t ✓ [x]

(if a place p is in the cluster, 
then all transitions in the  

post-set of p are in the cluster)

(if a transition t is in the cluster, 
then all places in the  

pre-set of t are in the cluster)



Cluster: example

14



Clusters partition
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Lemma: The set { [x] | x � P ⇥ T } is a partition of P ⇥ T

Take the reflexive, symmetric and transitive closure E of

F ⇤ (P � T )

From the definition, it follows that

y ⇥ [x] i� (x, y) ⇥ E

Since E is an equivalence relation, its classes define a partition



Fundamental property 
of clusters in f.c. nets
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Proposition:

If M
t�⇥, then for any t� ⇤ [t] we have M

t��⇥

Immediate consequence of the fact that, for free-choice nets

t, t� � [x] i� • t = •t�



Exercise

17

Draw all clusters in the nets below



Exercise

18

!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

Draw all clusters in the free-choice net below



Stable markings

19



Stable set of markings
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Definition: A set of markings M is called stable if

M ⇥ M implies [M ⇤ � M

(starting from any marking in the stable set M, 
no marking outside M is reachable)



Question time
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Given a net system: 

Is the singleton set { 0 } a stable set? 

Is the set of all markings a stable set? 

Is the set of live markings a stable set? 

Is the set of deadlock markings a stable set?



Stability check

26

M is stable i�
⌅M, t,M �. (M ⇤ M ⇧ M

t�⇥ M � implies M � ⇤ M)



Example
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Which of the following is a stable set of markings? 

{ 2p1+p2 } 
{ 2p1+p2 , p1+2p3 } 

{ p1 ,  p2 }



Exercises

31

Which of the following is a stable set of markings? 

{ p1 ,  p3 } 
{ 2p1+2p2 , 2p3 } 

{ 2p1+2p2 , p1+p2+p3 , 2p3 }  
{ p1, 2p1+2p2 , p1+p2+p3 , 2p3 }



Exercises

32

Given a net system: 

Is the set { M | M(P)=1 } a stable set? 

Is the set of markings reachable from M0 a stable set? 

Is the set { M | M(P)<k } a stable set?



Exercises

33

Let I be an S-invariant 

Is the set { M | I⋅M = I⋅M0 } a stable set? 

Is the set { M | I⋅M ≠ I⋅M0 } a stable set? 

Is the set { M | I⋅M = 1 } a stable set? 

Is the set { M | I⋅M = 0 } a stable set?



Exercises

34

Let M and M’ be stable sets 
Is their union a stable set? 

Is their intersection a stable set? 
Is their difference a stable set? 

What is the least stable set that includes a marking M0? 

What is the largest stable set of a net? 



Siphons

35



Proper siphon
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Definition:

A set of places R is a siphon if •R � R•

It is a proper siphon if R ⇥= ⇤



Siphons, intuitively
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A set of places R is a siphon if 

all transitions that can produce tokens in the places of R 

require some place in R to be marked 

Therefore: 
if no token is present in R,  

then no token will ever be produced in R



Siphon check

38

Let R be a set of places of a net 

mark with √ all transitions that consumes tokens from R 

if there is a transition producing tokens in some place of 
R that is not marked by √, then R is not a siphon 

Otherwise R is a siphon



Siphon check: example
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Is R = { prod1busy, prod1free, itembuffer} a siphon?

•R ✓ R•



Siphon check: example
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Is R = { prod1busy, prod1free, itembuffer} a siphon?

√

√
√

•R ✓ R•



Siphon check: example

41

Is R = { prod1busy, itembuffer} a siphon?

•R ✓ R•



Siphon check: example
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Is R = { prod1busy, itembuffer} a siphon?

√
√

X

•R ✓ R•



Fundamental property 
of siphons
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Proposition: Unmarked siphons remain unmarked 

Take a siphon R. 

We just need to prove that the set of markings  
M = { M | M(R)=0 } 

is stable, which is immediate by definition of siphon



Consequence of the 
fundamental property

44

Corollary:  
If a siphon R is marked at some reachable marking M, 

then it was initially marked at M0 

By hypothesis: M(R)>0 

By contradiction: assume M0(R)=0 
Then by the fundamental property of siphons: M(R)=0 

which is absurd



Siphons and liveness
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Prop.: Live systems have no unmarked proper siphons 
(We show that every proper siphon R of a live system is 

initially marked)

Take p ⇤ R and let t ⇤ •p ⌅ p•

Since the system is live, then there are M,M � ⇤ [M0 ⇧ such that

M
t�⇥ M �

Therefore p is marked at either M or M �

Therefore R is marked at either M or M �

Therefore R was initially marked (at M0)



Siphons and deadlock
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Proposition:  
Deadlocked systems have an unmarked proper siphon

Let M be a deadlocked marking

Let R = { p | M(p) = 0 }

Since M is deadlock: R• = T

Therefore •R � T = R• and R is a siphon.
Since T cannot be empty, R is proper



A key observation
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If we can guarantee that  

all proper siphons are marked  
at every reachable marking,  

then the system is deadlock free



Exercise
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Prove that the union of siphons is a siphon



Traps

49



Proper trap
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Definition:

A set of places R is a trap if •R � R•

It is a proper trap if R ⇥= ⇤



Traps, intuitively
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A set of places R is a trap if 

all transitions that can consume tokens from R 

produce some token in some place of R 

Therefore: 
if some token is present in R,  

then it is never possible for R to become empty



Trap check

52

Let R be a set of places of a net 

mark with √ all transitions that produce tokens in R 

if there is a transition consuming tokens from some 
place in R that is not marked by √, then R is not a trap 

Otherwise R is a trap



Trap check: example
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Is R = { itembuffer, cons1busy, cons1free} a trap?

•R ◆ R•



Trap check: example

54

Is R = { itembuffer, cons1busy, cons1free} a trap?

√√
√

•R ◆ R•



Trap check: example
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Is R = { itembuffer, cons1busy} a trap?

•R ◆ R•



Trap check: example
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Is R = { itembuffer, cons1busy} a trap?

√
√ X

•R ◆ R•



Fundamental property 
of traps

57

Proposition: Marked traps remain marked 

Take a trap R. 

We just need to prove that the set of markings  
M = { M | M(R)>0 } 

is stable, which is immediate by definition of trap



Consequence of the 
fundamental property

58

Corollary:  
If a trap R is unmarked at some reachable marking M, 

then it was initially unmarked at M0 

By hypothesis: M(R)=0 

By contradiction: assume M0(R)>0 

Then by the fundamental property of traps: M(R)>0 
which is absurd



Exercise
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Prove that the union of traps is a trap



Putting pieces together
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unmarked siphons stay unmarked 
(marked siphons can become unmarked) 

if a siphon is marked at M, it was marked at M0 

if all proper siphons always stay marked       => deadlock-free



Putting pieces together
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if all proper siphons always stay marked       => deadlock-free 

marked traps stay marked 
(unmarked traps can become marked) 

if a trap is unmarked at M, it was unmarked at M0 

if a siphon contains a marked trap, it stays marked 

if all siphons contain marked traps, they stay marked 
=> deadlock-free



A sufficient condition 
for deadlock-freedom
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Proposition:  
If every proper siphon of a system includes an initially 

marked trap, then the system is deadlock-free 

We show that if the system is not deadlock free, then there is 
a siphon that does not include any marked trap. 

Assume some reachable M is dead. 
Let R be the set of unmarked places at M. 

Then, we have seen that R is a proper siphon. 
Since M(R)=0, then R includes no trap marked at M. 

Therefore, R includes no trap marked at M0 



Note
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It is easy to observe that the every siphon includes a 
(possibly empty) unique maximal trap  

with respect to set inclusion 

Moreover, a siphon includes a marked trap 
iff 

its maximal trap is marked



Exercise
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Find all siphons and traps in the net below



Live and dead places 
(recall)

65



66

A place p is live 
if every time it becomes unmarked 

there is still the possibility to be marked in the future 
(or if it is always marked) 

liveness implies place-liveness

Definition: Let (P, T, F,M0) be a net system.

A place p � P is live if ⇥M � [M0 ⌅. ⇤M � � [M ⌅.M �(p) > 0

Place liveness

Definition:
A net system (P, T, F,M0) is place-live if every place p � P is live



Dead nodes
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Definition: Let (P, T, F ) be a net system.

A transition t ⇤ T is dead at M if ⇧M � ⇤ [M ⌃.M � ⌅ t�⇥

A place p ⇤ P is dead at M if ⇧M � ⇤ [M ⌃.M �(p) = 0



Some obvious facts
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If a system is not live, it has a transition dead at some 
reachable marking 

If a system is not place-live, it has a place dead at 
some reachable marking 

If a place / transition is dead at M, then it remains dead 
at any marking reachable from M 

(the set of dead nodes can only increase during a run) 

Every transition in the pre- or post-set of a dead place 
is also dead



An obvious facts in 
free-choice nets
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In a free-choice net: 

if an output transition t of a place p is dead at M 

then any output transition t’ of p is dead at M 

(because t and t’ must have the same pre-set)



Dead t, dead p
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Lemma: If the transition t is dead at M in a free-choice net, 
then there is a non-live place p in the pre-set of t  

(i.e., p is dead at some marking reachable from M) 
By contraposition, we prove: if all input places of t are live then t is not dead
Let •t = [t] \ P = {p1, ..., pn}

Since all places p1, ..., pn are live at M , there exists
M

�1�! M1
�2�! ...

�n�! Mn

such that Mi(pi) > 0 for all i

If the sequence contains u 2 [t] then t is not dead at M

If no transition in [t] appears in the sequence, then no token in •t is consumed

Hence Mn(pi) > 0 for all i, and Mn
t�! and t is not dead at M



Place-liveness implies 
liveness in f.c. nets
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Proposition: If a free-choice system is place-live,  
then it is live 

If a free-choice system is not live then there is a 
transition t dead at some reachable marking M 

But then some input place of t must be dead at M, 
so the system is not place-live



Consequence in f.c. nets: 
place-liveness = liveness
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If a free-choice system is place-live, then it is live 

In any system, liveness implies place-liveness 

Therefore: 

A free-choice system is live iff it is place-live



Non-liveness and 
unmarked siphons

73

By non-liveness: the system is not place-live,
i.e., some p is dead at some L

Take M � [L ⇥ such that every place not dead at M
is not dead at any marking of [M ⇥
i.e. all markings in [M ⇥ have the same set R dead places
(dead places remain dead)

Next we prove that R is a proper siphon and M(R) = 0

Lemma: Every non-live free-choice system has a proper 
siphon R and a reachable marking M such that M(R)=0



Non-liveness and 
unmarked siphons

74

Lemma: Every non-live free-choice system has a proper 
siphon R and a reachable marking M such that M(R)=0

1. R is a siphon

• any t � •R is dead at M

(if not any q � t • ⌅R would not be dead)

• every t dead at M has an input place in R

(t has some input place dead at some marking reachable from M)

2. R is proper

p is dead at L, hence it is dead at M , hence p � R, hence R ⇥= ⇤

3. M(R) = 0 because it contains dead places



Commoner’s theorem

75



Commoner’s theorem
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Theorem: 
A free-choice system is live 

iff 

every proper siphon includes an initially marked trap 

(we show just the “if” direction, which is simpler)



Commoner’s theorem: 
“if” direction

77

(Non-live free-choice implies that  
a proper siphon exists whose traps are all unmarked) 

We know that a non-live free-choice system contains a 
proper siphon R such that M(R)=0 

So every trap included in R is unmarked at M 

Since marked traps remain marked, 
every trap included in R must have been 

initially unmarked



Complexity of the  
non-liveness problem  

in free-choice systems

78



A non-deterministic 
algorithm for non-liveness

79

1. guess a set of places R 

2. check if R is a siphon (•R ⊆ R•) 
(polynomial time) 

3. if R is a siphon, compute the maximal trap Q ⊆ R 

4. if M0(Q)=0, then answer “non-live” 
(polynomial time)



A polynomial algorithm for 
maximal trap in a siphon

80

3. if R is a siphon, compute the maximal trap Q ⊆ R

Input: A net N = (P, T, F ) and R � P
Output: Q � R

Q := R
while (⌅p ⇥ Q, ⌅t ⇥ p•, t ⇤⇥ •Q)

Q := Q \ {p}
return Q

•R ✓ R• •Q ◆ Q•



Main consequence
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The non-liveness problem for free-choice systems is in NP



Is the same problem in P?
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The corresponding deterministic algorithm cannot make 
the guess in step 1 

It has to explore all possible subsets of places 
2|P| cases!



NP-completeness

83

We next sketch the proof of the reduction to non-liveness 
in a free-choice net of the CNF-SAT problem 

(Satisfiability problem for propositional formulas in 
conjunctive normal form)



CNF-SAT formulas

84

Variables: x1, x2, ..., xn

Literals: x1, x̄1, x2, x̄2, ..., xn, x̄n

Clause: disjunction of literals

Formula: conjunction of clauses

Example: � = (x1 ⇥ x̄3) � (x1 ⇥ x̄2 ⇥ x3) � (x2 ⇥ x̄3)

Is there an assignment of boolean values to the variables such that � = true?



The free-choice net of a 
formula

85

The idea is  
to construct a free-choice system (P,T,F,M0)  

and show that  

the formula is satisfiable 
iff 

(P,T,F,M0) is not live



CNF-SAT formulas
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Is there an assignment of boolean values to the variables such that � = true?

Is there an assignment of boolean values to the variables such that ¬� = false?

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)

� = (x1 _ x3) ^ (x1 _ x2 _ x3) ^ (x2 _ x3)
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¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)
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L3L2L1

One place Li for each variable xi

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)
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One transition for each literal

L3L2L1

x1 x̄1 x̄2 x̄3x3x2

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)
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L3L2L1

x1 x̄1 x̄2 x̄3x3x2

One transition Ci for each clause Ci

C3C2C1

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)
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L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1
A place for each occurrence of a literal

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)
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L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1

A place for true
True

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)
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L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1

True

Back

A transition to restart

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)
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L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1

True

Back

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)
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L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1

True

Back

Fix an assignment

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)
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L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1

True

Back

If none enabled, Back is dead

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)
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L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1

True

Back

If � is satisfiable, then the net is not live

If the net is not live, then � is satisfiable

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)
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L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1

True

Back

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)



Main consequence

99

No polynomial algorithm to decide liveness of a 
free-choice system exists  

(unless P=NP)
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Draw the net corresponding to the formula 

Is it satisfiable?

Exercise

x2 ^ (x1 _ x3 _ x4) ^ (x1 _ x2) ^ (x1 _ x4) ^ (x2 _ x4)



Live and bounded  
free-choice nets

101



Rank Theorem

102

Theorem: 
A free-choice system (P,T,F,M0) is live and bounded 

iff 
1. it has at least one place and one transition 
2. it is connected 
3. M0 marks every proper siphon 
4. it has a positive S-invariant 
5. it has a positive T-invariant 
6. rank(N) = |CN| - 1 

(where CN is the set of clusters)



A polynomial algorithm 
for maximal siphon

103

A polynomial algorithm for computing maximal siphon in R

Input: A net N = (P, T, F,M0), R � P
Output: Q � R

Q := R
while (⌅p ⇥ Q, ⌅t ⇥ •p, t ⇤⇥ Q•)

Q := Q \ {p}
return Q

Q is a siphon if •Q � Q•



A polynomial algorithm for 
maximal unmarked siphon

104

3. M0 marks every proper siphon

Input: A net N = (P, T, F,M0), R = { p | M0(p) = 0 }
Output: Q � R maximal unmarked siphon

Q := R
while (⌅p ⇥ Q, ⌅t ⇥ •p, t ⇤⇥ Q•)

Q := Q \ {p}
return Q

If Q is empty then M0 marks every proper siphon



Main consequence

105

Given a free-choice system, the problem to decide 
if it is live and bounded  

can be solved in polynomial time



Coverability

106



A technique to find  
a positive S-invariant

107

Decompose the free-choice net N in suitable S-nets so 
that any place of N belongs to an S-net 

(the same place can appear in more S-nets) 

Each S-net provides a uniform S-invariant 

A positive S-invariant is obtained  
as the sum of the S-invariants of each subnet



S-component

108

Definition: Let N = (P, T, F ) and ⇧ ⇤ X ⇥ P ⌃ T
Let N � = (P ⌥X,T ⌥X,F ⌥ (X �X)) be a subnet of N .
N � is an S-component if

1. it is a strongly connected S-net

2. for every place p ⌅ X ⌥ P , we have •p ⌃ p• ⇥ X



S-cover
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Definition: Let C be a set of S-components of a net N 

C is an S-cover if every place p of N  
belongs to one or more S-components in C 

We say that N is covered by S-components  
if it has an S-cover



S-cover: example

110
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S-coverability theorem

111

Theorem: If a free-choice net N is live and bounded  
then N is S-coverable 

(proof omitted) 

Consequence: 
free-choice + not S-coverable => not (live and bounded)



A technique to find  
a positive T-invariant
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Decompose the free-choice net N in suitable T-nets so 
that any transition of N belongs to a T-net 

(the same transition can appear in more T-nets) 

Each T-net provides a uniform T-invariant 

A positive T-invariant is obtained  
as the sum of the T-invariants of each subnet



T-component
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Definition: Let N = (P, T, F ) and ⇧ ⇤ X ⇥ P ⌃ T
Let N � = (P ⌥X,T ⌥X,F ⌥ (X �X)) be a subnet of N .
N � is a T-component if

1. it is a strongly connected T-net

2. for every transition t ⌅ X ⌥ T , we have •t ⌃ t• ⇥ X



T-cover
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Definition: Let C be a set of T-components of a net N 

C is a T-cover if every transition t of N  
belongs to one or more T-components in C 

We say that N is covered by T-components  
if it has a T-cover



T-cover: example
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T-coverability theorem
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Theorem: If a free-choice net N is live and bounded  
then N is T-coverable 

(proof omitted) 

Consequence: 
free-choice + not T-coverable => not (live and bounded)



Exercise

117

Find an S-cover and a T-cover for the net below 
and derive suitable S- and T-invariants



Compositionality
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Compositionality of  
sound free-choice nets
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Lemma: 
If a free-choice workflow net N is sound 

then it is safe 

(because N* is S-coverable and M0=i has just one token) 

Proposition:  
If N and N’ are sound free-choice workflow nets 
then N[N’/t] is a sound free-choice workflow net 

(we just need to show that N[N’/t] is free-choice)


