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We study some “good” properties of T-systems

Free Choice Nets (book, optional reading)
https://www7.in.tum.de/~esparza/bookfc.html
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T-system

Definition: We recall that a net N is a T-net if each
place has exactly one input transition and exactly
one output transition

Vp € P, epl=1=pe]

A system (N,Mo) is a T-system if N is a T-net



T-net: example




T-systems: an
observation

Notably, computation in T-systems is concurrent,
but essentially deterministic:

the firing of a transition t in M cannot disable
another transition t' enabled at M



T-net N*

Is the following conjecture true?
A workflow net N is a T-net
Iff N* Is a T-net



T-net N*

Is the following conjecture true?
A workflow net N is a T-net
Iff N* Is a T-net

No, a workflow net cannot be a T-net because
the place | has no incoming arc
and the place o has no outgoing arc

(N* can be a T-net)



T-systems: another
observation

Determination of control:

the transitions responsible for enabling t are
one for each input place of t



Notation: token count
of a circuit

Let v = (x1,y1) (Y1, 22)(x2,Y2)...(xy, yn) be a circuit.

Let P, € P be the set of places in 7.

=D Mp)
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We say that v is marked at M if M(vy) > 0
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Question time

Trace two circuits over the T-system below
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Fundamental property
of T-systems

The token count of a circuit is invariant under any firing.



Fundamental property
of T-systems

Proposition: Let v be a circuit of a T-system (P, T, F, My).
If M is a reachable marking, then M (vy) = My(7)

ake any t € T": eithert & v ort € .

If £ € ~, then no place in ot Ute is in ~y
(otherwise, by definition of T-nets, ¢t would be in 7).
Then, an occurrence of ¢ does not change the token count of ~.

If ¢ € ~, then exactly one place in ot and one place in te are in 7.
Then, an occurrence of t does not change the token count of ~.
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Mo=[0 420 3 0]

M=[211122]
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T-invariants of T-nets

Proposition: Let N=(P,T,F) be a (connected) T-net. J
Is a T-invariant of N iff J=[ k ... k ] for some value k

(the proof is dual to the analogous proposition for
S-invariants of S-nets)
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Boundedness in strongly
connected T-systems

Lemma: If a T-system (N,Mo) is strongly connected,
then it is bounded
Let I' be the set of the circuits of N and let k£ = max.er Mo(7).
Since N is strongly connected, every place p belongs to some circuit 7).
By the fundamental property of T-systems: token count of 7, is invariant.

Thus, for any reachable marking M, we have M (p) < M (vy,) = Mo(v,) < k.
Hence the net is £-bounded.
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Question time

Is the T-systems below bounded? (why?)
p{ t2 gg t4 T
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Liveness theorem for
T-systems

Theorem: A T-system (N,Mo) is live
iff every circuit of N is marked at Mo

=) (quite obvious)
By contradiction, let v be a circuit with My(v) = 0.
By the fundamental property of T-systems: VM € | My ), M(v) = 0.

Take any t €1}, and p € P, Net.

For any M € [ M; ), we have M(p) = 0.
Hence t is never enabled and the T-system is not live.

26



Liveness theorem for
T-systems

Theorem: A T-system (N,Mo) is live
iff every circuit of N is marked at Mo

&) (more involved)
Take anyt € T and M € | My).
We need to show that some marking M’ reachable from M enables ¢.

The key idea is to collect the places that control the firing of ¢:

p € Pyr ¢ if there is a path from p to ¢ through places unmarked at M.
We then proceed by induction on the size of Py ;.

We just sketch the key idea of the proof over a T-system.
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Liveness theorem for
T-systems

Theorem: A T-system (N,Mo) is live
< every circuit of N is marked at Mo

/Q e M = p1 + ps + p7
pl p2 t3T p3

Q ’ M’ enabling t27?
t1 \ /t2 n4 HT
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p € Pyr ¢ if there is a path from p to ¢ through places unmarked at M.
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Liveness theorem for
T-systems

Theorem: A T-system (N,Mo) is live
< every circuit of N is marked at Mo

| P
pl p2 t3 T p3

Q Pwmt, = { P2, p3, p4 }
t1 \ /12 p4 t4T
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Liveness theorem for
T-systems

Theorem: A T-system (N,Mo) is live
< every circuit of N is marked at Mo

&) (continued proof sketch)
Base case: |Pys¢| = 0.
Every place in et is already marked at M.

Hence t Is enabled at M.
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Liveness theorem for
T-systems

Theorem: A T-system (N,Mo) is live
< every circuit of N is marked at Mo

& ) (continued proof sketch)

Inductive case: [Py | > 0.
Therefore t is not enabled at M.

We look for a path m of maximal length necessary for firing .
m must contain only places unmarked at M.

By the fundamental property of T-systems: all circuits are marked at M.

7 is not necessarily unique, but exists (no cycle in it).
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Liveness theorem for
T-systems

Theorem: A T-system (N,Mo) is live
< every circuit of N is marked at Mo
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Liveness theorem for
T-systems

Theorem: A T-system (N,Mo) is live
< every circuit of N is marked at Mo
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Liveness theorem for
T-systems

Theorem: A T-system (N,Mo) is live
< every circuit of N is marked at Mo

<) (Inductive case: |Pas | > 0, continued proof sketch)

7 begins with a transition ¢’ enabled at M.
(otherwise a longer path could be found).

By firing " we reach a marking M" such that Py C Py

Hence | Py ¢| < |Pas¢| and we conclude by inductive hypothesis.
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Liveness theorem for
T-systems

Theorem: A T-system (N,Mo) is live
< every circuit of N is marked at Mo
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Liveness theorem for
T-systems

Theorem: A T-system (N,Mo) is live
< every circuit of N is marked at Mo
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Liveness theorem for
T-systems

Theorem: A T-system (N,Mo) is live
< every circuit of N is marked at Mo

ﬂ p2 t3T DCP PI\/It2 {p2 p3 p4}
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Liveness theorem for
T-systems

Theorem: A T-system (N,Mo) is live
< every circuit of N is marked at Mo

% p2 t3T Q PI\/It2 {p2 p3 p4}
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Question time

Which of the T-systems below is live? (why?)
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Boundedness theorem
for live T-systems

Theorem: A live T-system (P, T, F, M) is k-bounded iff
every place p € P belongs to a circuit v, with My(v,) < k.

<) Let M € [ My) and take any p € P.

By the fundamental property of T-systems:
M(p) < M(y,) = Mo(7,) < k
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Boundedness theorem
for live T-systems

Theorem: A live T-system (P, T, F, M) is k-bounded iff

every place p € P be

=) Let k, < k be the

ongs to a circuit vy, with My(v,) < k.

bound of p.

Take M € [ My ) with M(p) = k,.

Define L = M — k,p and note that the T-system (N, L) is not live.
(otherwise L — L’ with L’(p) > 0 for enabling t € pe. But then:
M =L+ kyp — L'+ k,p=M" with M'(p) = L'(p) + k, > k)

By the liveness theorem: some circuit v i1s not marked at L.
Since (N, M) is live, the circuit + is marked at M D L.
Since M — L = k,p, the circuit v contains p and

Mo(y) = M(3) = M(p) = k, < k.
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Place bounds in
live T-systems

Let (P, T, F, My) be aliveT-system.
We can draw some easy consequences of the above results:

1) If p € P is bounded, then it belongs to some circuit.
(see part = of the proof of the boundedness theorem)

2) If p € P belongs to some circuit, then it is bounded.
(by the fundamental property of T-systems)

3) If (N, Mj) is bounded, then it is strongly connected.
(by strong connectedness theorem, holding for any system)

4) If N is strongly connected, then (N, My) is bounded.
(by 1, since any p € P belongs to a circuit by strong connectdness)
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Place bounds in
live T-systems

Let (P, T, F, My) be aliveT-system.
We can draw some easy consequences of the above results:

1+2) p € P is bounded iff it belongs to some circuit.

3+4) (N, My) is bounded iff it is strongly connected.
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T-systems: recap

T-system + y circuit + M reachable  => M(y) = Mo(y)
T-system + y circuit + M(y)#Mo(y) => M not reachable

T-system + y1... yn Ccircuits:  3i. pe yi <=> p bounded

T-system: Mo(y)>0 for all circuits y <=> live
T-system: strongly connected => bounded
T-system + live: strongly connected <=> bounded

T-system: T-invariantd <=>J=[kk ... k]
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Consequences on
workflow nets

Theorem: If N is a workflow net s.t. N* is a T-system then
N is safe and sound iff
every circuit of N* is marked

N workflow net => N* strongly connected
all circuits of N* are marked <=> N~ live
N* strongly connected + N* T-system => N* bounded

| € y <=> Mo(y)=1 <=> y marked circuit

y marked circuit + M reachable => M(y)=1

N* bounded <=> any place p belongs to a circuit of N*
p belongs to a circuit of N* => p is safe
all places belong to marked circuits => N* safe => N safe
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Exercises

Which are the circuits of the T-system below?
Is the T-system below live? (why?)
Which places are bounded? (why?)

Assign a bound to each bounded place.

dl busy

IIIIIIIIIIII

consl busy
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Exercises

Which are the circuits of the T-systems below?
Are the T-systems below live? (why?)
Which places are bounded? (why?)
Assign a bound to each bounded place.
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Exercise

|s the net below a workflow net?
Is it sound?

Qﬁ} {i@
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Exercise

|s the net below a workflow net?
Is it sound?
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