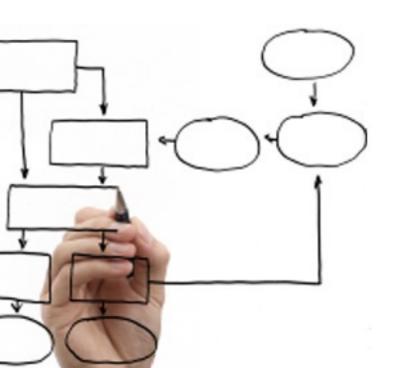
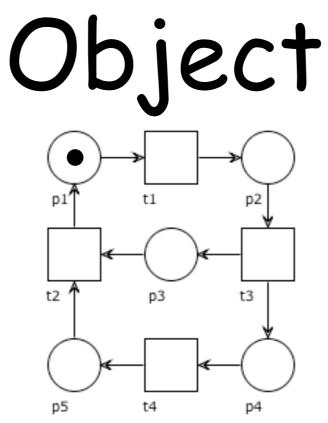
Business Processes Modelling MPB (6 cfu, 295AA)



Roberto Bruni http://www.di.unipi.it/~bruni

17 - T-systems



We study some "good" properties of T-systems

Free Choice Nets (book, optional reading) https://www7.in.tum.de/~esparza/bookfc.html

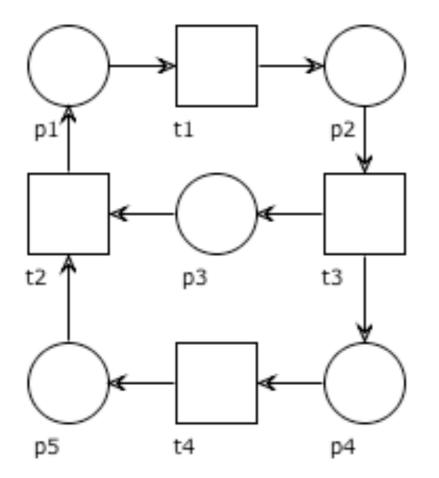
T-system

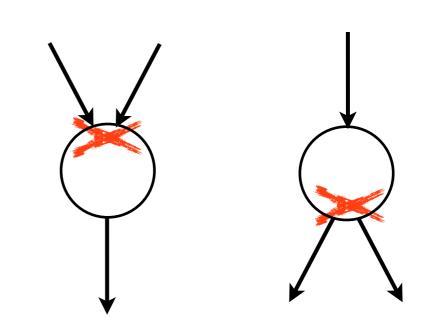
Definition: We recall that a net N is a **T-net** if each place has exactly one input transition and exactly one output transition

$$\forall p \in P, \qquad |\bullet p| = 1 = |p \bullet$$

A system (N,M₀) is a **T-system** if N is a T-net

T-net: example





T-systems: an observation

Notably, computation in T-systems is concurrent, but essentially deterministic:

the firing of a transition t in M cannot disable another transition t' enabled at M

T-net N*

Is the following conjecture true? A workflow net N is a T-net iff N* is a T-net

T-net N*

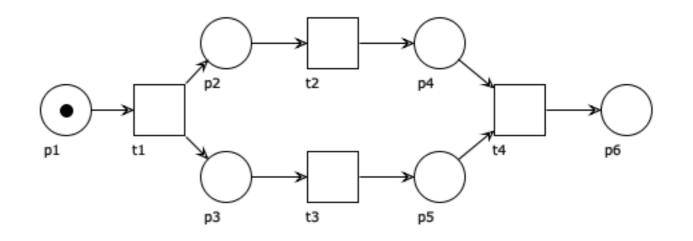
Is the following conjecture true? A workflow net N is a T-net iff N* is a T-net

No, a workflow net cannot be a T-net because the place i has no incoming arc and the place o has no outgoing arc

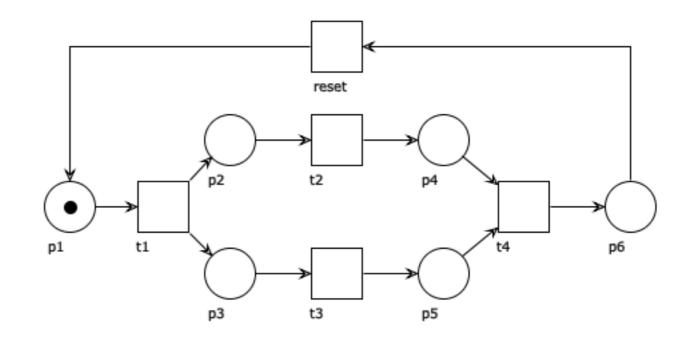
(but N* can be a T-net)

T-net N*: example

N is a workflow net but not a T-net



N* is a T-net (not a workflow net)



T-systems: another observation

Determination of control:

the transitions responsible for enabling t are one for each input place of t

Notation: token count of a circuit

Let $\gamma = (x_1, y_1)(y_1, x_2)(x_2, y_2)...(x_n, y_n)$ be a circuit.

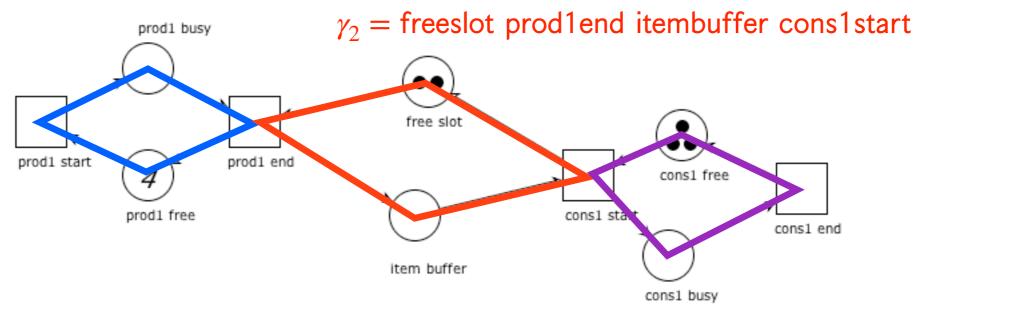
Let $P_{|\gamma} \subseteq P$ be the set of places in γ .

$$M(\gamma) = M(P_{|\gamma}) = \sum_{p \in P_{|\gamma}} M(p)$$

We say that γ is **marked at** M if $M(\gamma) > 0$

Example

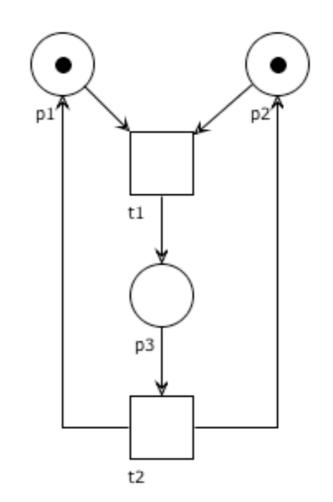
 $\gamma_1 = prod1busy prod1end prod1free prod1start$



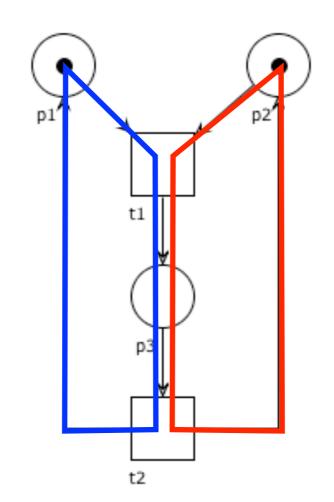
 $\gamma_3 = \text{cons1busy coons1end cons1free cons1start}$

 $M(\gamma_1) = 4$ $M(\gamma_2) = 2$ $M(\gamma_3) = 3$

Trace two circuits over the T-system below



Trace two circuits over the T-system below



Fundamental property of T-systems

The token count of a circuit is invariant under any firing.

Fundamental property of T-systems

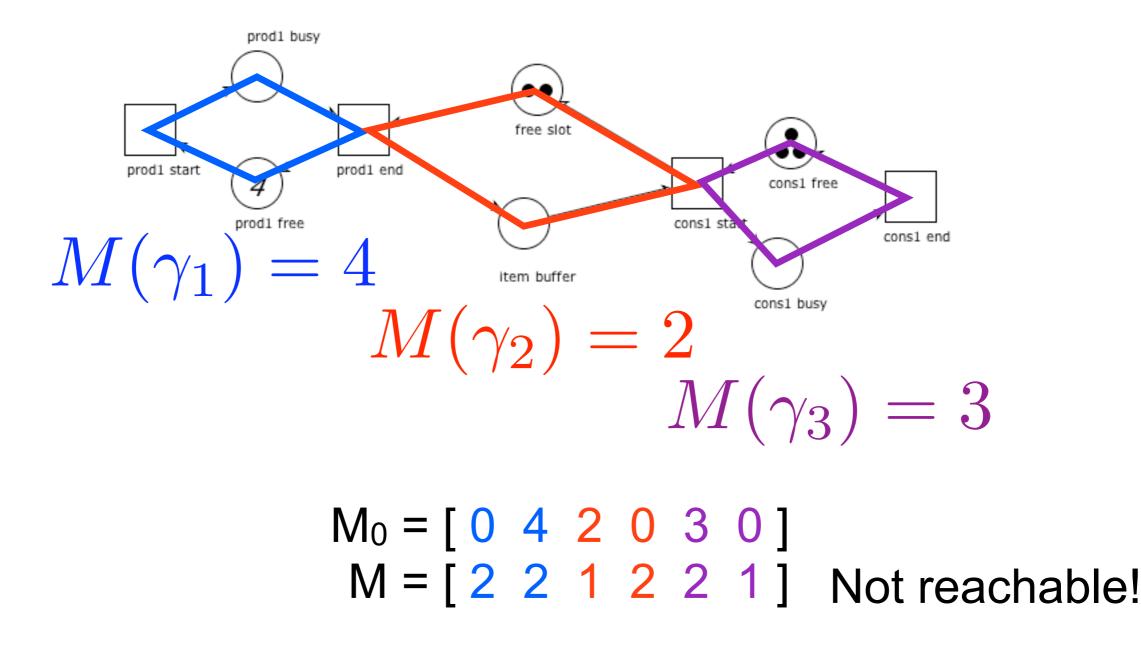
Proposition: Let γ be a circuit of a T-system (P, T, F, M_0) . If M is a reachable marking, then $M(\gamma) = M_0(\gamma)$

Take any $t \in T$: either $t \notin \gamma$ or $t \in \gamma$.

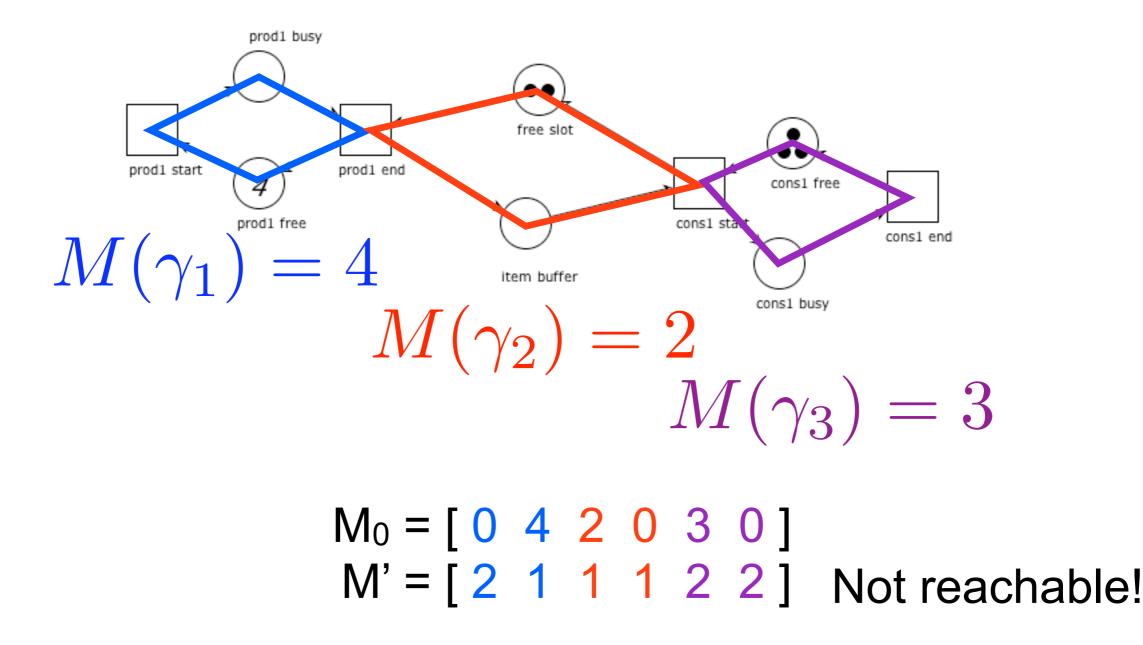
If $t \notin \gamma$, then no place in $\bullet t \cup t \bullet$ is in γ (otherwise, by definition of T-nets, t would be in γ). Then, an occurrence of t does not change the token count of γ .

If $t \in \gamma$, then exactly one place in $\bullet t$ and one place in $t \bullet$ are in γ . Then, an occurrence of t does not change the token count of γ .

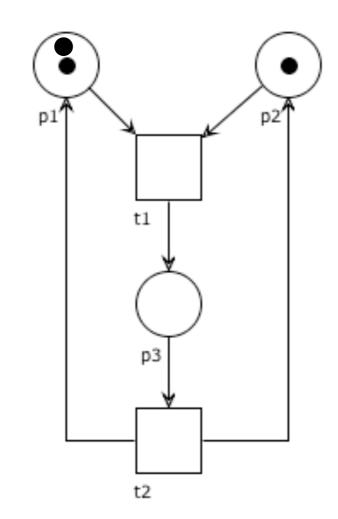
Example



Example

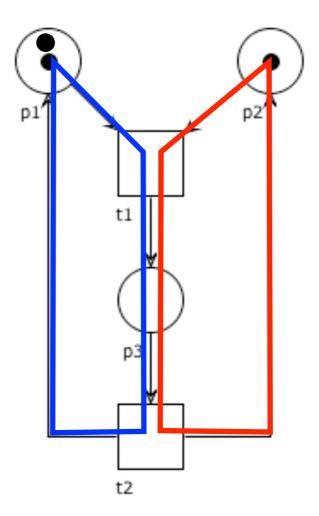


Is the marking p₁ + 2p₂ reachable? (why?)



Is the marking p₁ + 2p₂ reachable? (why?)

No the token count in the left (blue) circuit must remain 2 and the token count in the right (red) circuit must remain 1



T-invariants of T-nets

Proposition: Let N=(P,T,F) be a (connected) T-net. J is a T-invariant of N **iff J**=[k ... k] for some value k

(the proof is dual to the analogous proposition for S-invariants of S-nets)

Boundedness in strongly connected T-systems

Lemma: If a T-system (N,M₀) is strongly connected, then it is bounded

Let Γ be the set of the circuits of N and let $k = \max_{\gamma \in \Gamma} M_0(\gamma)$.

Since N is strongly connected, every place p belongs to some circuit γ_p .

By the fundamental property of T-systems: token count of γ_p is invariant.

Thus, for any reachable marking M, we have $M(p) \leq M(\gamma_p) = M_0(\gamma_p) \leq k$. Hence the net is k-bounded.

Safeness in strongly connected T-systems

Corollary: If a T-system (N,M₀) is strongly connected and M₀(P)=1, then it is safe

Let Γ be the set of the circuits of N and let $k = \max_{\gamma \in \Gamma} M_0(\gamma) = 1$

Since N is strongly connected, every place p belongs to some circuit γ_p .

By the fundamental property of T-systems: token count of γ_p is invariant.

Thus, for any reachable marking M, we have $M(p) \le M(\gamma_p) = M_0(\gamma_p) \le k$. Hence the net is k-bounded.

Safeness in strongly connected T-systems

Corollary: If a T-system (N,M₀) is strongly connected and for any circuit $\gamma M_0(\gamma) \le 1$, then it is safe

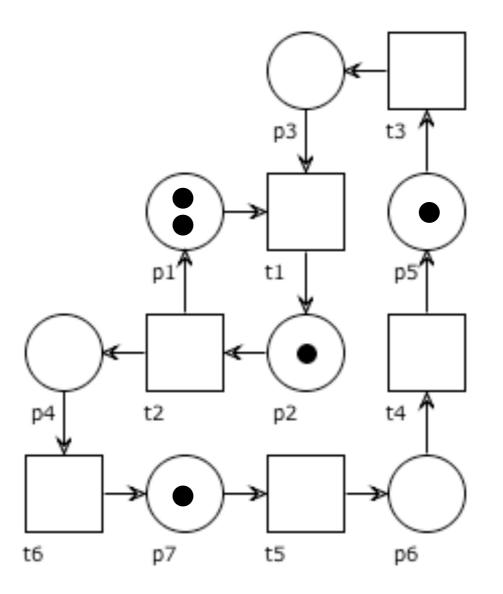
Let Γ be the set of the circuits of N and let $k = \max_{\gamma \in \Gamma} M_0(\gamma) \leq 1$

Since N is strongly connected, every place p belongs to some circuit γ_p .

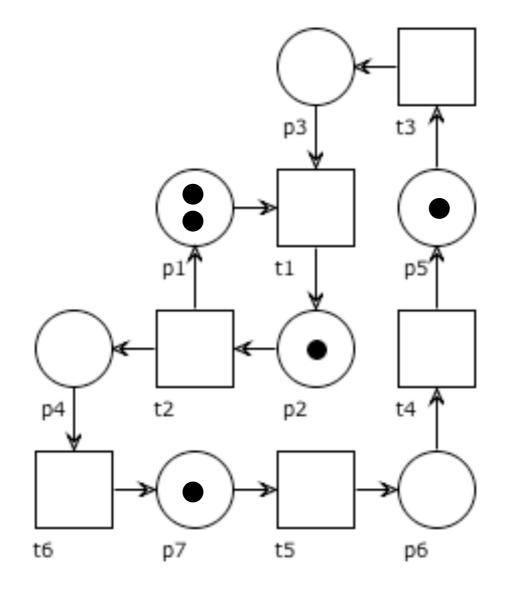
By the fundamental property of T-systems: token count of γ_p is invariant.

Thus, for any reachable marking M, we have $M(p) \leq M(\gamma_p) = M_0(\gamma_p) \leq k$. Hence the net is k-bounded.

Is the T-systems below bounded? (why?)

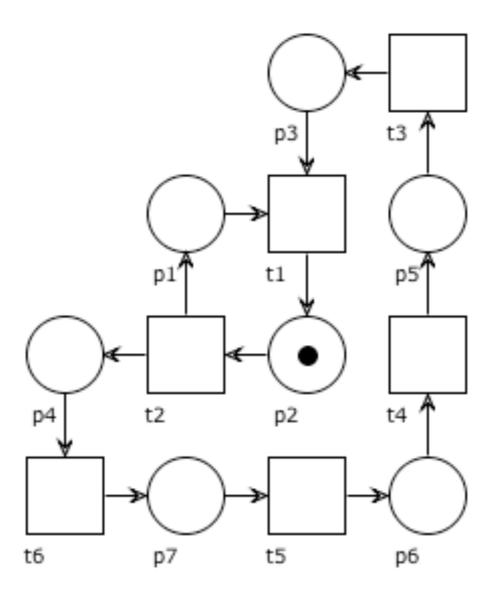


Is the T-systems below bounded? (why?)

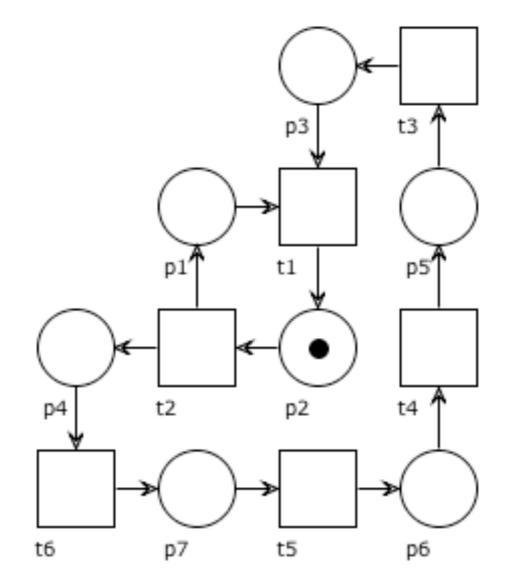


Strongly connected => bounded

Is the T-systems below safe? (why?)

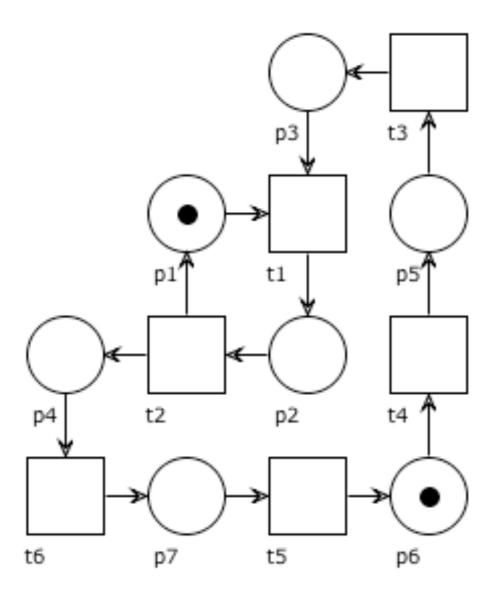


Is the T-systems below safe? (why?)

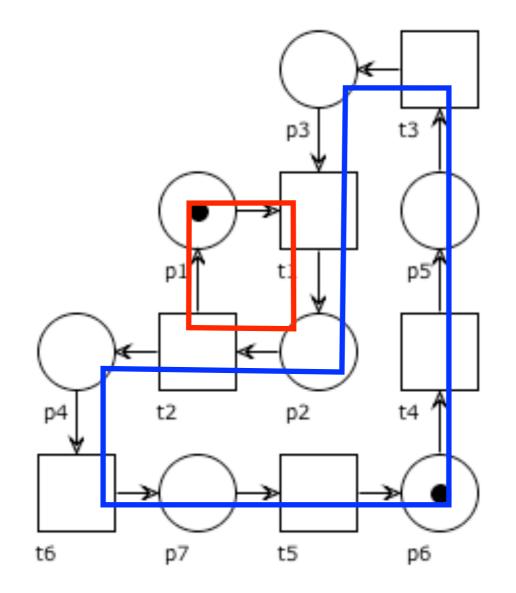


Strongly connected + M₀(P)=1 => safe

Is the T-systems below safe? (why?)



Is the T-systems below safe? (why?)



Strongly connected + $\forall \gamma . M_0(\gamma) \leq 1$ => safe

Liveness theorem for T-systems

Theorem: A T-system (N,M₀) is live **iff** every circuit of N is marked at M₀

⇒) (quite obvious) By contradiction, let γ be a circuit with $M_0(\gamma) = 0$. By the fundamental property of T-systems: $\forall M \in [M_0\rangle, M(\gamma) = 0$.

Take any $t \in T_{|\gamma}$ and $p \in P_{|\gamma} \cap \bullet t$.

For any $M \in [M_0\rangle$, we have M(p) = 0. Hence t is never enabled and the T-system is not live.

Liveness theorem for T-systems

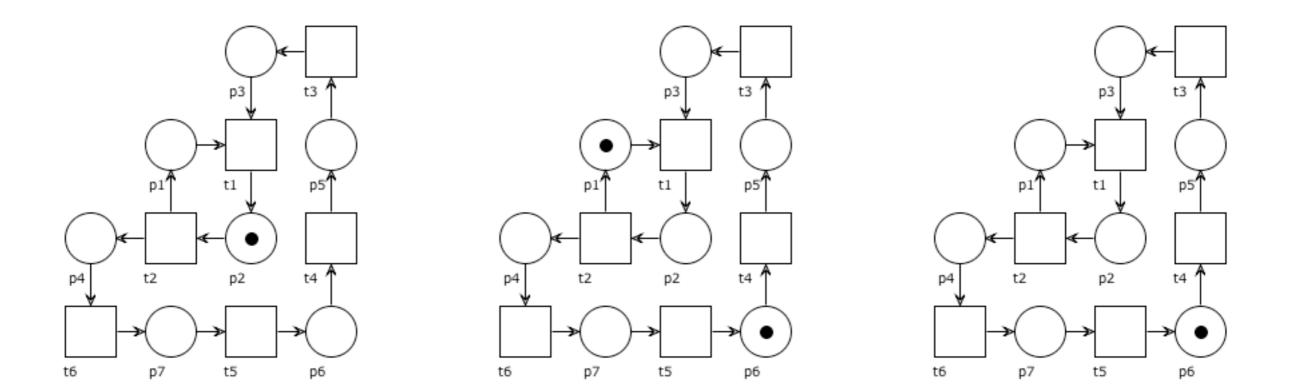
Theorem: A T-system (N,M₀) is live **iff** every circuit of N is marked at M₀

 \Leftarrow) (more involved) Take any $t \in T$ and $M \in [M_0 \rangle$. We need to show that some marking M' reachable from M enables t.

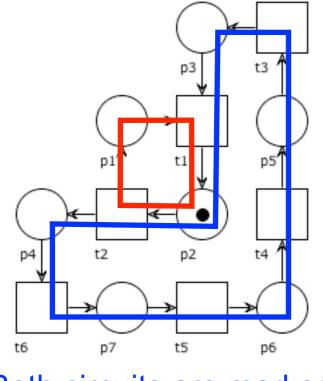
The key idea is to collect the places that control the firing of t: $p \in P_{M,t}$ if there is a path from p to t through places unmarked at M. We then proceed by induction on the size of $P_{M,t}$.

Rest of the proof left to your ingenuity

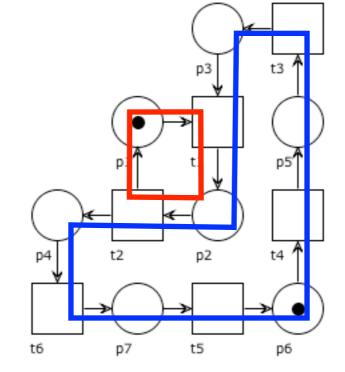
Which of the T-systems below is live? (why?)



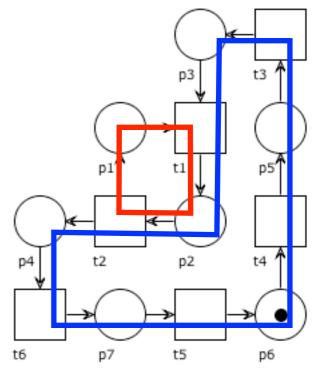
Which of the T-systems below is live? (why?)



Both circuits are marked => live



Both circuits are marked => live



red circuit is not marked => not live

T-systems: recap

T-system + γ circuit + M reachable => M(γ) = M₀(γ) T-system + γ circuit + M(γ) \neq M₀(γ) => M not reachable

T-system + $\gamma_1 \dots \gamma_n$ circuits: $\exists i. p \in \gamma_i \le p$ bounded T-system: $M_0(\gamma) > 0$ for all circuits $\gamma \le live$

T-system:strongly connected=> boundedT-system + live:strongly connected <=> bounded

T-system: T-invariant $J \leq J = [k k ... k]$

Consequences on workflow nets

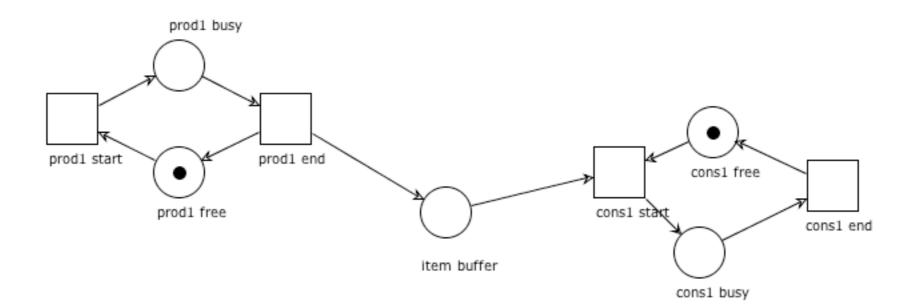
Theorem: If N is a workflow net s.t. N* is a T-system then N is safe and sound iff every circuit of N* is marked

N workflow net => N* strongly connected N* strongly connected + T-system => N* bounded N* strongly connected + T-system + $M_0(P)=1 => N*$ safe

every circuits of N* is marked <=> N* live

Exercises

Which are the circuits of the T-system below? Is the T-system below live? (why?) Which places are bounded? (why?) Assign a bound to each bounded place.



Exercise

Is the workflow net N below a T-net? Is it sound?

