
Business Processes Modelling
MPB (6 cfu, 295AA)

Roberto Bruni
http://www.di.unipi.it/~bruni

18 - Free-choice nets

!1

http://www.di.unipi.it/~bruni

Object

!2

We study some “good” properties of
free-choice nets

Free Choice Nets (book, optional reading)
https://www7.in.tum.de/~esparza/bookfc.html

https://www7.in.tum.de/~esparza/bookfc.html

Free-choice net

!3

Definition: We recall that a net N is free-choice if
whenever there is an arc (p,t), then there is an arc

from any input place of t
to any output transition of p

t

p
implies

t

p

Free-choice net:
alternative definitions

!4

Proposition: All the following definitions of free-choice net are equivalent.

1) A net (P, T, F) is free-choice if:
8p 2 P, 8t 2 T , (p, t) 2 F implies •t⇥ p• ✓ F .

2) A net (P, T, F) is free-choice if:
8p, q 2 P, 8t, u 2 T , {(p, t), (q, t), (p, u)} ✓ F implies (q, u) 2 F .

3) A net (P, T, F) is free-choice if:
8p, q 2 P , either p• = q• or p • \q• = ;.

4) A net (P, T, F) is free-choice if:
8t, u 2 T , either •t = •u or •t \ •u = ;.

Free-choice net:
my favourite definition

!5

Proposition: All the following definition of free-choice net are equivalent.

1) A net (P, T, F) is free-choice if:
⌅p ⇤ P, ⌅t ⇤ T , (p, t) ⇤ F implies •t� p• ⇤ F .

2) A net (P, T, F) is free-choice if:
⌅p, q ⇤ P, ⌅t, u ⇤ T , {(p, t), (q, t), (p, u)} ⇥ F implies (q, u) ⇤ F .

3) A net (P, T, F) is free-choice if:
⌅p, q ⇤ P , either p• = q• or p • ⌃q• = ⇧.

4) A net (P, T, F) is free-choice if:
⌅t, u ⇤ T , either •t = •u or •t ⌃ •u = ⇧.

Free-choice system

!6

Definition: A system (N,M0) is free-choice
if N is free-choice

Example

!7

non free-choice free-choice

•t1 = { p1, p3 }
•t2 = { p3 }
•t1 6= •t2

•t1 \ •t2 = { p3 } 6= ;

•t1 = •t2
•t1 \ •t3 = ;
•t2 \ •t3 = ;

Fundamental property
of free-choice nets

!8

Proposition: Let (P, T, F,M0) be free-choice.

If M
t�⇥ and t ⇤ p•, then M

t��⇥ for every t� ⇤ p•.

The proof is trivial, by definition of free-choice net

Free-choice N*

!9

Proposition: A workflow net N is free-choice
iff N* is free-choice

N and N* differ only for the reset transition,
whose pre-set (o) is disjoint

from the pre-set of any other transition

!10

Free-Choice vs
Soundness

Note that free-choice is orthogonal to soundness:

there exists WF-nets that are free-choice but not sound

there exists WF-nets that are sound but not free-choice

!11

Example: sound
but not free-choice

!12

Example: sound
but not free-choice

!13

Example: sound
but not free-choice

!14

Example: sound
but not free-choice

!15

Exercise

Draw a workflow net that is free-choice but not sound

Rank Theorem
(main result, proof omitted)

!16

Theorem:
A free-choice system (P,T,F,M0) is live and bounded

iff
1. it has at least one place and one transition
2. it is connected
3. M0 marks every proper siphon
4. it has a positive S-invariant
5. it has a positive T-invariant
6. rank(N) = |CN| - 1

(where CN is the set of clusters)

Clusters

!17

Cluster

!18

Let x be the node of a net N = (P, T, F)
(not necessarily free-choice)

Definition:
The cluster of x, written [x], is the least set s.t.

1. x 2 [x]

2. if p 2 [x] \ P then p• ✓ [x]

3. if t 2 [x] \ T then •t ✓ [x]

Cluster

!19

Let x be the node of a net N = (P, T, F)
(not necessarily free-choice)

Definition:
The cluster of x, written [x], is the least set s.t.

1. x 2 [x]

2. if p 2 [x] \ P then p• ✓ [x]

3. if t 2 [x] \ T then •t ✓ [x]

(if a place p is in the cluster,
then all transitions in the

post-set of p are in the cluster)

Cluster

!20

Let x be the node of a net N = (P, T, F)
(not necessarily free-choice)

Definition:
The cluster of x, written [x], is the least set s.t.

1. x 2 [x]

2. if p 2 [x] \ P then p• ✓ [x]

3. if t 2 [x] \ T then •t ✓ [x]

(if a place p is in the cluster,
then all transitions in the

post-set of p are in the cluster)

(if a transition t is in the cluster,
then all places in the

pre-set of t are in the cluster)

Cluster: example

!21

Observation

!22

Lemma: The set { [x] | x � P ⇥ T } is a partition of P ⇥ T

Every place belongs to exactly one cluster

Every transition belongs to exactly one cluster

Fundamental property
of clusters in f.c. nets

!23

Proposition:

If M
t�⇥, then for any t� ⇤ [t] we have M

t��⇥

Immediate consequence of the fact that, for free-choice nets

t, t� � [x] i� • t = •t�

Exercise

!24

Draw all clusters in the nets below

Exercise

!25

!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

Draw all clusters in the free-choice net below

Stable markings

!26

Stable set of markings

!27

Definition: A set of markings M is called stable if

M ⇥ M implies [M ⇤ � M

(starting from any marking in the stable set M,
no marking outside M is reachable)

Stable set of markings

!28

(starting from any marking M in the stable set M,
no marking M’ outside M is reachable)

M
M M’X

M’’

Stability check

!29

M is stable i�
⌅M, t,M �. (M ⇤ M ⇧ M

t�⇥ M � implies M � ⇤ M)

Question time

!30

Given a net system:

Is the singleton set { 0 } a stable set?

Is the set of all markings a stable set?

Is the set of live markings a stable set?

Is the set of deadlock markings a stable set?

Example

!35

Which of the following is a stable set of markings?

{ 2p1+p2 }
{ 2p1+p2 , p1+2p3 }

{ p1 , p2 }
{ p1+p2 , p3 }

Exercises

!40

Which of the following is a stable set of markings?

{ p1 , p3 }
{ 2p1+2p2 , 2p3 }

{ 2p1+2p2 , p1+p2+p3 , 2p3 }
{ p1, 2p1+2p2 , p1+p2+p3 , 2p3 }

Exercises

!41

Given a net system (P,T,F,M0):

Is the set { M | M(P)=1 } a stable set?

Is the set of markings reachable from M0 a stable set?

Is the set { M | M(P)<k } a stable set?

Exercises

!42

Let I be an S-invariant

Is the set { M | I⋅M = I⋅M0 } a stable set?

Is the set { M | I⋅M ≠ I⋅M0 } a stable set?

Is the set { M | I⋅M = 1 } a stable set?

Is the set { M | I⋅M = 0 } a stable set?

Exercises

!43

Let M and M’ be stable sets
Prove that their union is a stable set

Prove that their intersection is a stable set
Is their difference a stable set?

What is the least stable set that includes a marking M0?

What is the largest stable set of a net?

Siphons

!44

Proper siphon

!45

Definition:

A set of places R is a siphon if •R � R•

It is a proper siphon if R ⇥= ⇤

Siphons, intuitively

!46

A set of places R is a siphon if

all transitions that can produce tokens in the places of R

require some place in R to be marked

Therefore:
if no token is present in R,

then no token will ever be produced in R

Siphon check

!47

Let R be a set of places of a net

mark with √ all transitions that consume tokens from R

if there is a transition producing tokens in some place of
R that is not marked by √, then R is not a siphon

Otherwise R is a siphon

Siphon check: example

!48

Is R = { prod1busy, prod1free, itembuffer} a siphon?

•R ✓ R•

Siphon check: example

!49

Is R = { prod1busy, prod1free, itembuffer} a siphon?

√

√

√

•R ✓ R•

•R ✓ R•

Siphon check: example

!50

Is R = { prod1busy, prod1free, itembuffer} a siphon?

√

√

√

•R ✓ R•

•R ✓ R•

Siphon check: example

!51

Is R = { prod1busy, itembuffer} a siphon?

•R ✓ R•

Siphon check: example

!52

Is R = { prod1busy, itembuffer} a siphon?

√

√

•R ✓ R•

•R ✓ R•

Siphon check: example

!53

Is R = { prod1busy, itembuffer} a siphon?

√

√
X

•R ✓ R•

•R ✓ R•

Fundamental property
of siphons

!54

Proposition: Unmarked siphons remain unmarked

Take a siphon R.
We just need to prove that the set of markings

M = { M | M(R)=0 }
is stable, which is immediate by definition of siphon

Corollary:
If a siphon R is marked at some reachable marking M,

then it was initially marked at M0

Siphons and liveness

!55

Prop.: Live systems have no unmarked proper siphons

(We prove: M0(R)>0 for every proper siphon R of a live system)

Take p ⇤ R and let t ⇤ •p ⌅ p•

Since the system is live, then there are M,M � ⇤ [M0 ⇧ such that

M
t�⇥ M �

Therefore p is marked at either M or M �

Therefore R is marked at either M or M �

Therefore R was initially marked (at M0)

Siphons and liveness

!56

Corollary: If a system has an unmarked proper siphon
then it is not live

Siphons and liveness

!57

Corollary: If a system has an unmarked proper siphon
then it is not live

Theorem:
A free-choice system (P,T,F,M0) is live and bounded

iff
1. it has at least one place and one transition
2. it is connected
3. M0 marks every proper siphon
4. it has a positive S-invariant
5. it has a positive T-invariant
6. rank(N) = |CN| - 1

(where CN is the set of clusters)

Siphons and deadlock

!58

Prop.: Deadlocked systems have an unmarked proper siphon

Let M be a deadlocked marking

Let R = { p | M(p) = 0 }

Since M is deadlock: R• = T

Therefore •R � T = R• and R is a siphon.
Since T cannot be empty, R is proper

A key observation

!59

If we can guarantee that

all proper siphons are marked
at every reachable marking,

then the system is deadlock free

Exercise

!60

Prove that the union of siphons is a siphon

Traps

!61

Proper trap

!62

Definition:

A set of places R is a trap if •R � R•

It is a proper trap if R ⇥= ⇤

Traps, intuitively

!63

A set of places R is a trap if

all transitions that can consume tokens from R

produce some token in some place of R

Therefore:
if some token is present in R,

then it is never possible for R to become empty

Trap check

!64

Let R be a set of places of a net

mark with √ all transitions that produce tokens in R

if there is a transition consuming tokens from some
place in R that is not marked by √, then R is not a trap

Otherwise R is a trap

Trap check: example

!65

Is R = { itembuffer, cons1busy, cons1free} a trap?

•R ◆ R•

Trap check: example

!66

Is R = { itembuffer, cons1busy, cons1free} a trap?

√√
√

•R ◆ R•

•R ✓ R•

Trap check: example

!67

Is R = { itembuffer, cons1busy, cons1free} a trap?

√√
√

•R ◆ R•

•R ✓ R•

Trap check: example

!68

Is R = { itembuffer, cons1busy} a trap?

•R ◆ R•

Trap check: example

!69

Is R = { itembuffer, cons1busy} a trap?

√
√

•R ◆ R•

•R ✓ R•

Trap check: example

!70

Is R = { itembuffer, cons1busy} a trap?

√
√ X

•R ◆ R•

•R ✓ R•

Fundamental property
of traps

!71

Proposition: Marked traps remain marked

Take a trap R.
We just need to prove that the set of markings

M = { M | M(R)>0 }
is stable, which is immediate by definition of trap

Corollary:
If a trap R is unmarked at some reachable marking M,

then it was initially unmarked at M0

Exercise

!72

Prove that the union of traps is a trap

Putting pieces together

!73

unmarked siphons stay unmarked
(marked siphons can become unmarked)

if a siphon is marked at M, it was marked at M0

if all proper siphons always stay marked => deadlock-free

Putting pieces together

!74

if all proper siphons always stay marked => deadlock-free

marked traps stay marked
(unmarked traps can become marked)

if a siphon contains a marked trap, it stays marked

if all siphons contain marked traps, they stay marked
=> deadlock-free

A sufficient condition
for deadlock-freedom

!75

Proposition:
If every proper siphon of a system contains a marked trap,

then the system is deadlock-free

We show that if the system is not deadlock free,
then there is a siphon that does not include any marked trap.

Assume some reachable M is dead.
Let R be the set of unmarked places at M.

Then, we have seen that R is a proper siphon.
Since M(R)=0, then R includes no trap marked at M.

Therefore, R includes no trap marked at M0

Note

!76

It is easy to observe that every siphon includes a
(possibly empty) unique maximal trap

with respect to set inclusion

Moreover, a siphon includes a marked trap
iff

its maximal trap is marked

Exercise

!77

Find all proper siphons and traps in the net below
(at most 26 sets to consider)

Liveness = Place-liveness
(in free-choice systems)

!78

!79

A place p is live
if every time it becomes unmarked

there is still the possibility to be marked in the future
(or if it is always marked)

liveness implies place-liveness

Definition: Let (P, T, F,M0) be a net system.

A place p � P is live if ⇥M � [M0 ⌅. ⇤M � � [M ⌅.M �(p) > 0

Place liveness (reminder)

Definition:
A net system (P, T, F,M0) is place-live if every place p � P is live

Dead nodes (reminder)

!80

Definition: Let (P, T, F) be a net system.

A transition t ⇤ T is dead at M if ⇧M � ⇤ [M ⌃.M � ⌅ t�⇥

A place p ⇤ P is dead at M if ⇧M � ⇤ [M ⌃.M �(p) = 0

Some obvious facts

!81

If a system is not live,
it has a transition dead at some reachable marking M

If a system is not place-live,
it has a place dead at some reachable marking M

If a place / transition is dead at M, then it remains dead
at any marking M’ reachable from M

(the set of dead nodes can only increase during a run)

Every transition in the pre- or post-set of a dead place
is also dead

An obvious facts in
free-choice systems

!82

In a free-choice system:

if an output transition t of a place p is dead at M

then any output transition t’ of p is dead at M

(because t and t’ must have the same pre-set)

Dead t, dead p

!83

Lemma: If the transition t is dead at M in a free-choice system,
then there is a non-live place p in the pre-set of t

By contraposition, we prove: if all input places of t are live then t is not dead
Let •t = [t] \ P = {p1, ..., pn}

Since all places p1, ..., pn are live at M , there exists

M
�1�! M1

�2�! ...
�n�! Mn

such that Mi(pi) > 0 for all i

If the sequence contains u 2 [t] then t is not dead at M

If no transition in [t] appears in the sequence, then no token in •t is consumed

Hence Mn(pi) > 0 for all i, and Mn
t�! and t is not dead at M

Place-liveness implies
liveness in f.c. systems

!84

Proposition: If a free-choice system is place-live,
then it is live

Place-liveness implies
liveness in f.c. systems

!85

Proposition: If a free-choice system is place-live,
then it is live

By contraposition, we prove:
 non-liveness implies non-place-liveness

Place-liveness implies
liveness in f.c. systems

!86

Proposition: If a free-choice system is place-live,
then it is live

By contraposition, we prove:
 non-liveness implies non-place-liveness

If a free-choice system is not live then there is a
transition t dead at some reachable marking M

But then some input place of t must be non-live at M,
so the system is not place-live

Consequence in f.c. nets:
place-liveness = liveness

!87

If a free-choice system is place-live, then it is live

In any system, liveness implies place-liveness

Corollary:
A free-choice system is live iff it is place-live

Commoner’s theorem

!88

Theorem:
A free-choice system is live

iff
every proper siphon includes an initially marked trap

We show just the “if” direction, which is simpler

We need a technical lemma

!89

A free-choice system is live
if

every proper siphon includes an initially marked trap

By contraposition, we prove:
if a free-choice is non-live, then

a proper siphon exists whose traps are all unmarked

Commoner’s theorem:
“if” direction

Commoner’s theorem:
“if” direction

!90

If a free-choice is non-live, then
a proper siphon exists whose traps are all unmarked

A non-live free-choice system contains a proper siphon
R such that M(R)=0 at some reachable M

(see next lemma)

So every trap included in R is unmarked at M

(since marked traps remain marked)
every trap included in R must be unmarked initially

Non-liveness and
unmarked siphons

!91

Lemma: Every non-live free-choice system has a proper
siphon R and a reachable marking M such that M(R)=0
By non-liveness: the system is not place-live,
i.e., some p is dead at some L 2 [M0i

Take M 2 [L i such that every place not dead at M
is not dead at any marking of [M i
i.e. all markings in [M i have the same set R of dead places
(dead places remain dead)

Next we prove that R is a proper siphon and M(R) = 0

X

Non-liveness and
unmarked siphons

!92

Lemma: Every non-live free-choice system has a proper
siphon R and a reachable marking M such that M(R)=0

•R ✓ R•1. R is a siphon

• any t 2 •R is dead at M

• every t dead at M has an input place in R

(t has some input place dead at some marking reachable from M)

2. R is proper

p is dead at L, hence it is dead at M , hence p 2 R, hence R 6= ;

3. M(R) = 0 because it contains dead places

X

Complexity of the
non-liveness problem

in free-choice systems

!93

A non-deterministic
algorithm for non-liveness

!94

1. guess a set of places R 
(polynomial time)

2. check if R is a siphon (•R ⊆ R•)  
(polynomial time)

3. if R is a siphon, compute the maximal trap Q ⊆ R

4. if M0(Q)=0, then answer “non-live”, otherwise "live" 
(polynomial time)

A polynomial algorithm for
maximal trap in a siphon

!95

3. if R is a siphon, compute the maximal trap Q ⊆ R

Input: A net N = (P, T, F) and R � P
Output: Q � R

Q := R
while (⌅p ⇥ Q, ⌅t ⇥ p•, t ⇤⇥ •Q)

Q := Q \ {p}
return Q

•R ✓ R• •Q ◆ Q•

Non-liveness for f.c. nets
is in NP

!96

The non-liveness problem for free-choice systems is in NP

Is the same problem in P?

The corresponding deterministic algorithm cannot make
the guess in step 1

It has to explore all possible subsets of places
2|P| cases!

NP-completeness

!97

We next sketch the proof of the reduction to non-liveness
in a free-choice net of the CNF-SAT problem

(SATisfiability problem
for propositional formulas in Conjunctive Normal Form)

CNF-SAT is an NP-complete problem

CNF-SAT decision problem

!98

Variables: x1, x2, ..., xn

Literals: x1, x̄1, x2, x̄2, ..., xn, x̄n

Clause: disjunction of literals

Formula: conjunction of clauses

Example: � = (x1 ⇥ x̄3) � (x1 ⇥ x̄2 ⇥ x3) � (x2 ⇥ x̄3)

Is there an assignment of boolean values to the variables such that � = true?

The free-choice net of a
formula

!99

Given a formula !, the idea is
to construct a free-choice system (P,T,F,M0)

and show that

the formula ! is satisfiable
iff

(P,T,F,M0) is not live

The free-choice net of a
formula

!100

Given a formula !, the idea is
to construct a free-choice system (P,T,F,M0)

and show that

the formula ! is not satisfiable
iff

(P,T,F,M0) is live

CNF-SAT formulas

!101

Is there an assignment of boolean values to the variables such that � = true?

Is there an assignment of boolean values to the variables such that ¬� = false?

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)

� = (x1 _ x3) ^ (x1 _ x2 _ x3) ^ (x2 _ x3)

!102

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)

!103

L3L2L1

One place Li for each variable xi

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)

!104

One transition for each literal

L3L2L1

x1 x̄1 x̄2 x̄3x3x2

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)

!105

L3L2L1

x1 x̄1 x̄2 x̄3x3x2

One transition Ci for each clause Ci

C3C2C1

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)

!106

L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1
A place for each occurrence of a literal

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)

!107

L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1

A place for true

True

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)

!108

L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1

True

Back

A transition to restart

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)

!109

L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1

True

Back

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)

!110

L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1

True

Back

Fix an assignment

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)

!111

L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1

True

Back

If none enabled, Back is dead

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)

!112

L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1

True

Back

If � is satisfiable, then the net is not live

If the net is not live, then � is satisfiable

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)

!113

L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1

True

Back

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)

Main consequence

!114

No polynomial algorithm to decide liveness of a
free-choice system is available

(unless P=NP)

!115

Draw the net corresponding to the formula

Is it satisfiable?

Exercise

x2 ^ (x1 _ x3 _ x4) ^ (x1 _ x2) ^ (x1 _ x4) ^ (x2 _ x4)

Live and bounded
free-choice nets

!116

!117

Theorem:
A free-choice system (P,T,F,M0) is live and bounded

iff
1. it has at least one place and one transition
2. it is connected
3. M0 marks every proper siphon
4. it has a positive S-invariant
5. it has a positive T-invariant
6. rank(N) = |CN| - 1

(where CN is the set of clusters)

Rank Theorem
(main result, proof omitted)

polynomial
polynomial
polynomial

polynomial
polynomial

A polynomial algorithm
for maximal siphon in R

!118

Input: A net N = (P, T, F,M0), R � P
Output: Q � R

Q := R
while (⌅p ⇥ Q, ⌅t ⇥ •p, t ⇤⇥ Q•)

Q := Q \ {p}
return Q

Q is a siphon if •Q � Q•

maximal siphon in R

A polynomial algorithm for
maximal unmarked siphon

!119

3. M0 marks every proper siphon

Input: A net N = (P, T, F,M0), R = { p | M0(p) = 0 }
Output: Q � R maximal unmarked siphon

Q := R
while (⌅p ⇥ Q, ⌅t ⇥ •p, t ⇤⇥ Q•)

Q := Q \ {p}
return Q

If Q is empty then M0 marks every proper siphon

polynomial

Main consequence

!120

The problem to decide
if a free-choice system is live and bounded

can be solved in polynomial time
(using the Rank Theorem)

Coverability

!121

!122

Theorem:
A free-choice system (P,T,F,M0) is live and bounded

iff
1. it has at least one place and one transition
2. it is connected
3. M0 marks every proper siphon
4. it has a positive S-invariant
5. it has a positive T-invariant
6. rank(N) = |CN| - 1

(where CN is the set of clusters)

Rank Theorem
(main result, proof omitted)

A technique to find
a positive S-invariant

!123

Decompose the free-choice net N in suitable S-nets so
that any place of N belongs to an S-net

(the same place can appear in more S-nets)

Each S-net induces a uniform S-invariant

A positive S-invariant is obtained
as the sum of the S-invariants of each subnet

S-Coverability analysis

!124

A case is often composed by parallel threads of control
(each thread imposing some order over its tasks)

The notion of S-coverability allows to reveal such threads

S-component

!125

Definition: Let N = (P, T, F) and ⇧ ⇤ X ⇥ P ⌃ T
Let N � = (P ⌥X,T ⌥X,F ⌥ (X �X)) be a subnet of N .
N � is an S-component if

1. it is a strongly connected S-net

2. for every place p ⌅ X ⌥ P , we have •p ⌃ p• ⇥ X

take a set of nodes

if a place is selected
then all the attached transitions must be selected

forget the arcs to other nodes

S-cover

!126

Definition: Let C be a set of S-components of a net N

C is an S-cover if every place p of N
belongs to one or more S-components in C

We say that N is covered by S-components
if it has an S-cover

S-cover: example

!127

!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

not an S-net

S-cover: example

!128

!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#
!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

S-coverability theorem

!129

Theorem: If a free-choice system is live and bounded
then it is S-coverable

(proof omitted)

Consequence:
free-choice + not S-coverable => not (live and bounded)

!130

Theorem:
A free-choice system (P,T,F,M0) is live and bounded

iff
1. it has at least one place and one transition
2. it is connected
3. M0 marks every proper siphon
4. it has a positive S-invariant
5. it has a positive T-invariant
6. rank(N) = |CN| - 1

(where CN is the set of clusters)

Rank Theorem
(main result, proof omitted)

A technique to find
a positive T-invariant

!131

Decompose the free-choice net N in suitable T-nets so
that any transition of N belongs to a T-net

(the same transition can appear in more T-nets)

Each T-net induces a uniform T-invariant

A positive T-invariant is obtained
as the sum of the T-invariants of each subnet

T-component

!132

Definition: Let N = (P, T, F) and ⇧ ⇤ X ⇥ P ⌃ T
Let N � = (P ⌥X,T ⌥X,F ⌥ (X �X)) be a subnet of N .
N � is a T-component if

1. it is a strongly connected T-net

2. for every transition t ⌅ X ⌥ T , we have •t ⌃ t• ⇥ X

if a transition is selected
then all the attached places must be selected

take a set of nodes

forget the arcs to other nodes

T-cover

!133

Definition: Let C be a set of T-components of a net N

C is a T-cover if every transition t of N
belongs to one or more T-components in C

We say that N is covered by T-components
if it has a T-cover

T-cover: example

!134

!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

!""# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

617,# +,8# 9# 21/)#&:;#0.<:;);# =*))>?%.1?)#535()4#&:;#1(5#;)?.4'.51(1.:# 1:(.# ->?.4'.:):(5#

!""# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

617,# +,8# 9# 21/)#&:;#0.<:;);# =*))>?%.1?)#535()4#&:;#1(5#;)?.4'.51(1.:# 1:(.# ->?.4'.:):(5#

T-coverability theorem

!135

Theorem: If a free-choice system is live and bounded
then it is T-coverable

(proof omitted)

Consequence:
free-choice + not T-coverable => not (live and bounded)

Exercise

!136

Find an S-cover and a T-cover for the net below
and derive suitable S- and T-invariants

Compositionality

!137

Compositionality of
sound free-choice nets

!138

Lemma:
If a free-choice workflow net N is sound

then it is safe

(because N* is S-coverable and M0=i has just one token)

Proposition:
If N and N’ are sound free-choice workflow nets
then N[N’/t] is a sound free-choice workflow net

(N, N’ are safe; we just need to show that N[N’/t] is free-choice)

