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Object
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We study some “good” properties of 
free-choice nets

Free Choice Nets (book, optional reading) 
https://www7.in.tum.de/~esparza/bookfc.html 

https://www7.in.tum.de/~esparza/bookfc.html


Free-choice net
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Definition: We recall that a net N is free-choice if 
whenever there is an arc (p,t), then there is an arc  

from any input place of t  
to any output transition of p

t

p
implies

t

p



Free-choice net: 
alternative definitions
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Proposition: All the following definitions of free-choice net are equivalent.

1) A net (P, T, F ) is free-choice if:
8p 2 P, 8t 2 T , (p, t) 2 F implies •t⇥ p• ✓ F .

2) A net (P, T, F ) is free-choice if:
8p, q 2 P, 8t, u 2 T , {(p, t), (q, t), (p, u)} ✓ F implies (q, u) 2 F .

3) A net (P, T, F ) is free-choice if:
8p, q 2 P , either p• = q• or p • \q• = ;.

4) A net (P, T, F ) is free-choice if:
8t, u 2 T , either •t = •u or •t \ •u = ;.



Free-choice net:  
my favourite definition
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Proposition: All the following definition of free-choice net are equivalent.

1) A net (P, T, F ) is free-choice if:
⌅p ⇤ P, ⌅t ⇤ T , (p, t) ⇤ F implies •t� p• ⇤ F .

2) A net (P, T, F ) is free-choice if:
⌅p, q ⇤ P, ⌅t, u ⇤ T , {(p, t), (q, t), (p, u)} ⇥ F implies (q, u) ⇤ F .

3) A net (P, T, F ) is free-choice if:
⌅p, q ⇤ P , either p• = q• or p • ⌃q• = ⇧.

4) A net (P, T, F ) is free-choice if:
⌅t, u ⇤ T , either •t = •u or •t ⌃ •u = ⇧.



Free-choice system
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Definition: A system (N,M0) is free-choice 
if N is free-choice



Example

!7

non free-choice free-choice

•t1 = { p1, p3 }
•t2 = { p3 }
•t1 6= •t2

•t1 \ •t2 = { p3 } 6= ;

•t1 = •t2
•t1 \ •t3 = ;
•t2 \ •t3 = ;



Fundamental property 
of free-choice nets
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Proposition: Let (P, T, F,M0) be free-choice.

If M
t�⇥ and t ⇤ p•, then M

t��⇥ for every t� ⇤ p•.

The proof is trivial, by definition of free-choice net



Free-choice N*
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Proposition: A workflow net N is free-choice  
iff N* is free-choice

N and N* differ only for the reset transition, 
whose pre-set (o) is disjoint  

from the pre-set of any other transition
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Free-Choice vs 
Soundness

Note that free-choice is orthogonal to soundness: 

there exists WF-nets that are free-choice but not sound 

there exists WF-nets that are sound but not free-choice 
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Example: sound 
but not free-choice
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Example: sound 
but not free-choice
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Example: sound 
but not free-choice
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Example: sound 
but not free-choice
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Exercise

Draw a workflow net that is free-choice but not sound



Rank Theorem  
(main result, proof omitted)
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Theorem: 
A free-choice system (P,T,F,M0) is live and bounded 

iff 
1. it has at least one place and one transition 
2. it is connected 
3. M0 marks every proper siphon 
4. it has a positive S-invariant 
5. it has a positive T-invariant 
6. rank(N) = |CN| - 1 

(where CN is the set of clusters)



Clusters
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Cluster
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Let x be the node of a net N = (P, T, F )
(not necessarily free-choice)

Definition:
The cluster of x, written [x], is the least set s.t.

1. x 2 [x]

2. if p 2 [x] \ P then p• ✓ [x]

3. if t 2 [x] \ T then •t ✓ [x]



Cluster
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Let x be the node of a net N = (P, T, F )
(not necessarily free-choice)

Definition:
The cluster of x, written [x], is the least set s.t.

1. x 2 [x]

2. if p 2 [x] \ P then p• ✓ [x]

3. if t 2 [x] \ T then •t ✓ [x]

(if a place p is in the cluster, 
then all transitions in the  

post-set of p are in the cluster)



Cluster
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Let x be the node of a net N = (P, T, F )
(not necessarily free-choice)

Definition:
The cluster of x, written [x], is the least set s.t.

1. x 2 [x]

2. if p 2 [x] \ P then p• ✓ [x]

3. if t 2 [x] \ T then •t ✓ [x]

(if a place p is in the cluster, 
then all transitions in the  

post-set of p are in the cluster)

(if a transition t is in the cluster, 
then all places in the  

pre-set of t are in the cluster)



Cluster: example
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Observation

!22

Lemma: The set { [x] | x � P ⇥ T } is a partition of P ⇥ T

Every place belongs to exactly one cluster 

Every transition belongs to exactly one cluster



Fundamental property 
of clusters in f.c. nets
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Proposition:

If M
t�⇥, then for any t� ⇤ [t] we have M

t��⇥

Immediate consequence of the fact that, for free-choice nets

t, t� � [x] i� • t = •t�



Exercise

!24

Draw all clusters in the nets below



Exercise
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Draw all clusters in the free-choice net below



Stable markings
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Stable set of markings
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Definition: A set of markings M is called stable if

M ⇥ M implies [M ⇤ � M

(starting from any marking in the stable set M, 
no marking outside M is reachable)



Stable set of markings
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(starting from any marking M in the stable set M, 
no marking M’ outside M is reachable)

M
M M’X

M’’



Stability check
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M is stable i�
⌅M, t,M �. (M ⇤ M ⇧ M

t�⇥ M � implies M � ⇤ M)



Question time
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Given a net system: 

Is the singleton set { 0 } a stable set? 

Is the set of all markings a stable set? 

Is the set of live markings a stable set? 

Is the set of deadlock markings a stable set?



Example
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Which of the following is a stable set of markings? 

{ 2p1+p2 } 
{ 2p1+p2 , p1+2p3 } 

{ p1 ,  p2 } 
{ p1+p2 ,  p3 }



Exercises
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Which of the following is a stable set of markings? 

{ p1 ,  p3 } 
{ 2p1+2p2 , 2p3 } 

{ 2p1+2p2 , p1+p2+p3 , 2p3 }  
{ p1, 2p1+2p2 , p1+p2+p3 , 2p3 }



Exercises
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Given a net system (P,T,F,M0): 

Is the set { M | M(P)=1 } a stable set? 

Is the set of markings reachable from M0 a stable set? 

Is the set { M | M(P)<k } a stable set?



Exercises
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Let I be an S-invariant 

Is the set { M | I⋅M = I⋅M0 } a stable set? 

Is the set { M | I⋅M ≠ I⋅M0 } a stable set? 

Is the set { M | I⋅M = 1 } a stable set? 

Is the set { M | I⋅M = 0 } a stable set?



Exercises
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Let M and M’ be stable sets 
Prove that their union is a stable set 

Prove that their intersection is a stable set 
Is their difference a stable set? 

What is the least stable set that includes a marking M0? 

What is the largest stable set of a net? 



Siphons
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Proper siphon
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Definition:

A set of places R is a siphon if •R � R•

It is a proper siphon if R ⇥= ⇤



Siphons, intuitively
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A set of places R is a siphon if 

all transitions that can produce tokens in the places of R 

require some place in R to be marked 

Therefore: 
if no token is present in R,  

then no token will ever be produced in R



Siphon check
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Let R be a set of places of a net 

mark with √ all transitions that consume tokens from R 

if there is a transition producing tokens in some place of 
R that is not marked by √, then R is not a siphon 

Otherwise R is a siphon



Siphon check: example
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Is R = { prod1busy, prod1free, itembuffer} a siphon?

•R ✓ R•



Siphon check: example
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Is R = { prod1busy, prod1free, itembuffer} a siphon?

√

√

√

•R ✓ R•

•R ✓ R•



Siphon check: example
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Is R = { prod1busy, prod1free, itembuffer} a siphon?

√

√

√

•R ✓ R•

•R ✓ R•



Siphon check: example
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Is R = { prod1busy, itembuffer} a siphon?

•R ✓ R•



Siphon check: example
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Is R = { prod1busy, itembuffer} a siphon?

√

√

•R ✓ R•

•R ✓ R•



Siphon check: example
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Is R = { prod1busy, itembuffer} a siphon?

√

√
X

•R ✓ R•

•R ✓ R•



Fundamental property 
of siphons
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Proposition: Unmarked siphons remain unmarked 

Take a siphon R. 
We just need to prove that the set of markings  

M = { M | M(R)=0 } 
is stable, which is immediate by definition of siphon

Corollary:  
If a siphon R is marked at some reachable marking M, 

then it was initially marked at M0



Siphons and liveness
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Prop.: Live systems have no unmarked proper siphons 

(We prove: M0(R)>0 for every proper siphon R of a live system)

Take p ⇤ R and let t ⇤ •p ⌅ p•

Since the system is live, then there are M,M � ⇤ [M0 ⇧ such that

M
t�⇥ M �

Therefore p is marked at either M or M �

Therefore R is marked at either M or M �

Therefore R was initially marked (at M0)



Siphons and liveness
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Corollary: If a system has an unmarked proper siphon  
then it is not live



Siphons and liveness
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Corollary: If a system has an unmarked proper siphon  
then it is not live

Theorem: 
A free-choice system (P,T,F,M0) is live and bounded 

iff 
1. it has at least one place and one transition 
2. it is connected 
3. M0 marks every proper siphon 
4. it has a positive S-invariant 
5. it has a positive T-invariant 
6. rank(N) = |CN| - 1 

(where CN is the set of clusters)



Siphons and deadlock
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Prop.: Deadlocked systems have an unmarked proper siphon

Let M be a deadlocked marking

Let R = { p | M(p) = 0 }

Since M is deadlock: R• = T

Therefore •R � T = R• and R is a siphon.
Since T cannot be empty, R is proper



A key observation
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If we can guarantee that  

all proper siphons are marked  
at every reachable marking,  

then the system is deadlock free



Exercise
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Prove that the union of siphons is a siphon



Traps
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Proper trap
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Definition:

A set of places R is a trap if •R � R•

It is a proper trap if R ⇥= ⇤



Traps, intuitively
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A set of places R is a trap if 

all transitions that can consume tokens from R 

produce some token in some place of R 

Therefore: 
if some token is present in R,  

then it is never possible for R to become empty



Trap check
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Let R be a set of places of a net 

mark with √ all transitions that produce tokens in R 

if there is a transition consuming tokens from some 
place in R that is not marked by √, then R is not a trap 

Otherwise R is a trap



Trap check: example
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Is R = { itembuffer, cons1busy, cons1free} a trap?

•R ◆ R•



Trap check: example
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Is R = { itembuffer, cons1busy, cons1free} a trap?

√√
√

•R ◆ R•

•R ✓ R•



Trap check: example
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Is R = { itembuffer, cons1busy, cons1free} a trap?

√√
√

•R ◆ R•

•R ✓ R•



Trap check: example
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Is R = { itembuffer, cons1busy} a trap?

•R ◆ R•



Trap check: example
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Is R = { itembuffer, cons1busy} a trap?

√
√

•R ◆ R•

•R ✓ R•



Trap check: example
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Is R = { itembuffer, cons1busy} a trap?

√
√ X

•R ◆ R•

•R ✓ R•



Fundamental property 
of traps
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Proposition: Marked traps remain marked 

Take a trap R. 
We just need to prove that the set of markings  

M = { M | M(R)>0 } 
is stable, which is immediate by definition of trap

Corollary:  
If a trap R is unmarked at some reachable marking M, 

then it was initially unmarked at M0



Exercise
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Prove that the union of traps is a trap



Putting pieces together
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unmarked siphons stay unmarked 
(marked siphons can become unmarked) 

if a siphon is marked at M, it was marked at M0 

if all proper siphons always stay marked       => deadlock-free



Putting pieces together
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if all proper siphons always stay marked       => deadlock-free 

marked traps stay marked 
(unmarked traps can become marked) 

if a siphon contains a marked trap, it stays marked 

if all siphons contain marked traps, they stay marked 
=> deadlock-free



A sufficient condition 
for deadlock-freedom
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Proposition:  
If every proper siphon of a system contains a marked trap, 

then the system is deadlock-free 

We show that if the system is not deadlock free,  
then there is a siphon that does not include any marked trap. 

Assume some reachable M is dead. 
Let R be the set of unmarked places at M. 

Then, we have seen that R is a proper siphon. 
Since M(R)=0, then R includes no trap marked at M. 

Therefore, R includes no trap marked at M0 



Note
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It is easy to observe that every siphon includes a 
(possibly empty) unique maximal trap  

with respect to set inclusion 

Moreover, a siphon includes a marked trap 
iff 

its maximal trap is marked



Exercise
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Find all proper siphons and traps in the net below 
(at most 26 sets to consider)



Liveness = Place-liveness 
(in free-choice systems)
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A place p is live 
if every time it becomes unmarked 

there is still the possibility to be marked in the future 
(or if it is always marked) 

liveness implies place-liveness

Definition: Let (P, T, F,M0) be a net system.

A place p � P is live if ⇥M � [M0 ⌅. ⇤M � � [M ⌅.M �(p) > 0

Place liveness (reminder)

Definition:
A net system (P, T, F,M0) is place-live if every place p � P is live



Dead nodes (reminder)
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Definition: Let (P, T, F ) be a net system.

A transition t ⇤ T is dead at M if ⇧M � ⇤ [M ⌃.M � ⌅ t�⇥

A place p ⇤ P is dead at M if ⇧M � ⇤ [M ⌃.M �(p) = 0



Some obvious facts
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If a system is not live,  
it has a transition dead at some reachable marking M 

If a system is not place-live,  
it has a place dead at some reachable marking M 

If a place / transition is dead at M, then it remains dead 
at any marking M’ reachable from M 

(the set of dead nodes can only increase during a run) 

Every transition in the pre- or post-set of a dead place 
is also dead



An obvious facts in 
free-choice systems
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In a free-choice system: 

if an output transition t of a place p is dead at M 

then any output transition t’ of p is dead at M 

(because t and t’ must have the same pre-set)



Dead t, dead p
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Lemma: If the transition t is dead at M in a free-choice system, 
then there is a non-live place p in the pre-set of t  

By contraposition, we prove: if all input places of t are live then t is not dead
Let •t = [t] \ P = {p1, ..., pn}

Since all places p1, ..., pn are live at M , there exists

M
�1�! M1

�2�! ...
�n�! Mn

such that Mi(pi) > 0 for all i

If the sequence contains u 2 [t] then t is not dead at M

If no transition in [t] appears in the sequence, then no token in •t is consumed

Hence Mn(pi) > 0 for all i, and Mn
t�! and t is not dead at M



Place-liveness implies 
liveness in f.c. systems
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Proposition: If a free-choice system is place-live,  
then it is live



Place-liveness implies 
liveness in f.c. systems
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Proposition: If a free-choice system is place-live,  
then it is live 

By contraposition, we prove: 
 non-liveness implies non-place-liveness



Place-liveness implies 
liveness in f.c. systems
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Proposition: If a free-choice system is place-live,  
then it is live 

By contraposition, we prove: 
 non-liveness implies non-place-liveness 

If a free-choice system is not live then there is a 
transition t dead at some reachable marking M 

But then some input place of t must be non-live at M, 
so the system is not place-live



Consequence in f.c. nets: 
place-liveness = liveness
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If a free-choice system is place-live, then it is live 

In any system, liveness implies place-liveness 

Corollary: 
A free-choice system is live iff it is place-live



Commoner’s theorem

!88

Theorem: 
A free-choice system is live 

iff 
every proper siphon includes an initially marked trap 

We show just the “if” direction, which is simpler 

We need a technical lemma
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A free-choice system is live 
if 

every proper siphon includes an initially marked trap 

By contraposition, we prove:  
if a free-choice is non-live, then  

a proper siphon exists whose traps are all unmarked

Commoner’s theorem: 
“if” direction



Commoner’s theorem: 
“if” direction
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If a free-choice is non-live, then  
a proper siphon exists whose traps are all unmarked 

A non-live free-choice system contains a proper siphon 
R such that M(R)=0 at some reachable M 

(see next lemma) 

So every trap included in R is unmarked at M 

(since marked traps remain marked) 
every trap included in R must be unmarked initially



Non-liveness and 
unmarked siphons
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Lemma: Every non-live free-choice system has a proper 
siphon R and a reachable marking M such that M(R)=0
By non-liveness: the system is not place-live,
i.e., some p is dead at some L 2 [M0i

Take M 2 [L i such that every place not dead at M
is not dead at any marking of [M i
i.e. all markings in [M i have the same set R of dead places
(dead places remain dead)

Next we prove that R is a proper siphon and M(R) = 0

X



Non-liveness and 
unmarked siphons

!92

Lemma: Every non-live free-choice system has a proper 
siphon R and a reachable marking M such that M(R)=0

•R ✓ R•1. R is a siphon

• any t 2 •R is dead at M

• every t dead at M has an input place in R

(t has some input place dead at some marking reachable from M)

2. R is proper

p is dead at L, hence it is dead at M , hence p 2 R, hence R 6= ;

3. M(R) = 0 because it contains dead places

X



Complexity of the  
non-liveness problem  

in free-choice systems
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A non-deterministic 
algorithm for non-liveness
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1. guess a set of places R 
(polynomial time) 

2. check if R is a siphon (•R ⊆ R•)  
(polynomial time) 

3. if R is a siphon, compute the maximal trap Q ⊆ R 

4. if M0(Q)=0, then answer “non-live”, otherwise "live" 
(polynomial time)



A polynomial algorithm for 
maximal trap in a siphon
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3. if R is a siphon, compute the maximal trap Q ⊆ R

Input: A net N = (P, T, F ) and R � P
Output: Q � R

Q := R
while (⌅p ⇥ Q, ⌅t ⇥ p•, t ⇤⇥ •Q)

Q := Q \ {p}
return Q

•R ✓ R• •Q ◆ Q•



Non-liveness for f.c. nets 
is in NP
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The non-liveness problem for free-choice systems is in NP 

Is the same problem in P?

The corresponding deterministic algorithm cannot make 
the guess in step 1 

It has to explore all possible subsets of places 
2|P| cases!



NP-completeness
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We next sketch the proof of the reduction to non-liveness 
in a free-choice net of the CNF-SAT problem 

(SATisfiability problem  
for propositional formulas in Conjunctive Normal Form) 

CNF-SAT is an NP-complete problem



CNF-SAT decision problem

!98

Variables: x1, x2, ..., xn

Literals: x1, x̄1, x2, x̄2, ..., xn, x̄n

Clause: disjunction of literals

Formula: conjunction of clauses

Example: � = (x1 ⇥ x̄3) � (x1 ⇥ x̄2 ⇥ x3) � (x2 ⇥ x̄3)

Is there an assignment of boolean values to the variables such that � = true?



The free-choice net of a 
formula
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Given a formula !, the idea is  
to construct a free-choice system (P,T,F,M0)  

and show that  

the formula ! is satisfiable 
iff 

(P,T,F,M0) is not live



The free-choice net of a 
formula
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Given a formula !, the idea is  
to construct a free-choice system (P,T,F,M0)  

and show that  

the formula ! is not satisfiable 
iff 

(P,T,F,M0) is live



CNF-SAT formulas
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Is there an assignment of boolean values to the variables such that � = true?

Is there an assignment of boolean values to the variables such that ¬� = false?

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)

� = (x1 _ x3) ^ (x1 _ x2 _ x3) ^ (x2 _ x3)
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¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)
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L3L2L1

One place Li for each variable xi

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)
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One transition for each literal

L3L2L1

x1 x̄1 x̄2 x̄3x3x2

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)
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L3L2L1

x1 x̄1 x̄2 x̄3x3x2

One transition Ci for each clause Ci

C3C2C1

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)
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L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1
A place for each occurrence of a literal

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)
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L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1

A place for true

True

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)
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L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1

True

Back

A transition to restart

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)
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L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1

True

Back

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)
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L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1

True

Back

Fix an assignment

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)
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L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1

True

Back

If none enabled, Back is dead

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)
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L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1

True

Back

If � is satisfiable, then the net is not live

If the net is not live, then � is satisfiable

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)



!113

L3L2L1

x1 x̄1 x̄2 x̄3x3x2

C3C2C1

True

Back

¬� = (x1 ^ x3) _ (x1 ^ x2 ^ x3) _ (x2 ^ x3)



Main consequence
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No polynomial algorithm to decide liveness of a 
free-choice system is available  

(unless P=NP)
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Draw the net corresponding to the formula 

Is it satisfiable?

Exercise

x2 ^ (x1 _ x3 _ x4) ^ (x1 _ x2) ^ (x1 _ x4) ^ (x2 _ x4)



Live and bounded  
free-choice nets

!116
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Theorem: 
A free-choice system (P,T,F,M0) is live and bounded 

iff 
1. it has at least one place and one transition 
2. it is connected 
3. M0 marks every proper siphon 
4. it has a positive S-invariant 
5. it has a positive T-invariant 
6. rank(N) = |CN| - 1 

(where CN is the set of clusters)

Rank Theorem  
(main result, proof omitted)

polynomial
polynomial
polynomial

polynomial
polynomial



A polynomial algorithm 
for maximal siphon in R
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Input: A net N = (P, T, F,M0), R � P
Output: Q � R

Q := R
while (⌅p ⇥ Q, ⌅t ⇥ •p, t ⇤⇥ Q•)

Q := Q \ {p}
return Q

Q is a siphon if •Q � Q•

maximal siphon in R



A polynomial algorithm for 
maximal unmarked siphon
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3. M0 marks every proper siphon

Input: A net N = (P, T, F,M0), R = { p | M0(p) = 0 }
Output: Q � R maximal unmarked siphon

Q := R
while (⌅p ⇥ Q, ⌅t ⇥ •p, t ⇤⇥ Q•)

Q := Q \ {p}
return Q

If Q is empty then M0 marks every proper siphon

polynomial



Main consequence
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The problem to decide  
if a free-choice system is live and bounded  

can be solved in polynomial time 
(using the Rank Theorem)



Coverability

!121
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Theorem: 
A free-choice system (P,T,F,M0) is live and bounded 

iff 
1. it has at least one place and one transition 
2. it is connected 
3. M0 marks every proper siphon 
4. it has a positive S-invariant 
5. it has a positive T-invariant 
6. rank(N) = |CN| - 1 

(where CN is the set of clusters)

Rank Theorem  
(main result, proof omitted)



A technique to find  
a positive S-invariant
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Decompose the free-choice net N in suitable S-nets so 
that any place of N belongs to an S-net 

(the same place can appear in more S-nets) 

Each S-net induces a uniform S-invariant 

A positive S-invariant is obtained  
as the sum of the S-invariants of each subnet



S-Coverability analysis

!124

A case is often composed by parallel threads of control 
(each thread imposing some order over its tasks) 

The notion of S-coverability allows to reveal such threads 



S-component
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Definition: Let N = (P, T, F ) and ⇧ ⇤ X ⇥ P ⌃ T
Let N � = (P ⌥X,T ⌥X,F ⌥ (X �X)) be a subnet of N .
N � is an S-component if

1. it is a strongly connected S-net

2. for every place p ⌅ X ⌥ P , we have •p ⌃ p• ⇥ X

take a set of nodes

if a place is selected 
then all the attached transitions must be selected

forget the arcs to other nodes



S-cover
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Definition: Let C be a set of S-components of a net N 

C is an S-cover if every place p of N  
belongs to one or more S-components in C 

We say that N is covered by S-components  
if it has an S-cover



S-cover: example
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!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

not an S-net



S-cover: example
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!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#
!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#



S-coverability theorem
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Theorem: If a free-choice system is live and bounded  
then it is S-coverable 

(proof omitted) 

Consequence: 
free-choice + not S-coverable => not (live and bounded)
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Theorem: 
A free-choice system (P,T,F,M0) is live and bounded 

iff 
1. it has at least one place and one transition 
2. it is connected 
3. M0 marks every proper siphon 
4. it has a positive S-invariant 
5. it has a positive T-invariant 
6. rank(N) = |CN| - 1 

(where CN is the set of clusters)

Rank Theorem  
(main result, proof omitted)



A technique to find  
a positive T-invariant

!131

Decompose the free-choice net N in suitable T-nets so 
that any transition of N belongs to a T-net 

(the same transition can appear in more T-nets) 

Each T-net induces a uniform T-invariant 

A positive T-invariant is obtained  
as the sum of the T-invariants of each subnet



T-component
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Definition: Let N = (P, T, F ) and ⇧ ⇤ X ⇥ P ⌃ T
Let N � = (P ⌥X,T ⌥X,F ⌥ (X �X)) be a subnet of N .
N � is a T-component if

1. it is a strongly connected T-net

2. for every transition t ⌅ X ⌥ T , we have •t ⌃ t• ⇥ X

if a transition is selected 
then all the attached places must be selected

take a set of nodes

forget the arcs to other nodes



T-cover
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Definition: Let C be a set of T-components of a net N 

C is a T-cover if every transition t of N  
belongs to one or more T-components in C 

We say that N is covered by T-components  
if it has a T-cover



T-cover: example
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!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

!""# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

617,# +,8# 9# 21/)#&:;#0.<:;);# =*))>?%.1?)#535()4#&:;#1(5#;)?.4'.51(1.:# 1:(.# ->?.4'.:):(5#

!""# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

617,# +,8# 9# 21/)#&:;#0.<:;);# =*))>?%.1?)#535()4#&:;#1(5#;)?.4'.51(1.:# 1:(.# ->?.4'.:):(5#



T-coverability theorem
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Theorem: If a free-choice system is live and bounded  
then it is T-coverable 

(proof omitted) 

Consequence: 
free-choice + not T-coverable => not (live and bounded)



Exercise
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Find an S-cover and a T-cover for the net below 
and derive suitable S- and T-invariants



Compositionality

!137



Compositionality of  
sound free-choice nets
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Lemma: 
If a free-choice workflow net N is sound 

then it is safe 

(because N* is S-coverable and M0=i has just one token) 

Proposition:  
If N and N’ are sound free-choice workflow nets 
then N[N’/t] is a sound free-choice workflow net 

(N, N’ are safe; we just need to show that N[N’/t] is free-choice)


