Business Processes Modelling MPB (6 cfu, 295AA)

Roberto Bruni

http://www.di.unipi.it/~bruni

18 - Free-choice nets

Object

We study some "good" properties of free-choice nets

Free Choice Nets (book, optional reading)

https://www7.in.tum.de/~esparza/bookfc.html

Free-choice net

Definition: We recall that a net N is **free-choice** if whenever there is an arc (p,t), then there is an arc from any input place of t to any output transition of p

implies

Free-choice net: alternative definitions

Proposition: All the following definitions of free-choice net are equivalent.

- 1) A net (P, T, F) is free-choice if: $\forall p \in P, \forall t \in T, (p, t) \in F \text{ implies } \bullet t \times p \bullet \subseteq F.$
- 2) A net (P,T,F) is free-choice if: $\forall p,q\in P, \forall t,u\in T, \ \{(p,t),(q,t),(p,u)\}\subseteq F \ \text{implies} \ (q,u)\in F.$
- 3) A net (P, T, F) is free-choice if: $\forall p, q \in P$, either $p \bullet = q \bullet$ or $p \bullet \cap q \bullet = \emptyset$.
- 4) A net (P, T, F) is free-choice if: $\forall t, u \in T$, either $\bullet t = \bullet u$ or $\bullet t \cap \bullet u = \emptyset$.

Free-choice net: my favourite definition

4) A net (P, T, F) is free-choice if: $\forall t, u \in T$, either $\bullet t = \bullet u$ or $\bullet t \cap \bullet u = \emptyset$.

Free-choice system

Definition: A system (N,M₀) is **free-choice** if N is free-choice

$$ullet t_1 = \{ p_1, p_3 \}$$
 $ullet t_2 = \{ p_3 \}$

 $\bullet t_1 \cap \bullet t_2 = \{ p_3 \} \neq \emptyset$

$\begin{array}{lll} \bullet t_1 & = & \{p_1, p_3\} \\ \bullet t_2 & = & \{p_3\} \end{array}$ **Example**

$$\bullet t_1 = \bullet t_2$$

$$\bullet t_1 \cap \bullet t_3 = \emptyset$$

$$\bullet t_2 \cap \bullet t_3 = \emptyset$$

non free-choice

Fundamental property of free-choice nets

Proposition: Let (P, T, F, M_0) be free-choice. If $M \xrightarrow{t}$ and $t \in p \bullet$, then $M \xrightarrow{t'}$ for every $t' \in p \bullet$.

The proof is trivial, by definition of free-choice net $(t,t'\in p\bullet \text{ implies } \bullet t=\bullet t')$

Free-choice N*

Proposition: A workflow net N is free-choice **iff** N* is free-choice

N and N* differ only for the reset transition, whose pre-set (o) is disjoint from the pre-set of any other transition

Rank Theorem (main result, proof omitted)

Theorem:

A free-choice system (P,T,F,M₀) is live and bounded **iff**

- 1. it has at least one place and one transition
- 2. it is connected
- 3. M₀ marks every proper siphon
- 4. it has a positive S-invariant
- 5. it has a positive T-invariant
- 6. $rank(N) = |C_N| 1$

(where C_N is the set of clusters)

Clusters

Cluster

Let x be the node of a net N=(P,T,F)(not necessarily free-choice)

Definition:

The **cluster** of x, written [x], is the least set s.t.

1.
$$x \in [x]$$

Cluster

Let x be the node of a net N=(P,T,F)(not necessarily free-choice)

Definition:

The **cluster** of x, written [x], is the least set s.t.

- 1. $x \in [x]$
- 2. if $p \in [x] \cap P$ then $p \bullet \subseteq [x]$

(if a place p is in the cluster, then all transitions in the post-set of p are in the cluster)

Cluster

Let x be the node of a net N=(P,T,F)(not necessarily free-choice)

Definition:

The **cluster** of x, written [x], is the least set s.t.

- 1. $x \in [x]$
- 2. if $p \in [x] \cap P$ then $p \bullet \subseteq [x]$
- 3. if $t \in [x] \cap T$ then $\bullet t \subseteq [x]$

(if a place p is in the cluster, then all transitions in the post-set of p are in the cluster)

(if a transition t is in the cluster, then all places in the pre-set of t are in the cluster)

[p2] = ?

$$[p2] = \{p2,...\}$$

$$[p2] = \{p2,...\}$$

(if a place p is in the cluster, then all transitions in the post-set of p are in the cluster)

 $[p2] = \{p2, t2, t4, t3,...\}$

(if a place p is in the cluster, then all transitions in the post-set of p are in the cluster)

 $[p2] = \{p2, t2, t4, t3,...\}$

(if a transition t is in the cluster, then all places in the pre-set of t are in the cluster)

 $[p2] = \{p2, t2, t4, t3, p1, p3, p4,...\}$

(if a transition t is in the cluster, then all places in the pre-set of t are in the cluster)

 $[p2] = \{p2, t2, t4, t3, p1, p3, p4,...\}$

(if a place p is in the cluster, then all transitions in the post-set of p are in the cluster)

 $[p2] = \{p2, t2, t4, t3, p1, p3, p4, t1\}$

(if a place p is in the cluster, then all transitions in the post-set of p are in the cluster)

Clusters: example

Exercise

Draw all clusters in the free-choice net below

Clusters and Rank Theorem

Theorem:

A free-choice system (P,T,F,M₀) is live and bounded **iff**

- 1. it has at least one place and one transition
- 2. it is connected
- 3. M0 marks every proper siphon
- 4. it has a positive S-invariant
- 5. it has a positive T-invariant
- 6. $rank(N) = |C_N| 1$

(where C_N is the set of clusters)

Stable markings

Stable set of markings

Definition: A set of markings M is called **stable** if

$$M \in \mathbf{M}$$
 implies $M \subseteq \mathbf{M}$

(starting from any marking in the stable set **M**, no marking outside **M** is reachable)

[M₀) is the least stable set that includes the marking M₀

Stable set of markings

(starting from any marking M in the stable set **M**, no marking M' outside **M** is reachable)

Stability check

M is stable iff $\forall M, t, M'. (M \in \mathbf{M} \land M \xrightarrow{t} M' \text{ implies } M' \in \mathbf{M})$

Which of the following is a stable set of markings? $\forall M, t, M'. (M \in \mathbf{M} \land M \xrightarrow{t} M' \text{ implies } M' \in \mathbf{M})$


```
 \left\{ \begin{array}{l} 2p_1 + p_2 \\ 2p_1 + p_2 \\ p_1 + 2p_3 \\ \end{array} \right\}   \left\{ \begin{array}{l} p_1 \\ p_2 \\ p_3 \\ \end{array} \right\}
```

Which of the following is a stable set of markings? $\forall M, t, M'. (M \in \mathbf{M} \land M \xrightarrow{t} M' \text{ implies } M' \in \mathbf{M})$


```
 \left\{ \begin{array}{l} 2p_1 + p_2 \\ 2p_1 + p_2 \\ p_1 + 2p_3 \\ p_1 \\ p_2 \\ p_1 \\ p_2 \\ p_3 \end{array} \right\}
```

Which of the following is a stable set of markings?

 $\forall M, t, M'. (M \in \mathbf{M} \land M \xrightarrow{t} M' \text{ implies } M' \in \mathbf{M})$

Which of the following is a stable set of markings? $\forall M, t, M'. (M \in \mathbf{M} \land M \xrightarrow{t} M' \text{ implies } M' \in \mathbf{M})$

Which of the following is a stable set of markings? $\forall M, t, M'. (M \in \mathbf{M} \land M \xrightarrow{t} M' \text{ implies } M' \in \mathbf{M})$


```
 \left\{ \begin{array}{l} 2p_1 + p_2 \\ 2p_1 + p_2 \\ p_1 + 2p_3 \\ \end{array} \right\}   \left\{ \begin{array}{l} p_1 \\ p_2 \\ p_1 + p_2 \\ \end{array} \right\}
```

 $\forall M, t, M'. (M \in \mathbf{M} \land M \xrightarrow{t} M' \text{ implies } M' \in \mathbf{M})$ Given a net system:

empty marking

Is the singleton set { 0 } a stable set?

Is the set of all markings a stable set?

Is the set of live markings a stable set?

Is the set of deadlock markings a stable set?

 $\forall M, t, M'. (M \in \mathbf{M} \land M \xrightarrow{t} M' \text{ implies } M' \in \mathbf{M})$ Given a net system:

empty marking

Is the singleton set { **0** } a stable set?

YES: no firing is possible

Is the set of all markings a stable set?

Is the set of live markings a stable set?

Is the set of deadlock markings a stable set?

Example

 $\forall M, t, M'. (M \in \mathbf{M} \land M \xrightarrow{t} M' \text{ implies } M' \in \mathbf{M})$ Given a net system:

Is the singleton set { **0** } a stable set? YES

Is the set of all markings a stable set?

YES: it is not possible to leave the set of all markings ls the set of live markings a stable set?

Is the set of deadlock markings a stable set?

Example

 $\forall M, t, M'. (M \in \mathbf{M} \land M \xrightarrow{t} M' \text{ implies } M' \in \mathbf{M})$ Given a net system:

Is the singleton set { **0** } a stable set?

YES

Is the set of all markings a stable set?

YES

Is the set of live markings a stable set?

YES: liveness is an invariant

Is the set of deadlock markings a stable set?

Example

 $\forall M, t, M'. (M \in \mathbf{M} \land M \xrightarrow{t} M' \text{ implies } M' \in \mathbf{M})$ Given a net system:

Is the singleton set { **0** } a stable set?

YES

Is the set of all markings a stable set?

YES

Is the set of live markings a stable set?

YES

Is the set of deadlock markings a stable set?

YES: no firing is possible

Exercises

Given a net (P,T,F):

Show that the set $\{ M \mid M(P)=1 \}$ is not necessarily stable.

Show that the set $\{M \mid M(P) < k\}$ is not necessarily stable.

Exercises

Let I be an S-invariant for (P,T,F,M₀)

Is the set $\{ M \mid I \cdot M = I \cdot M_0 \}$ a stable set?

Is the set $\{ M \mid I \cdot M \neq I \cdot M_0 \}$ a stable set?

Is the set $\{ M \mid I \cdot M = 1 \}$ a stable set?

Is the set $\{ M \mid I \cdot M = 0 \}$ a stable set?

Siphons

Proper siphon

Definition:

A set of places R is a **siphon** if $\bullet R \subseteq R \bullet$

It is a **proper siphon** if $R \neq \emptyset$

Siphons, intuitively

A set of places R is a siphon if

all transitions that can produce tokens in the places of R

$$\bullet R \subseteq R \bullet$$

require some place in R to be marked

Therefore:

if no token is present in R, then no token will ever be produced in R

Siphon check: example

Is R = { prod1busy, prod1free, itembuffer} a siphon?

Siphon check: example

Is R = { prod1busy, prod1free, itembuffer} a siphon?

Siphon check: example

Is R = { prod1busy, prod1free, itembuffer} a siphon?

Siphon check: example

Is R = { prod1busy, itembuffer} a siphon?

Siphon check: example

Is R = { prod1busy, itembuffer} a siphon?

Siphon check: example

Is R = { prod1busy, itembuffer} a siphon?

Fundamental property of siphons

Proposition: Unmarked siphons remain unmarked

Take a siphon R.

We just need to prove that the set of markings

 $M = \{ M \mid M(R)=0 \}$

is stable, which is immediate by definition of siphon

Corollary:

If a siphon R is marked at some reachable marking M, then it was initially marked at M₀

Siphons and liveness

Prop.: If a system is live any proper siphon R is marked

Take $p \in R$ and let $t \in \bullet p \cup p \bullet$

Since the system is live, then there are $M,M'\in [\,M_0\,
angle$ such that

$$M \xrightarrow{t} M'$$

Therefore p is marked at either M or M'Therefore R is marked at either M or M'Therefore R was initially marked (at M_0)

Siphons and liveness

Corollary: If a system has an unmarked proper siphon then it is not live

Siphons and liveness

Corollary: If a system has an unmarked proper siphon then it is not live

Theorem:

A free-choice system (P,T,F,M₀) is live and bounded **iff**

- 1. it has at least one place and one transition
- 2. it is connected
- 3. M₀ marks every proper siphon
- 4. it has a positive S-invariant
- 5. it has a positive T-invariant
- 6. $rank(N) = |C_N| 1$

(where Cn is the set of clusters) 54

Traps

Proper trap

Definition:

A set of places R is a **trap** if $\bullet R \supseteq R \bullet$

It is a **proper trap** if $R \neq \emptyset$

Traps, intuitively

A set of places R is a trap if

all transitions that can consume tokens from R

produce some token in some place of R

Therefore:

if some token is present in R, then it is never possible for R to become empty

Trap check: example

Is R = { itembuffer, cons1busy, cons1free} a trap?

Trap check: example

Is R = { itembuffer, cons1busy, cons1free} a trap?

Trap check: example

Is R = { itembuffer, cons1busy, cons1free} a trap?

Trap check: example

Is R = { itembuffer, cons1busy} a trap?

Trap check: example

Is R = { itembuffer, cons1busy} a trap?

Trap check: example

Is R = { itembuffer, cons1busy} a trap?

Fundamental property of traps

Proposition: Marked traps remain marked

Take a trap R. We just need to prove that the set of markings $\mathbf{M} = \{ \mathbf{M} \mid \mathbf{M}(\mathbf{R}) > 0 \}$

is stable, which is immediate by definition of trap

Corollary:

If a trap R is unmarked at some reachable marking M, then it was initially unmarked at M₀

Traps are closed under union

Lemma. The union of traps is a trap

Let X_1, X_2 be traps.

From $X_1 \bullet \subseteq \bullet X_1$ and $X_2 \bullet \subseteq \bullet X_2$ we have:

$$(X_1 \cup X_2) \bullet = X_1 \bullet \cup X_2 \bullet \subseteq \bullet X_1 \cup \bullet X_2 = \bullet (X_1 \cup X_2)$$

Liveness in free-choice systems

Liveness = Place liveness (in Free Choice systems)

In any system:
liveness implies place-liveness
p dead implies any transition t in its pre/post-set is dead

It can be shown that

If a free-choice system is place-live, then it is live

Corollary:

A free-choice system is live iff it is place-live

From a reachable marking M we would like to enable t

From a reachable marking M we would like to enable t

from M we can reach M₁ that marks p₁ (because place-live)

From a reachable marking M we would like to enable t

from M we can reach M₁ that marks p₁ (because place-live) from M₁ we can reach M₂ that marks p₂ (because place-live)

Note: the token remains in p₁ (fundamental property of FC: if t' can remove a token from p₁, then t' has the same preset as t)

From a reachable marking M we would like to enable t

from M we can reach M₁ that marks p₁ (because place-live) from M₁ we can reach M₂ that marks p₂ (because place-live)

from M_{n-1} we can reach M_n that marks p_n (because place-live)

From a reachable marking M we would like to enable t

from M we can reach M₁ that marks p₁ (because place-live) from M₁ we can reach M₂ that marks p₂ (because place-live)

from M_{n-1} we can reach M_n that marks p_n (because place-live)

from M we reach M_n that enables t!

Commoner's theorem

Theorem:

A free-choice system is live **iff**

every proper siphon includes an initially marked trap

(we omit the proof)

Note

It is easy to observe that every siphon includes a (possibly empty) unique maximal trap with respect to set inclusion (the union of traps is a trap)

Moreover, a siphon includes a marked trap iff
its maximal trap is marked

 $\bullet R \subseteq R \bullet$ siphon empty siphons remain empty

Exercise

 $ullet Q\supseteq Qullet$ trap

marked traps remain marked

The system below is free-choice and non-live: find a proper siphon that does not include a marked trap

Hint: take
R={p₁,p₂,p₃,p₄,p₅,p₈}
and show that:
it is a siphon and
it contains no trap

 $\bullet R \subseteq R \bullet$ siphon empty siphons remain empty

Exercise

 $ullet Q\supseteq Qullet$ trap

marked traps remain marked

The system below is free-choice and live: show that every proper siphon includes a marked trap

Hint: the only proper siphons are R₁={p₁,p₂,p₃,p₄,p₅,p₇,p₈} and R₂={p₁,p₂,p₃,p₄,p₅,p₆,p₈}

Non-liveness for f.c. nets is NP-complete

It can be shown that the non-liveness problem for free-choice systems is NP-complete

No deterministic polynomial (time) algorithm to decide liveness of a free-choice system is available

(unless P=NP)

Complexity of the non-liveness problem in free-choice systems

Commoner's theorem

Theorem:

A free-choice system is live **iff**

every proper siphon includes an initially marked trap

Theorem:

A free-choice system is non-live **iff**

there is a proper siphon that only includes initially unmarked traps

A non-deterministic algorithm for non-liveness

- guess a set of places R
 [polynomial time]
- check if R is a siphon (•R ⊆ R•)
 [polynomial time]
- 3. if R is a siphon, compute the maximal trap Q ⊆ R
- 4. if M₀(Q)=0, then answer "non-live", otherwise "live" [polynomial time]

A polynomial algorithm for maximal trap in a siphon $\bullet_R \subset R \bullet$

3. if R is a siphon, compute the maximal trap Q ⊆ R

Input: A net N = (P, T, F) and $R \subseteq P$ Output: $Q \subseteq R$ maximal trap in R

$$Q:=R$$
 while $(\exists p\in Q,\ \exists t\in p\bullet,\ t\not\in \bullet Q)$
$$Q:=Q\setminus \{p\}$$
 return Q

A polynomial non-det. algorithm for non-liveness

- guess a set of places R
 [polynomial time]
- check if R is a siphon (•R ⊆ R•)
 [polynomial time]
- if R is a siphon, compute the maximal trap Q ⊆ R [polynomial time]
- 4. if M₀(Q)=0, then answer "non-live", otherwise "live" [polynomial time]

Non-liveness for f.c. nets is in NP

The non-liveness problem for free-choice systems is in NP

Is the same problem in P?

The corresponding deterministic algorithm cannot make the guess in step 1

It has to explore all possible subsets of places $2^{|P|}$ cases!

NP-completeness

We next sketch the proof of the reduction to non-liveness in a free-choice net of the CNF-SAT problem

(SATisfiability problem for propositional formulas in Conjunctive Normal Form)

CNF-SAT is an NP-complete problem

CNF-SAT decision problem

Variables: $x_1, x_2, ..., x_n$

Literals: $x_1, \bar{x}_1, x_2, \bar{x}_2, ..., x_n, \bar{x}_n$

Clause: disjunction of literals

Formula: conjunction of clauses

Example: $\phi = (x_1 \vee \bar{x_3}) \wedge (x_1 \vee \bar{x_2} \vee x_3) \wedge (x_2 \vee \bar{x_3})$

Is there an assignment of boolean values to the variables such that $\phi = true$?

The free-choice net of a formula

Given a formula ϕ , the idea is to construct a free-choice system (P,T,F,M₀) and show that

the formula ϕ is satisfiable iff (P,T,F,M₀) is not live

The free-choice net of a formula

Given a formula ϕ , the idea is to construct a free-choice system (P,T,F,M₀) and show that

the formula ϕ is not satisfiable iff (P,T,F,M₀) is live

CNF-SAT formulas

Is there an assignment of boolean values to the variables such that $\phi = true$?

Is there an assignment of boolean values to the variables such that $\neg \phi = false$?

$$\phi = (x_1 \vee \overline{x}_3) \wedge (x_1 \vee \overline{x}_2 \vee x_3) \wedge (x_2 \vee \overline{x}_3)$$

$$\neg \phi = (\overline{x}_1 \land x_3) \lor (\overline{x}_1 \land x_2 \land \overline{x}_3) \lor (\overline{x}_2 \land x_3)$$

$$\neg \phi = (\overline{x}_1 \land x_3) \lor (\overline{x}_1 \land x_2 \land \overline{x}_3) \lor (\overline{x}_2 \land x_3)$$

$$\neg \phi = (\overline{x}_1 \land x_3) \lor (\overline{x}_1 \land x_2 \land \overline{x}_3) \lor (\overline{x}_2 \land x_3)$$

$$\neg \phi = (\overline{x}_1 \land x_3) \lor (\overline{x}_1 \land x_2 \land \overline{x}_3) \lor (\overline{x}_2 \land x_3)$$

$$\neg \phi = (\overline{x}_1 \land x_3) \lor (\overline{x}_1 \land x_2 \land \overline{x}_3) \lor (\overline{x}_2 \land x_3)$$

$$\neg \phi = (\overline{x}_1 \land x_3) \lor (\overline{x}_1 \land x_2 \land \overline{x}_3) \lor (\overline{x}_2 \land x_3)$$

A place for each occurrence of a literal

$$\neg \phi = (\overline{x}_1 \land x_3) \lor (\overline{x}_1 \land x_2 \land \overline{x}_3) \lor (\overline{x}_2 \land x_3)$$

$$\neg \phi = (\overline{x}_1 \land x_3) \lor (\overline{x}_1 \land x_2 \land \overline{x}_3) \lor (\overline{x}_2 \land x_3)$$

$$\neg \phi = (\overline{x}_1 \land x_3) \lor (\overline{x}_1 \land x_2 \land \overline{x}_3) \lor (\overline{x}_2 \land x_3)$$

$$\neg \phi = (\overline{x}_1 \land x_3) \lor (\overline{x}_1 \land x_2 \land \overline{x}_3) \lor (\overline{x}_2 \land x_3)$$

$$\neg \phi = (\overline{x}_1 \land x_3) \lor (\overline{x}_1 \land x_2 \land \overline{x}_3) \lor (\overline{x}_2 \land x_3)$$

$$\neg \phi = (\overline{x}_1 \land x_3) \lor (\overline{x}_1 \land x_2 \land \overline{x}_3) \lor (\overline{x}_2 \land x_3)$$

If ϕ is satisfiable, then the net is not live

If the net is not live, then ϕ is satisfiable

$$\neg \phi = (\overline{x}_1 \land x_3) \lor (\overline{x}_1 \land x_2 \land \overline{x}_3) \lor (\overline{x}_2 \land x_3)$$

Main consequence

No deterministic polynomial algorithm to decide liveness of a free-choice system is currently available

(unless P=NP)

Exercise

Draw the net corresponding to the formula

$$x_2 \wedge (x_1 \vee \overline{x}_3 \vee \overline{x}_4) \wedge (x_1 \vee \overline{x}_2) \wedge (\overline{x}_1 \vee x_4) \wedge (\overline{x}_2 \vee \overline{x}_4)$$

Is it satisfiable?

Live and bounded free-choice nets

Rank Theorem (main result, proof omitted)

Theorem:

A free-choice system (P,T,F,M₀) is live and bounded **iff**

1. it has at least one place and one transition polynomial

- 2. it is connected
- 3. M₀ marks every proper siphon
- 4. it has a positive S-invariant
- 5. it has a positive T-invariant
- 6. $rank(N) = |C_N| 1$

polynomial

polynomial

polynomial

polynomia

(where C_N is the set of clusters)

A polynomial algorithm for maximal unmarked siphon

3. M₀ marks every proper siphon polynomial

Input: A net
$$N=(P,T,F,M_0)$$
, $R=\{\,p\mid M_0(p)=0\,\}$ **Output:** $Q\subseteq R$ maximal unmarked siphon

$$(\bullet Q \subseteq Q \bullet)$$

$$Q:=R$$
 while $(\exists p\in Q,\ \exists t\in ullet p,\ t
ot\in Qullet)$ $Q:=Q\setminus \{p\}$

return Q If Q is empty then M_0 marks every proper siphon

Main consequence

The problem to decide
if a free-choice system is live and bounded
can be solved in polynomial time
(using the Rank Theorem)

Recap: free-choice nets and liveness

- f.c. net: place liveness <=> liveness
- f.c. net: non-live => exists a proper siphon R and M \in [M₀) such that M(R)=0
- f.c. net: every siphon contains a marked trap <=> live
- f.c. net: bounded and live <=> 6 conditions in Rank Theorem

Compositionality

Compositionality of sound free-choice nets

Lemma:

If a free-choice workflow net N is sound then it is safe

(because N* is S-coverable and M₀=i has just one token)

Proposition:

If N and N' are sound free-choice workflow nets then N[N'/t] is a sound free-choice workflow net

(N, N' are safe; we just need to show that N[N'/t] is free-choice)