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We study some “good” properties of
free-choice nets

Free Choice Nets (book, optional reading)
https://www7.in.tum.de/~esparza/bookfc.html
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Free-choice net

Definition: We recall that a net N is free-choice If
whenever there is an arc (p,t), then there is an arc
from any input place of t
to any output transition of p
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Free-choice net:
alternative definitions

Proposition: All the following definitions of free-choice net are equivalent.

1) A net (P, T, F) is free-choice if:
Vpe PVt eT, (p,t) € F implies ot x pe C F.

2) A net (P, T, F) is free-choice if:
Vp,qg € PYt,ueT, {(p,t),(q,t),(p,u)} C F implies (q,u) € F.

3) Anet (P, T,F) is free-choice if:
Vp,q € P, either pe = ge or p e Nge = ().

4) A net (P, T, F) is free-choice if:
Vi, u € T, either of = o1 or ot N ey, = ().

4



Free-choice net:
my favourite definition

4) A net (P, T, F) is free-choice if:
Vt,u € T, either of = o1, or of N ey = ().



Free-choice system

Definition: A system (N,Mo) is free-choice
if N is free-choice
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Fundamental property
of free-choice nets

Proposition: Let (P, T, F, M) be free-choice.
If M —3 and ¢ € pe, then M s for every t’ € pe.

The proof is trivial, by definition of free-choice net
(t,t" € pe implies ot = ot’)



Free-choice N*

Proposition: A workflow net N is free-choice
iff N* is free-choice

N and N* differ only for the reset transition,
whose pre-set (0) is disjoint
from the pre-set of any other transition



Rank Theorem
(main result, proof omitted)

Theorem:
A free-choice system (P, T,F,Mo) is live and bounded
iff
. It has at least one place and one transition
, It Is connectea
. Mo marks every proper siphon
. It has a positive S-invariant

. It has a positive T-invariant
.rank(N) = |Cn] - 1

o O W —

(where Cn is the set of clusters)
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Clusters



Cluster

Let x be the node of a net N = (P, T, F)
(not necessarily free-choice)

Definition:
The cluster of x, written [x], is the least set s.t.

1. x € |x]
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Cluster

Let x be the node of a net N = (P, T, F)
(not necessarily free-choice)

Definition:
The cluster of x, written [x], is the least set s.t.

1. x € |x]
(if a place p is in the cluster,
then all transitions in the

2. pr c [37] N P then pe g [«75] post-set of p are in the cluster)
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Cluster

Let x be the node of a net N = (P, T, F)
(not necessarily free-choice)

Definition:
The cluster of x, written [x], is the least set s.t.

1. x € |x]
(if a place p is in the cluster,
then all transitions in the

2. pr c [37] N P then pe g [«75] post-set of p are in the cluster)

3. 1ft € [m] N T then et g [x] (if a transition t is in the cluster,

then all places in the
pre-set of t are in the cluster)
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Cluster: intuition

[p2]=7

pl p2 p3 p4
4 v

t1 t2 t4 t3
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Cluster: intuition

[p2]=1{p2,...]}

pl p2 p3 p4
4 v

t1 t2 t4 t3
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Cluster: intuition

[p2]={p2 ) (if a place p is in the cluster,

then all transitions in the
post-set of p are in the cluster)

t1 t2 t4 £3

17



Cluster: intuition

[ p2 ] — { p2 t2 14 13 } (if a place p is in the cluster,

then all transitions in the
post-set of p are in the cluster)

100 T
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Cluster: intuition

[ p2 ] = { p2 t2 t4 13 } (if a transition t is in the cluster,

then all places in the
pre-set of t are in the cluster)

\r IIIIIIl IIIIIIl IIIIIII

t1 t2 t4 £3
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Cluster: intuition

[p2 ] = { p2 t2 t4 13 p1 p3 p4 } (if a transition t is in the cluster,

then all places in the
pre-set of t are in the cluster)

t1 t2 t4 £3
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Cluster: intuition

[ p2 ] — { p2 : t2, t4, t3, p’], p3, p4, } (if a place p is in the cluster,

then all transitions in the
post-set of p are in the cluster)
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Cluster: intuition

[ p2 ] — { p2 : t2, t4, t3, p'], p3, p4, t1 } (if a place p is in the cluster,

then all transitions in the
post-set of p are in the cluster)
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Clusters: example
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Exercise

Draw all clusters in the free-choice net below




Clusters and Rank
Theorem

Theorem:
A free-choice system (P, T,F,Mo) is live and bounded
iff
1. 1t has at least one place and one transition
2. It Is connected
3. WO marks every proper siphon
4., 1t has a posliive S-invariant
9.
6

it has a positive T-Invariant
. rank(N) = [Cn| -

(where Cn is the set of clusters)
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Stable markings



Stable set of markings

Definition: A set of markings M is called stable if

MeM implies ‘M)CM

(starting from any marking in the stable set M,
no marking outside M is reachable)

[Mo) is the least stable set that includes the marking Mo
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Stable set of markings

(starting from any marking M in the stable set M,
no marking M’ outside M is reachable)
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Stability check

M is stable iff
VM, t,M'.(M € M A M — M’ implies M’ € M)
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pl

Example

Which of the following is a stable set of markings?
VM, t,M'.(M € M A M — M’ implies M’ € M)

{2p1+p2 }

{2p1+p2, p1+2p3 }
{p1, p2}
{p1tp2, p3}

tl

p3

t2
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pl

Example

Which of the following is a stable set of markings?
VM, t,M'.(M € M A M — M’ implies M’ € M)

/Q { 2p1+p2 }
v {p1, p2}

tl t1

tf {p1+p2, ps3}

p3 [(p1p3)]

t2
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pl

Example

Which of the following is a stable set of markings?
VM, t,M'.(M € M A M — M’ implies M’ € M)

{2p1+p2 }
{2p1+p2, p1+2p3 }
{p1, p2}
{p1tp2, p3}

tl

% [(2p1 p2 p3 )]

A

> [(plpB)] t2

i

[( 3pl 2p2 )]

t2
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pl

Example

Which of the following is a stable set of markings?
VM, t,M'.(M € M A M — M’ implies M’ € M)

ﬁ { 2p1+p2 }
L {p1, p2}

{p1+p2, ps3}

p3

t2
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pl

Example

Which of the following is a stable set of markings?
VM, t,M'.(M € M A M — M’ implies M’ € M)

/Q { 2p1+p2 }
{2p1+p2, p1+2ps }
{p1, p2}

tl

{p1+p2, ps3}

p3

t2
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Example
VM, t,M'.(M € M A M — M’ implies M’ € M)
Given a net system:
Is the singleton set { 0 } a stable set?
Is the set of all markings a stable set?

Is the set of live markings a stable set?

Is the set of deadlock markings a stable set?
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Example

VM, t,M'.(M € M A M — M’ implies M’ € M)
Given a net system:

empty marking

Is the singleton set { 0 } a stable set?
YES: no firing is possible
Is the set of all markings a stable set?
Is the set of live markings a stable set?

Is the set of deadlock markings a stable set?
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Example

VM, t,M'.(M € M A M — M’ implies M’ € M)
Given a net system:

Is the singleton set { 0 } a stable set?
YES
Is the set of all markings a stable set?
YES: it is not possible to leave the set of all markings
Is the set of live markings a stable set?

Is the set of deadlock markings a stable set?
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Example

VM, t,M'.(M € M A M — M’ implies M’ € M)
Given a net system:

Is the singleton set { 0 } a stable set?
YES
Is the set of all markings a stable set?
YES
Is the set of live markings a stable set?
YES: liveness is an invariant
Is the set of deadlock markings a stable set?
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Example

VM, t,M'.(M € M A M — M’ implies M’ € M)
Given a net system:

Is the singleton set { 0 } a stable set?
YES

Is the set of all markings a stable set?
YES

Is the set of live markings a stable set?
YES

Is the set of deadlock markings a stable set?
YES: no firing is possible
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Exercises

Given a net (P, T,F):
Show that the set { M | M(P)=1 } is not necessarily stable.

Show that the set { M | M(P)<k } is not necessarily stable.
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Exercises

Let | be an S-invariant for (P, T,F,Mo)

Isthe set{ M | I-M =1-Mo } a stable set?
Isthe set{M | I-M # 1-Mo } a stable set?
Isthe set{ M |[I-M =1 } a stable set?

Istheset{ M |I-M =0} a stable set?
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Siphons



Proper siphon

Definition:
A set of places R is a siphon if eR C Re

It is a proper siphon if R # ()
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Siphons, intuitively

A set of places R is a siphon if

all transitions that can produce tokens in the places of R
o/ C Re
require some place in R to be marked

Therefore:
If no token is present in R,
then no token will ever be produced in R
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o/ C Re

Siphon check: example

Is R = { prod1busy, prod1free, itembuffer} a siphon?
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o/ C Re

Siphon check: example

Is R = { prod1busy, prod1free, itembuffer} a siphon?
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o/ C Re

Siphon check: example

Is R = { prod1busy, prod1free, itembuffer} a siphon?
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o/ C Re

Siphon check: example

Is R = { prod1busy, itembuffer} a siphon?




o/ C Re

Siphon check: example

Is R = { prod1busy, itembuffer} a siphon?




o/ C Re

Siphon check: example

Is R = { prod1busy, itembuffer} a siphon?




Fundamental property
of siphons

Proposition: Unmarked siphons remain unmarked

Take a siphon R.
We just need to prove that the set of markings
M={M|M(R)=0}
Is stable, which is immediate by definition of siphon

Corollary:

If a siphon R is marked at some reachable marking M,
then it was initially marked at Mo
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Siphons and liveness

Prop.: If a system is live any proper siphon R is marked

Take p € R and let t € ep U pe
Since the system is live, then there are M, M’ € | My ) such that

M - M

nerefore p is marked at either M or M’
nerefore R is marked at either M or M’
nerefore R was initially marked (at M)

— = -
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Siphons and liveness

Corollary: If a system has an unmarked proper siphon
then it is not live
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Siphons and liveness

Corollary: If a system has an unmarked proper siphon
then it is not live

Theorem:
A free-choice system (P, T,F,Mo) is live and bounded
iff
. It has at least one place and one transition
. It Is connected
. Mo marks every proper siphon
. It has a positive s-invariant
, It has a positive T-invariant
, rank(N) = [Cn] - 1

D O & WN) =

(where Cn is the set of clusters) sa



Traps



Proper trap

Definition:
A set of places R is a trap if eR O Re

It is a proper trap if R # ()
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Traps, intuitively

A set of places R is a trap if
all transitions that can consume tokens from R
produce some token in some place of R
Therefore:

If some token is present in R,
then it is never possible for R to become empty

o7



o/ O Re

Trap check: example

Is R = { itembuffer, cons1busy, cons1free} a trap?
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o/ O Re

Trap check: example

Is R = { itembuffer, cons1busy, cons1free} a trap?
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o/ O Re

Trap check: example

Is R = { itembuffer, cons1busy, cons1free} a trap?
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o/ O Re

Trap check: example

Is R = { itembuffer, cons1busy} a trap?
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o/ O Re

Trap check: example

Is R = { itembuffer, cons1busy} a trap?
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o/ O Re

Trap check: example

Is R = { itembuffer, cons1busy} a trap?

63




Fundamental property
of traps

Proposition: Marked traps remain marked

Take a trap R.
We just need to prove that the set of markings
M={M|M(R)>0}
is stable, which is immediate by definition of trap

Corollary:
If a trap R Is unmarked at some reachable marking M,
then it was initially unmarked at Mo
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Traps are
closed under union

Lemma. The union of traps is a trap

Let X4, X9 be traps.
From X10 C OXl and XQO C OXQ we have:

(Xl U XQ)O — X1 o UXQO g 0X1 U CXQ — C(Xl U XQ)
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Liveness in free-choice
systems
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Liveness = Place liveness
(in Free Choice systems)

In any system:
liveness implies place-liveness
p dead implies any transition t in its pre/post-set is dead

It can be shown that
If a free-choice system is place-live, then it is live

Corollary:
A free-choice system is live iff it is place-live
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FC Place-live implies FC Live
(intuition)

From a reachable marking M we would like to enable t

Q£
e

gk
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FC Place-live implies FC Live
(intuition)

From a reachable marking M we would like to enable t

) Ci Q from M we can reach M that

on marks p1 (because place-live)
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FC Place-live implies FC Live
(intuition)

From a reachable marking M we would like to enable t

from M we can reach M1 that
o1 2 on marks p1 (because place-live)

from M1 we can reach Mz that
marks p2 (because place-live)

Note: the token remains in p1

t (fundamental property of FC:
if t can remove a token from p1,
then t' has the same preset as t)
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FC Place-live implies FC Live
(intuition)

From a reachable marking M we would like to enable t

® @ from M we can reach M1 that
p1 2 on marks p1 (because place-live)

from M1 we can reach Mz that
marks p2 (because place-live)

t from Mn-1 we can reach Mn that
C/ \( marks pn (because place-live)
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FC Place-live implies FC Live
(intuition)

From a reachable marking M we would like to enable t

® @ from M we can reach M+ that
p1 2 m marks p1 (because place-live)

from M1 we can reach Mz that
marks p2 (because place-live)

t from Mn.1 we can reach M, that
marks pn (because place-live)
from M we reach M, that

al ak enables t!

72




Commonher's theorem

Theorem:

A free-choice system is live
iff
every proper siphon includes an initially marked trap

(we omit the proof)
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Note

It is easy to observe that every siphon includes a
(possibly empty) unique maximal trap
with respect to set inclusion
(the union of traps is a trap)

Moreover, a siphon includes a marked trap
iff
its maximal trap is marked
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R C Re «Q D Qe

siphon E . trap
empty siphons Xercl Se marked traps
remain empty remain marked

The system below is free-choice and non-live:
find a proper siphon that does not include a marked trap

Hint: take Q/\V

R={p1,p2,p3,p4,ps,ps} . ;
and show that: &
it is a siphon and é:(w
it contains no trap

p8

p3

ts5 p5 té
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R C Re «Q D Qe

siphon E . trap
empty siphons Xercl Se marked traps
remain empty remain marked

The system below is free-choice and live:
show that every proper siphon includes a marked trap

Hint. the only proper Qi SR

siphons are @_, . &
R1={p1,p2,p3,P4,P5,P7,Ps} o uéi Uts 8
O

and
R2={p1,p2,p3,P4,P5,Ps,Ps} ;

t5 p5 t8
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Non-liveness for f.c. nets
is NP-complete

It can be shown that
the non-liveness problem for free-choice systems

is NP-complete

No deterministic polynomial (time) algorithm to
decide liveness of a free-choice system is available

()

(unless P=NP)
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Complexity of the
non-liveness problem
in free-choice systems



Commonher's theorem

Theorem:
A free-choice system is live
iff
every proper siphon includes an initially marked trap

Theorem:
A free-choice system is non-live
iff
there is a proper siphon that only includes initially
unmarked traps
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A non-deterministic
algorithm for non-liveness

1. guess a set of places R
[polynomial time]

2. check if R is a siphon (*R € Re)
[polynomial time]

3. if Ris a siphon, compute the maximal trap Q ¢ R

4. if Mo(Q)=0, then answer “non-live”, otherwise "live"
[polynomial time]
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A polynomial algorithm for
maximal trap in a siphon

o C Re o() O (Yo
3. if Ris a siphon, compute the maximal trap Q ¢ R

Input: Anet N=(P,T,F)and RC P
Output: () C R maximal trap in R

Q=R
while (dp € Q), dt € pe, t £ o())
Q = Q\{p}

return ()
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A polynomial non-det.
algorithm for non-liveness

1. guess a set of places R
[polynomial time]

2. check if R is a siphon (*R € Re)
[polynomial time]

3. if Ris a siphon, compute the maximal trap Q ¢ R
[polynomial time]

4. if Mo(Q)=0, then answer “non-live”, otherwise "live"
[polynomial time]
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Non-liveness for f.c. nets
s in NP
The non-liveness problem for free-choice systems is in NP

|s the same problem in P?

The corresponding deterministic algorithm cannot make
the guess in step 1

It has to explore all possible subsets of places
2Pl cases!
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NP-completeness

We next sketch the proof of the reduction to non-liveness
in a free-choice net of the CNF-SAT problem

(SATisfiability problem
for propositional formulas in Conjunctive Normal Form)

CNF-SAT is an NP-complete problem
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CNF-SAT decision problem

Variables: x4, x9, ...,y

Literals: x1,Z1, 22,9, ..., 2., Tn
Clause: disjunction of literals
Formula: conjunction of clauses

Example: ¢ = (21 V23) A (21 VI Va3) A (x2V T3)

Is there an assignment of boolean values to the variables such that ¢ = true?

85



The free-choice net of a
formula

Given a formula ¢, the idea is

to construct a free-choice system (P, T,F,Mo)
and show that

the formula ¢ is satisfiable

Iff
(P, T,F,Mo) is not live
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The free-choice net of a
formula

Given a formula ¢, the idea is

to construct a free-choice system (P, T,F,Mo)
and show that

the formula ¢ is not satisfiable

Tii
(P,T,F,Mo) is live
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CNF-SAT formulas

Is there an assignment of boolean values to the variables such that ¢ = true?

Is there an assignment of boolean values to the variables such that —¢ = false?

¢: (331 \/fg)/\($1 VTQ\/QZ‘;;)/\(QEQ \/Tg)

—¢ = (T1 ANx3) V(T3 Az AT3) V (Ty A x3)
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—|¢ — (Tl /\513‘3) V (fl /\$2 /\Tg) \V4 (fg /\wg)

A
(gelgls




_l¢:(fl/\.fl?3)\/ iEl/\CCQ/\Qig)\/(EQ/\$3)
.QL éLz QLB
One place Li for each variable X.J

(gelgls

v
"‘
v
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—|¢ — (fl /\ 33‘3) V (fl A\ L9 /\Tg) \V4 (fg /\ $3)
L1

One transition for each literal

QP/ (%P
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—|¢ — (fl /\ .513’3) V (Tl N\ L9 /\fg) V (EQ /\ $3)
|1 Lo |3
One transition Ci for each clause C

= N =
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—|¢ — (fl /\ .513’3) V (Tl A\ L9 /\fg) \V4 (EQ /\ $3)
L1 Lo L3

00000 00

A place for each occurrence of a literal
w3
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—¢ = (T1 ANx3) V (T1 Nx2 ANT3) V (T2 N 23)

A place for true
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—¢ = (T1 ANx3) V (T1 Nx2 ANT3) V (T2 N 23)
L1 Lo L3

Tq T T9 To fﬂ?g
C1
- Triie

A transition to restart

C
m Back
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—¢ = (T1 ANx3) V (T1 Nx2 ANT3) V (T2 N 23)
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—|¢ — (fl /\513’3) V (fl /\$2 /\fg) \V4 (fg /\$3)

L3 L3

L1 L1 L9 L9

/
le an aSS|gnment
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—|¢ — (fl /\ .513’3) V (Tl A\ L9 /\fg) \V4 (EQ /\ $3)
L1 Lo L3

o o

X1 L2 ) X3
Co C3

r A
N v

C1
If none enabled, Back is dead

‘QI)“ True

Back
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—|¢ (513‘1 /\373 261 /\ZCQ /\513‘3

LA

2131 513‘1 2132 CIZ‘Q

$3

—— \

>

ZIZ‘Q N\ LE3)

X3

If & Is satlsflable, then the net Is not live

If the net is not live, then ¢ Is satistiable

Hj True

Back
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—|¢ — (fl /\513’3) V (fl /\$2 /\fg) \V4 (fg /\$3)

| , Lo L3
{0 o 9,
5131 5132 .2173
of® Qoo Ok®
. True
Back
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Main consequence ™

No deterministic polynomial algorithm to decide
liveness of a free-choice system is currently
available

(unless P=NP)
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Exercise

Draw the net corresponding to the formula

To N (1 VT3V Tg) N (21 VT2) A (T1Vxy) A (ToVTy)

|s it satisfiable?
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Live and bounded
free-choice nets



Rank Theorem
(main result, proof omitted)

Theorem:
A free-choice system (P, T,F,Mo) is live and bounded
iff
. It has at least one place and one trar 'tion
. it is connected polynomial
. Mo marks every proper siphqr

.it has a positive S-invariant
.it has a positive T-invariant

.rank(N) = |Cn]| - 1

(where Cy is the set of clusters)

OO, WN -
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A polynomial algorithm for

maximal unmarked siphon
3. Mo marks every proper siphon

Input: Anet N = (P, T,F, My),IR={p| Mo(p) =0}
Output: () € R maximal unmarked siphon
(0@ C Qo)
Q=R
while (dp € Q, dt € ep, t £ Qo)
Q= Q\{p}

return () If Q is empty then Mo marks every proper siphon
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Main consequence

The problem to decide
If a free-choice system is live and bounded
can be solved in polynomial time
(using the Rank Theorem)
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Recap: free-choice nets
and liveness

f.c. net: place liveness <=> liveness

f.c. net: non-live => exists a proper siphon R and Me[Mo)
such that M(R)=0

f.c. net: every siphon contains a marked trap <=> live

f.c. net: bounded and live <=> 6 conditions in Rank Theorem

|07



Compositionality



Compositionality of
sound free-choice nets

Lemma:
If a free-choice workflow net N is sound
then it is safe

(because N* is S-coverable and Mo=i has just one token)

Proposition:
If N and N’ are sound free-choice workflow nets
then N[N’/t] is a sound free-choice workflow net

(N, N' are safe; we just need to show that N[N'/t] is free-choice)
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